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Abstract erence structures. The most widely used model assumes a
special kind of independence among attributes called “mu-
tual preferential independence” which ensures that the pre
erences are representable by an additively decomposdble ut
ity function [Krantzet al,, 1971; Bacchus and Grove, 1995
Such decomposability makes the elicitation process easy to
perform as we shall see in Section 3. However, in practice,
preferential independence may fail to hold as it rules oyt an
interaction among attributes. Generalizations of prefere
tial independence have thus been investigated that exttend t
range of application of utilities. For instanaélity indepen-
denceon every attribute leads to a more sophisticated form of
utility called multilinear utility [Bacchus and Grove, 1995
Multilinear utilities are more general than additive uit#s

but many interactions between attributes still cannot kerta
into account by such functionals. To increase the deseepti
power of such models, GAIl (generalized additive indepen-
dence) decompositions introduced[iFyshburn, 197Dallow
more general interactions between attribuiBacchus and

1 Introduction Grove, 1995 while preserving some decomposability. Such
# decomposition has been used to endow CP-nets with util-
functions (UCP-nets) both in uncertairf@outilier et al,

01 and in certaintyfBrafmanet al., 2004.

This paper deals with preference elicitation and
preference-based optimization in the context of
multiattribute utility theory under certainty. We
focus on the generalized additive decomposable
utility model which allows interactions between
attributes while preserving some decomposabil-
ity. We first present a systematic elicitation pro-
cedure for such utility functions. This procedure
relies on a graphical model called@Al-network
which is used to represent and manage indepen-
dences between attributes, just as junction graphs
model independences between random variables in
Bayesian networks. Then, we propose an optimiza-
tion procedure relying on this network to compute
efficiently the solution of optimization problems
over a product set.

The development of decision support systems has stressed
need for preference models to handle user’s preferences ar%

perform preference-based recommendation tasks. S
In this respect, current works in preference modeling and In the same directiofGonzales and Perny, 200groposes

decision theory aim at proposing compact preference moct general procedure to assess a GAl decomposable utility

els achieving a good compromise between two conflicting asunction in the context of decision making under risk. The

pects: on the one hand, the need for sufficiently flexible mod?”dt""?ion procedure is directed by the structure of a new
els to describe sophisticated decision behaviors, on ther ot graphical model called a GAI network. The procedure con-

: : : P ists of a sequence of questions involving simple lottenes
hand, the practical necessity of keeping the elicitatidaref SIS ) ) .
at an admissible level as well as the need for efficient proce(—:apture the basic features of the DM attitude under risk. As

dures to solve preference-based optimization problems. ASHUCH: it does notfit for eliciting utilities under certainfhe

an example, let us mention the recent advances on queéitati\f”m of this_ paper is to complete this StUdY by investigating
preference models such as CP-ri@sutilier et al, 2004a; he potential contribution of GAI networks in the context of

: o 1~ decision making under certainty. Section 2 recalls the ba-
2-0045' Such models gre naturally suged ;[)0 s::nple ar;])pllca— ics of GAI netv%orks. The elicitgtion under certainty isrthe
tions (e.g. recommender systems to buy books on the we explained in Section 3 and an efficient process for solving

in which preferences can easily be approximated by lexico timizati ies is introduced in Section 4
graphic rules on attributes with small domains. However2PUIMIZAlION qUENES IS Introduced In section 4.

in more involved decision problems (e.g. modeling the fine

knowledge of an expert in%rder to a(utc?matize an gilmportam’2 GAl networks

decision task) utilities might significantly outperformajd ~ Before describing GAI networks, we shall introduce some no-

tative models due to their higher descriptive pofRoutilier  tations and assumptions. Throughout the papeienotes a

et al, 2001. decision maker’s (DM) preference relation, which we assume
Inthe literature, different quantitative models basedtiln u to be a weak order, over some s€t x = y means that for

ities have been developped to take into account differexit pr the DMz is at least as good as > refers to the asymmetric



part of — and~ to the symmetric one. In practical situations, BG. By property 2 of Definition 2 the set of edges of a GAI
X is often described by a set of attributes. For simplicity,network can be determined by any algorithm preserving the
we assume that’ is the Cartesian product of the domains running intersection property (see the Bayesian netwitek li

of these attributes, although extensions to general ssihset  ature on this mattdiCowell et al., 1999).
possible[Chateauneuf and Wakker, 1993n the rest of the

paper, uppercase letters (possibly subscripted) sueh a5 c

X, denote both attributes and their domains (as this is un-  (4B)— B}—®BcD] oD

ambiguous and it simplifies the notation). Unless otherwise E @ E @
mentioned, (possibly superscripted) lowercase lettenstde

values of the attribute with the same uppercase lettgrs? Figure 1: A GAl tree

(resp.x;, x}) are thus values ok (resp.X;).
Under mild hypothesekDebreu, 196} it can be shown o
that- is representable by a utility, i.e., there exists a function3  Elicitation
u: X'— Rsuchthat: =y < u(x) > u(y) forallz,y € X. gjicjtation of GAI-decomposable utilities is closely redd to
As preferences are specific to each individual, utility func nat of additive utilities. Hence the beginning of this $ewct

tions must be elicited for each DM, whichiis usually impossi-js devoted to the latter. Then the process is extended to GA.
ble due to the combinatorial nature &f Fortunately, DM’s

preferences usually have an underlying structure induged b3.1  Additive Utilities
independences among attributes that substantially degsea \yp|ike decision under uncertainty or under risk, utilities-

the elicitation burden. In this paper, we focus on a paréicul yo, certainty are not necessarily unique up to strictly fesi

decomposition of utilities defined as follows: affine transform$Adams, 1965: Gonzales, 2003However,
Definition 1 (GAl decomposition) Let ¥ = ]\, X;. Let  such uniqueness property usually greatly simplifies the-eli
Z,...,Z be some subsets & = {1,...,n} such that tation process. Hence, the property below, which ensuies th

N =Ur_,Z,. Foreveryi, let X, = [1,cz X;- Utility u(-) uniqueness, will be assumed throughout this section. Note
representing- is GAl-decomposable w.r.t. thé,’s iff there ~ however, it can be easily dispensed wi@pnzales, 2003

exist functions; : Xz, — R such that: Definition 3 (restricted solvability) Letx =[], X;. For

u(zx) = Zle ui(xz,), forall x = (x1,...,2,) € X, evoeryi- if E)x(l)v = 7'r0?717 7, :zr%rl, ) 3 (5013 - Q’I") 3

wherez 7, denotes the tuple constituted by thgs, j € Z;. (@7, - Ti1 T T "'%n)’ then ghere exists; € X;
' ' suchthat(z, ..., o7 |, o7, 23 1, ..., 20) ~ (T1,. .., 2n).

GAIl decