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Abstract

This paper deals with preference elicitation and
preference-based optimization in the context of
multiattribute utility theory under certainty. We
focus on the generalized additive decomposable
utility model which allows interactions between
attributes while preserving some decomposabil-
ity. We first present a systematic elicitation pro-
cedure for such utility functions. This procedure
relies on a graphical model called aGAI-network
which is used to represent and manage indepen-
dences between attributes, just as junction graphs
model independences between random variables in
Bayesian networks. Then, we propose an optimiza-
tion procedure relying on this network to compute
efficiently the solution of optimization problems
over a product set.

1 Introduction
The development of decision support systems has stressed the
need for preference models to handle user’s preferences and
perform preference-based recommendation tasks.

In this respect, current works in preference modeling and
decision theory aim at proposing compact preference mod-
els achieving a good compromise between two conflicting as-
pects: on the one hand, the need for sufficiently flexible mod-
els to describe sophisticated decision behaviors, on the other
hand, the practical necessity of keeping the elicitation effort
at an admissible level as well as the need for efficient proce-
dures to solve preference-based optimization problems. As
an example, let us mention the recent advances on qualitative
preference models such as CP-nets[Boutilier et al., 2004a;
2004b]. Such models are naturally suited to simple applica-
tions (e.g. recommender systems to buy books on the web)
in which preferences can easily be approximated by lexico-
graphic rules on attributes with small domains. However,
in more involved decision problems (e.g. modeling the fine
knowledge of an expert in order to automatize an important
decision task) utilities might significantly outperform quali-
tative models due to their higher descriptive power[Boutilier
et al., 2001].

In the literature, different quantitative models based on util-
ities have been developped to take into account different pref-

erence structures. The most widely used model assumes a
special kind of independence among attributes called “mu-
tual preferential independence” which ensures that the pref-
erences are representable by an additively decomposable util-
ity function [Krantzet al., 1971; Bacchus and Grove, 1995].
Such decomposability makes the elicitation process easy to
perform as we shall see in Section 3. However, in practice,
preferential independence may fail to hold as it rules out any
interaction among attributes. Generalizations of preferen-
tial independence have thus been investigated that extend the
range of application of utilities. For instanceutility indepen-
denceon every attribute leads to a more sophisticated form of
utility called multilinear utility [Bacchus and Grove, 1995].
Multilinear utilities are more general than additive utilities
but many interactions between attributes still cannot be taken
into account by such functionals. To increase the descriptive
power of such models, GAI (generalized additive indepen-
dence) decompositions introduced by[Fishburn, 1970] allow
more general interactions between attributes[Bacchus and
Grove, 1995] while preserving some decomposability. Such
a decomposition has been used to endow CP-nets with util-
ity functions (UCP-nets) both in uncertainty[Boutilier et al.,
2001] and in certainty[Brafmanet al., 2004].

In the same direction[Gonzales and Perny, 2004] proposes
a general procedure to assess a GAI decomposable utility
function in the context of decision making under risk. The
elicitation procedure is directed by the structure of a new
graphical model called a GAI network. The procedure con-
sists of a sequence of questions involving simple lotteriesto
capture the basic features of the DM attitude under risk. As
such, it does not fit for eliciting utilities under certainty. The
aim of this paper is to complete this study by investigating
the potential contribution of GAI networks in the context of
decision making under certainty. Section 2 recalls the ba-
sics of GAI networks. The elicitation under certainty is then
explained in Section 3 and an efficient process for solving
optimization queries is introduced in Section 4.

2 GAI networks
Before describing GAI networks, we shall introduce some no-
tations and assumptions. Throughout the paper,% denotes a
decision maker’s (DM) preference relation, which we assume
to be a weak order, over some setX . x % y means that for
the DMx is at least as good asy. ≻ refers to the asymmetric



part of% and∼ to the symmetric one. In practical situations,
X is often described by a set of attributes. For simplicity,
we assume thatX is the Cartesian product of the domains
of these attributes, although extensions to general subsets are
possible[Chateauneuf and Wakker, 1993]. In the rest of the
paper, uppercase letters (possibly subscripted) such asA, B,
X1 denote both attributes and their domains (as this is un-
ambiguous and it simplifies the notation). Unless otherwise
mentioned, (possibly superscripted) lowercase letters denote
values of the attribute with the same uppercase letters:x, x1

(resp.xi, x1
i ) are thus values ofX (resp.Xi).

Under mild hypotheses[Debreu, 1964], it can be shown
that% is representable by a utility, i.e., there exists a function
u : X 7→ R such thatx % y ⇔ u(x) ≥ u(y) for all x, y ∈ X .
As preferences are specific to each individual, utility func-
tions must be elicited for each DM, which is usually impossi-
ble due to the combinatorial nature ofX . Fortunately, DM’s
preferences usually have an underlying structure induced by
independences among attributes that substantially decreases
the elicitation burden. In this paper, we focus on a particular
decomposition of utilities defined as follows:

Definition 1 (GAI decomposition) Let X =
∏n

i=1 Xi. Let
Z1, . . . , Zk be some subsets ofN = {1, . . . , n} such that
N = ∪k

i=1Zi. For everyi, let XZi
=

∏

j∈Zi
Xj. Utility u(·)

representing% is GAI-decomposable w.r.t. theXZi
’s iff there

exist functionsui : XZi
7→ R such that:

u(x) =
∑k

i=1 ui(xZi
), for all x = (x1, . . . , xn) ∈ X ,

wherexZi
denotes the tuple constituted by thexj ’s, j ∈ Zi.

GAI decompositions can be represented by graphical struc-
tures we callGAI networkswhich are essentially similar
to the junction graphs used for Bayesian networks[Jensen,
1996; Cowellet al., 1999]:

Definition 2 (GAI network) Let X =
∏n

i=1 Xi. Let
Z1, . . . , Zk be some subsets ofN = {1, . . . , n} such that
⋃k

i=1 Zi = N . Assume that% is representable by a GAI-

decomposable utilityu(x) =
∑k

i=1 ui(xZi
) for all x ∈ X .

Then a GAI network representingu(·) is an undirected
networkG = (V, E), satisfying the following properties:

1. V = {XZ1
, . . . , XZk

};
2. For every(XZi

, XZj
) ∈ E, Zi ∩ Zj 6= ∅. Moreover,

for every pair of nodesXZi
, XZj

such thatZi ∩ Zj =
Tij 6= ∅, there exists a path inG linking XZi

andXZj

such that all of its nodes contain all the indexes ofTij

(Running intersection property).
Nodes ofV are calledcliques. Every edge(XZi

, XZj
) ∈ E

is labeled byXTij
= XZi∩Zj

and is called aseparator.

Throughout this paper, cliques will be drawn as ellipses
and separators as rectangles. Moreover, we shall only be in-
terested in GAI trees, i.e., in singly-connected GAI networks.
As mentioned in[Gonzales and Perny, 2004], this is not re-
strictive as general GAI networks can always be compiled
into GAI trees. For any GAI decomposition, by Definition 2
the cliques of the GAI network should be the sets of vari-
ables of the subutilities. For instance, ifu(a, b, c, d, e, f, g) =
u1(a, b)+u2(c, e)+u3(b, c, d)+u4(b, d, f)+u5(b, g) then, as
shown in Figure 1, the cliques are:AB, CE, BCD, BDF ,

BG. By property 2 of Definition 2 the set of edges of a GAI
network can be determined by any algorithm preserving the
running intersection property (see the Bayesian network liter-
ature on this matter[Cowellet al., 1999]).

AB B BCD

C

BD

CE

BDF B BG

Figure 1: A GAI tree

3 Elicitation
Elicitation of GAI-decomposable utilities is closely related to
that of additive utilities. Hence the beginning of this section
is devoted to the latter. Then the process is extended to GAI.

3.1 Additive Utilities
Unlike decision under uncertainty or under risk, utilitiesun-
der certainty are not necessarily unique up to strictly positive
affine transforms[Adams, 1965; Gonzales, 2003]. However,
such uniqueness property usually greatly simplifies the elici-
tation process. Hence, the property below, which ensures this
uniqueness, will be assumed throughout this section. Note
however, it can be easily dispensed with[Gonzales, 2003].

Definition 3 (restricted solvability) LetX =
∏n

i=1 Xi. For
everyi, if (x0

1, . . . , x
0
i−1, x

0
i , x

0
i+1, . . . , x

0
n)- (x1, . . . , xn) -

(x0
1, . . . , x

0
i−1, x

1
i , x

0
i+1, . . . , x

0
n), then there existsx2

i ∈ Xi

such that(x0
1, . . . , x

0
i−1, x

2
i , x

0
i+1, . . . , x

0
n) ∼ (x1, . . . , xn).

This property usually implies thatX contains numerous
elements, if not an infinite number. However, this restricts
neither the potential field of applications nor the applicability
of the elicitation process. Indeed, if an attribute is not solv-
able, then its domain can always be enriched so that solvabil-
ity holds as long as only the projection on the original spaceis
used when making decisions. As for the applicability of elic-
itation,X being infinite is not a problem because indifference
curves —the sets of elements in a same indifference class—
are usually very smooth and thus can be easily approximated
knowing only a limited number of points.

Under certainty, the central idea for elicitation lies in the
construction of standard sequences: let% be a preference
relation onX1 × X2 representable by an additive utility
u1(·) + u2(·). Let x0

1 ∈ X1, x0
2, x

1
2 ∈ X2 be arbitrary points.

As by solvability utilities are unique up to strictly positive
affine transforms, we may assume without loss of general-
ity that (x0

1, x
1
2) ≻ (x0

1, x
0
2), u1(x

0
1) = u2(x

0
2) = 0 and

u2(x
1
2) = 1. Let x1

1 ∈ X1 be such that(x1
1, x

0
2) ∼ (x0

1, x
1
2)

(see Figure 2 which represents indifference curves in space
X1 × X2), then u1(x

1
1) = 1. More generally, for any

i, let xi
1, x

i+1
1 be such that(xi+1

1 , x0
2) ∼ (xi

1, x
1
2). Then

u1(x
i
1) = i. Sequence(xi

1) is called a standard sequence:

Definition 4 (standard sequence)For any setN of consec-
utive integers,{xk

1 , k ∈ N} is a standard sequence w.r.t.X1

iff there existx0 = (x0
2, . . . , x

0
n) and x1 = (x1

2, . . . , x
1
n)

such thatNot[(x0
1, x

0
2, . . . , x

0
n) ∼ (x0

1, x
1
2, . . . , x

1
n)] and for

all k, k + 1 ∈ N , (xk+1
1 , x0

2, . . . , x
0
n) ∼ (xk

1 , x1
2, . . . , x

1
n).



{x0, x1} is called the mesh of the standard sequence. Similar
definitions hold for the otherXi’s, i > 1.

......

x2
1x1

1 xn
1x0

1

x0
2

x1
2

X1

x3
1

X2

Figure 2: A standard sequence w.r.t.X1

Thus, elicitingu1(·) merely amounts to choosing two val-
ues for the other attributes, sayx0

2, x
1
2, assigningu1(x

0
1) =

u2(x
0
2) = 0 andu2(x

1
2) = 1, and constructing a standard

sequence of mesh{x0
2, x

1
2}. This results in an additive utility

defined onX1×{x0
2, x

1
2}. Similarly an additive utilityv(·) =

v1(·) + v2(·) can be defined on{x1, x
′
1} × X2 by selecting

two values,x1, x
′
1 ∈ X1, assigningv2(x

0
2) = v1(x1) = 0

and v1(x
′
1) = 1, and constructing a standard sequence of

mesh{x1, x
′
1}. Constructing separatelyu1(·) andv2(·) does

not ensure thatu1(·) + v2(·) is a utility on X1 × X2. In-
deed, ifw(·) = w1(·) + w2(·) is known to be an additive
utility on X1 ×X2 then, by uniqueness up to strictly positive
affine transforms, there existα > 0, β > 0 andγ, δ ∈ R

such that the restrictions ofw1(·) + w2(·) onX1 × {x0
2, x

1
2}

and {x1, x
′
1} × X2 are equal toα[u1(·) + u2(·)] + γ and

β[v1(·)+v2(·)]+δ respectively. This implies in particular that
αu(·) + γ andβv(·) + δ must match on{x1, x

′
1}× {x0

2, x
1
2},

hence resulting in constraints on the admissible values of
α, β, γ, δ. As multiplyingw(·) by1/α and subtractingγ does
not alter its representability,u1(·) + u2(·) and(β/α)[v1(·) +
v2(·)]+ δ − γ must match on{x1, x

′
1}×{x0

2, x
1
2}. The value

of the ratioβ/α follows directly from:

u1(x
′
1) + u2(x

0
2) = (β/α)[v1(x

′
1) + v2(x

0
2)] + δ − γ,

u1(x1) + u2(x
0
2) = (β/α)[v1(x1) + v2(x

0
2)] + δ − γ,

and is equal to[u1(x
′
1) − u1(x1)]/[v1(x

′
1) − v1(x1)]. Con-

stantsγ andδ need not be determined as adding constants
to a utility does not alter its representability. Henceu1(·) +
(β/α)v2(·) is guaranteed to be an additive utility represent-
ing % on X1 × X2 and the elicitation is completed. Note
that, without the above uniqueness, an overall utility cannot
be constructed at a low cost from marginal utilities. It would
indeed require asking an exponential number of questions in-
volving tuples differing by many if not all their attributes.

Of course, the above construction process can be gener-
alized to spaces with more than 2 attributes: first, for every
attributeXi, a subutility ui(·) is elicited using a standard
sequence, thenu2(·) is rescaled to fit withu1(·), u3(·) is
rescaled to fit withu1(·) + u2(·), and so on.

3.2 Generalized Additive Utilities
Eliciting a GAI-decomposable utility is similar in essenceto
eliciting an additive utility: first subutilities on cliques are
elicited using standard sequences, then they are rescaled.In
the preceding section, such a process worked finely because
additive utilities are unique up to strictly positive affinetrans-
forms. Unfortunately, even under restricted solvability such

uniqueness property does not apply to GAI-decomposable
utilities. But this is easily fixed by the following proposition:

Proposition 1 Let X =
∏

i Xi and let u(·) be a utility
decomposable according to a GAI treeG = (C, E) where
C = {XC1

, . . . , XCk
}, i.e.,u(x) =

∑|C|
i=1 ui(xCi

). Assume
that cliquesCi’s are ordered from the outer cliques ofG to
the inner ones, i.e., they are such that for alli, if GCi

denotes
the subgraph ofG induced byCi = C\{Cj : j < i}, thenGCi

is connected. Letx0 be an arbitrary element ofX . Then:

1. For everyi ∈ {1, . . . , |C| − 1}, cliqueXCi
has exactly

one neighbor, denoted byXCn(i), in GCi
.

2. Let Si = Ci ∩ Cn(i) and Di = Ci\Si. There exists
a utility v GAI-decomposable according toG such that
for all i < |C|, and allxSi

, vi(x
0
Di

, xSi
) = 0 and such

thatv|C|(x0
C|C|

) = 0. Moreover such GAI-decomposable
utility is unique up to strictly positive linear transforms.

Let us illustrate this proposition on the GAI network of
Figure 1:C can be set to{AB, CE, BCD, BDF, BG} be-
causeAB andCE are outer cliques as their removal keeps
the graph connected. Similarly, after removingAB and
CE, BCD becomes an outer clique as its additional re-
moval keeps the graph connected, and so on. Property 1
states that cliqueAB is connected to only one adjacent
clique, hereBCD; after removing bothAB andCE, BCD
is connected to onlyBDF , etc. Property 2 states that if
(a0, b0, c0, d0, e0, f0, g0) is an arbitrary element ofX , then
there exists a GAI-decomposable utilityv(a, b, c, d, e, f, g) =
v1(a, b) + v2(c, e) + v3(b, c, d) + v4(b, d, f) + v5(b, g) such
that v1(a

0, b) = v2(c, e
0) = v3(b, c

0, d) = v4(b, d
0, f0) =

v5(b
0, g0) = 0. The idea behind this property is simple: the

XSi
’s are attributes belonging to separators, thus the prop-

erty can be established by transferring via separatorXSi
some

quantity depending only on theXSi
’s from one clique to its

neighbor. For instance, assume thatv1(a
0, b) 6= 0 for all

b, then substitutingv1(a, b) by v1(a, b) − v1(a
0, b) for all

(a, b) ∈ A×B as well asv3(b, c, d) by v3(b, c, d)+ v1(a
0, b)

for all (b, c, d) ∈ B × C × D yields the property forv1(·).
The same can then be applied on the second clique ofC and
by induction to all the cliques inC. As for the last clique, sub-
tracting constantv5(b

0, g0) to v5(b, g) and property 2 holds.
Now we can show how the elicitation can be conducted on

the GAI network of Figure 1. Let(a0, b0, c0, d0, e0, f0, g0)
be an arbitrary element of the preference space. By Proposi-
tion 1, there exists a GAI-decomposable utility such that:

v1(a
0, b) = 0 v2(c, e

0) = 0
v3(b, c

0, d) = 0 v4(b, d
0, f0) = 0 v5(b

0, g0) = 0.

The elicitation process consists in constructingvi(·)’s on each
XCi

in the order where they are appear inC, i.e., here,AB,
CE, BCD, BDF , BG. Then each newly constructed subu-
tility is rescaled to fit with the previously constructed ones.

First constructv1(·) on A×B. Let b1 be any value in
B. Note that the restriction ofv(·) on hyperplaneB =
b1 is an additive utility: indeedv1(a, b1) and [v2(c, e) +
v3(b

1, c, d) + v4(b
1, d, f) + v5(b

1, g)] are functions ofA and
C × D × E × F × G respectively. Consequently eliciting



v1(·, b1) just requires constructing a standard sequence w.r.t.
A. Let {(b1, c1, d1, e1, f1, g1), (b1, c2, d2, e2, f2, g2)} be the
mesh of this sequence. As we do not know the values of the
∑

i>2 vi(·)’s for the elements of the mesh, we will assume
they are 0 and 1 respectively, hence the utility we will con-
struct is notv(·) but ratherw(·) such thatαw(·) + γ = v(·)
for some constantsα andγ. So assign:

w1(a
0, b1) = 0,

w2(c
1, e1)+w3(b

1, c1, d1)+w4(b
1, d1, f1)+w5(b

1, g1)=0,
w2(c

2, e2)+w3(b
1, c2, d2)+w4(b

1, d2, f2)+w5(b
1, g2)=1.

Then using the standard sequence,w1(a, b1) can be esti-
mated for anya ∈ A as described previously. Similarly,
for another valueb2 of B, a mesh{(b2, c3, d3, e3, f3, g3),
(b2, c4, d4, e4, f4, g4)} can be chosen and a utilityw′(·) such
thatβw′(·) + δ = v(·) for someβ andδ and such that:

w′
1(a

0, b2) = 0,
w′

2(c
3, e3)+w′

3(b
2, c3, d3)+w′

4(b
2, d3, f3)+w′

5(b
3, g3)=0,

w′
2(c

4, e4)+w′
3(b

2, c4, d4)+w′
4(b

2, d4, f4)+w′
5(b

4, g4)=1.

can be elicited. Now there remains to rescalew′
1(·) so as to fit

with w1(·). In other words, ratioβ/α need be evaluated. This
can be simply achieved by asking the DM for given values
a, a′′ ∈ A to exhibit valuesa′ anda′′′ of A such that:

(a, b1, c1, d1, e1, f1, g1) ∼ (a′′′, b2, c3, d3, e3, f3, g3),
(a′, b1, c1, d1, e1, f1, g1) ∼ (a′′, b2, c3, d3, e3, f3, g3).

Then β/α = [w1(a
′, b1) − w1(a, b1)]/[w′

1(a
′′, b2) −

w′
1(a

′′′, b2)]. Thus, functionv1(a, b) defined by:

v1(a, b) =

{

w1(a, b) if b = b1

(β/α)w′
1(a, b) if b = b2

is a utility function overA × {b1, b2}. The same process can
be used to extend the definition ofv1(·) overA × B. Here
again, it should be mentioned that only a few values ofB are
needed asv1(·) can be approximated using the smoothness of
the indifference curves.

Oncev1(·) has been elicited, a similar process can be used
for eliciting a utility w2(·) overC × E. Here again the key
point is to use the additive decomposition given fixed values
of separatorC. And by asking questions to the DM involv-
ing only tuples on hyperplaneA = a0, function v1(·) can
be removed from the equations asv1(a

0, b) = 0 for all b’s.
In graphical terms, this corresponds to removing cliqueAB
from the GAI tree and performing a new elicitation process on
B×C×D×E×F×G. Of course,v1(·)+w2(·) is not guar-
anteed to be a utility function as the scale ofv1(·) may not fit
that of w2(·). Hencew2(·) need be rescaled. This can be
achieved by asking one question involving only the attributes
that do not belong to separators (theXSi

’s of Proposition 1),
i.e.,A andE: let a ∈ A ande ∈ E be such that:

(a, b0, c0, d0, e0, f0, g0) ∼ (a0, b0, c0, d0, e, f0, g0).

If v2(·) = (v1(a, b0)/w2(c
0, e))w2(·), thenv1(·) + v2(·) is a

GAI-decomposable utility.
Oncev1(·) and v2(·) have been elicited, cliqueCE can

also be removed from the GAI tree, hence resulting in Fig-
ure 3. A utility w3(·) can be elicited in this graph asking

questions involving only tuples on hyperplaneA = a0 and
E = e0. Here separatorXSi

of Proposition 1 isBD, so
w3(·) should first be constructed on hyperplanes whereB and
D’s values are fixed, i.e.,w3(b

i, ·, di) : C 7→ R should be
constructed for several distinct values(bi, di). Then they are
rescaled to form a global utilityw3(·) onB×C×D. Finally,
this utility need also be rescaled to fit withv1(·) andv2(·). As
for CE it can be achieved asking one question. This one can
involve distinct values of eitherC andA (thus fittingw3(·)
with v1(·)) or C andE (thus fittingw3(·) with v2(·)). This
choice makes no difference on a computational point of view.
Assume that we chose the(C, A) pair. Then:

(a′, b0, c0, d0, e0, f0, g0) ∼ (a0, b0, c′, d0, e0, f0, g0)

implies thatv1(·) + v2(·) + (v1(a
′, b0)/w3(b

0, c′, d0))w3(·)
is a GAI utility. The process can be applied until all cliques
are eliminated from the graph, hence resulting in a GAI-
decomposable utility over the wholeX .

BDF B BGBDBCD

Figure 3: The GAI tree after removing cliquesAB andCE

Finally, to conclude this section, we should mention that
this process can be easily extended to utilities decomposable
according to GAI forests, i.e., to sets of GAI trees (such as in
Figure 4). Indeed, the sum of the utilities on each connected
component forms an additive utility onX . Hence, eliciting
a utility on this space merely amounts to applying the above
process on each connected component and, then, rescaling all
these subutilities as we would do for a usual additive utility.

AB B BCD

C

BD

CE H

BDF B BG

Figure 4: A GAI forest

4 GAI-based optimization
Once a utility function of the DM has been elicited, it can
be used for recommendation tasks. Several type of queries
might be of interest, for instance:
• overall optimization queries:find the preferred tuple over

the entire product setX .
• restricted optimization queries:find the preferred tuple

over the entire product setX conditionally to the values of
a given subset of attributes.

• preference queries:find which among a given pair of tuples
(x, y) ∈ X × X is preferred by the DM.
We now focus on queries of the first type (overall optimiza-

tion) and present an efficient procedure to solve them. Re-
stricted optimization being a particular specification of this
problem, our procedure can be directly adapted to solve it as
well. The third type of queries is not critical on a computa-
tional viewpoint as a preference query for a given pair(x, y)
can be solved at a low cost by simply computing and com-
paringu(x) andu(y). However, extending such a pairwise



u1(a, b) b0 b1

a0 8 2

a1 4 3

a2 1 7

u2(c, e) e0 e1 e2

c0 6 3 5

c1 3 4 0

u3(b
0, c, d) d0 d1

c0 0 2

c1 5 1

u3(b
1, c, d) d0 d1

c0 7 1

c1 2 4

u4(b
0, d, f) f0 f1

d0 4 2

d1 3 8

u4(b
1, d, f) f0 f1

d0 5 8

d1 9 0

u5(b, g) g0 g1

b0 0 9

b1 6 4

u6(h) h0 h1 h2 h3 h4

6 3 4 1 10

Figure 5: Utility tables foru

comparison to all pairs(x, y) ∈ X ×X is prohibitive in the fi-
nite case and is simply not feasible in the infinite case. Hence
another approach is needed to perform overall optimization.

Fortunately, the GAI decomposability allows the computa-
tional cost of the overall optimization task to be kept at a very
admissible level. The idea is to take advantage of the struc-
ture of the GAI network to efficiently decompose the query
problem into a sequence of local optimizations.

For the clarity of presentation, the overall optimization pro-
cedure is introduced on a small example with a finite Carte-
sian product, but it obviously generalizes to the infinite case.

Consider a decision problem where alternatives are de-
scribed by 8 attributes. Assume the overall optimization is
performed over the feasible setX = A × B × C × D ×
E × F × G × H with A = {a0, a1, a2}, B = {b0, b1}, C =
{c0, c1}, D = {d0, d1}, E = {e0, e1, e2}, F =
{f0, f1}, G = {g0, g1}, H = {h0, h1, h2, h3, h4}. The
DM’s preferences are represented by a GAI-decomposable
utility defined, for any tuple(a, b, c, d, e, f, g, h) by:

u(a, b, c, d, e, f, g, h) = u1(a, b) + u2(c, e) + u3(b, c, d)

+u4(b, d, f) + u5(b, g) + u6(h)

where theui’s are given by Figure 5. Remark that utilityu is
completely characterized by only 37 integers whereas storing
u in extension requires|X | = 1440 integers. When attributes
are continuous, the tables of Figure 5 are substituted by func-
tions providing an analytical representation ofu. Figure 4
depicts the GAI network representingu’s decomposition.

We now introduce the optimization procedure for this case.
Let H′ represent the Cartesian product of the domains of all
the attributes butH . Remark first that for any(h′, h) ∈ H′ ×
H , u(h′, h) can be rewritten asv(h′) + u6(h). Hence:

maxx∈X u(x) = maxh∈H′ v(h′) + maxh∈H u6(h).

The optimization ofu6 being straightforward, let us discuss
the optimization ofv. Let A′ be the Cartesian product of
the domains of all the attributes involved inH′ but A. The
product structure ofX implies that:

maxx∈H′ v(x) = maxy∈A′ maxa∈A v(a, y).

SinceA′ is itself a product set, the same remarks apply toA′.
If B′ represents the Cartesian product of the domains of all
the attributes involved inA′ butB, then:

maxx∈H′ v(x) = maxb∈B maxz∈B′ maxa∈A v(a, b, z).

Herev(a, b, z) can be rewritten asv1(a, b)+v′1(b, z) wherev′1
is a utility onA′. Hence, denotingv∗1(b) = maxa∈A v1(a, b)
andv′∗1 (b) = maxz∈B′ v′(b, z) we get:

maxx∈H′ v(x) = maxb∈B{v∗1(b) + v′∗1 (b)}.

Now, assuming that utilityv′∗1 (b) has been previously
computed for allb ∈ B and stored onBCD, the optimal
solution can be simply obtained using the following 4 step
procedure:

1. on cliqueAB, computev∗1(b) for all b ∈ B and send the
result as a message to cliqueBCD,

2. on cliqueBCD, compute the optimal value ofb defined by
b∗ = arg maxb∈B{v∗1(b) + v′∗1 (b)}

3. send messageb∗ to cliqueAB so as to determinea∗ =
arg maxa∈A v1(a, b∗)

4. onBCD, determinez∗ = arg maxz∈B′ v′1(b
∗, z).

At the end of this process,(a∗, b∗, z∗) is optimal for v.
Hence, settingh∗ = arg maxh∈H u6(h), (a∗, b∗, z∗, h∗)
is optimal for u. Remember that, as a preprocessing,
v′∗1 (b) need be computed by optimizingv′1(b, z) over
B′ for every fixed b ∈ B. But the decomposition
v′1(b, c, d, e, f, g) = v2(c, e) + v′2(b, d, e, f, g) suggests
that this can be computed efficiently by exploiting the
reduced GAI tree resulting from cliqueAB’s deletion. This
requires the optimization ofv′2(b, d, e, f, g) for any fixedc
that, in turn, can be performed efficiently using a decompo-
sition such asv′2(b, d, e, f, g) = u5(b, g) + u′

5(b, d, e, f) on
the reduced GAI tree where cliques AB and BG have been
deleted, and so on recursively. The details of computations
in our example are given below:

Step 1:on cliqueAB, computev∗1(b) = maxa∈A v1(a, b) for
all b ∈ B and send the result as a message to cliqueBCD,

Step 2:on cliqueCE, computev∗2(c) = maxe∈E v2(c, e) for
all c ∈ C and send the result as a message to cliqueBCD,

Step 3:on cliqueBCD, aggregate messagesv∗1 andv∗2 to v3

by computingv∗3(b, c, d) = v3(b, c, d) + v∗1(b) + v∗2(c) for all
(b, c, d) ∈ B × C × D and store the result on cliqueBCD,

Step 4:on cliqueBG, computev∗5(b) = maxg∈G v5(b, g) for
all b ∈ B and send the result as a message to cliqueBDF ,

Step 5:on cliqueBDF , aggregate messagev∗5 to v4 by com-
puting v∗4(b, d, f) = v4(b, d, f) + v∗5(b) for all (b, d, f) ∈
B × D × F . Then computev∗∗4 (b, d) = maxf∈F v∗4(b, d, f)
for all (b, d) ∈ B × D and send the result to cliqueBCD,

Step 6: on clique BCD, compute v∗∗3 (b, d) =
maxc∈C v∗3(b, c, d) for all (b, d) ∈ B × D and aggregate
the result with messagev∗∗4 by computingv∗∗∗3 (b, d) =
v∗∗3 (b, d) + v∗∗4 (b, d) for all (b, d) ∈ B × D.

Step 7 :on cliqueH , computeu∗
6 = maxh∈H u6(h)

The message sent are given in Figure 6.
Step 7 shows that functionu6 is optimal forh4 with 10

points. Step 6 shows that functionv∗∗∗3 (b, d) is optimal for



v∗

1(b) b0 b1

8 7

v∗

2(c) c0 c1

6 4

v∗

5(b) b0 b1

9 6

v∗

3(b0, c, d) d0 d1

c0 14 16

c1 17 13

v∗

3(b1, c, d) d0 d1

c0 20 14

c1 13 15

v∗

4(b0, d, f) f0 f1

d0 13 11

d1 12 17

v∗

4(b1, d, f) f0 f1

d0 11 14

d1 15 6

v∗∗

3 (c, d) d0 d1

c0 17 16

c1 20 15

v∗∗

4 (b, d) d0 d1

b0 13 17

b1 14 15

v∗∗∗

3 (b, d) d0 d1

b0 30 33

b1 34 30

Figure 6: Messages sent in the GAI-network

(b1, d0) with 34 points. Hence the optimal value foru is 10
+ 34 = 44 points. In order to recover the optimal solution,
optimality of components(b1, d0) known on cliqueBCD
must be sent to neighbors cliques and propagated in the
network so as to complete the solution. More precisely, the
sequence of messages is the following:

1. message(b1, d0) is sent fromBCD to BDF . On BDF
we obtainf1 = arg maxf∈F u5(b

1, d0, f) which gives the
optimal choice inF .

2. messageb1 is sent fromBDF to BG. On BG, g0 =
arg maxg∈G u5(b

1, g) gives the optimal choice inG.

3. messagec0 is sent fromBCD to CE. On CE, e0 =
arg maxe∈E u2(c

0, e) gives the optimal choice inE.

4. messageb1 is sent fromBCD to AC. On AC, a2 =
arg maxa∈A u1(a, b1) gives the optimal choice inA.

Finally, we get(a2, b1, c0, d0, e1, f1, g0, h4) as the optimal
solution with utility 44. Remark that optimizing separately
each functionui yields an overall utility of 49 points but this
is an infeasible solution.

The whole process is similar to messages sent for com-
puting the most probable explanations in Bayesian networks
[Nilsson, 1998]: in the junction tree, a root is first chosen
(hereBCD), then a collect and a distribute phases are per-
formed from this root. During collect, message sent from a
cliqueCi to a cliqueCj contains the max of the utility over all
the variables onCi’s side of the tree except those inCi ∩ Cj .
During distribution, message fromCj to Ci contains the op-
timal values of the attributes inCi ∩ Cj .

5 Conclusion
In this paper the results obtained are twofold: 1) under a solv-
ability assumption, a general approach for the elicitationof
GAI-decomposable utilities over product sets has been pro-
posed; 2) we highlighted the power of GAI networks both
in the design of simple elicitation procedures and in the ef-
ficient organization of computations for optimization tasks.
To go one step further on optimization, one crucial point
should be investigated: the case where feasible solutions do
not form a whole product set but only a subset implicitly de-

fined by some constraints on the values of the attributes. The
procedure we proposed cannot be used directly in this case
because it applies only on product set structures. Different
solutions can be considered, depending on the relations be-
tween the cliques of the constraints graph and those of the
GAI-networks. For example, when the former are included
in the latter, our procedure can easily be adapted by inte-
grating constraint-violation penalties in the utility functions
stored in each clique. In the other cases, we have to solve
a general constraint satisfaction problem valued with a GAI-
decomposable utility.
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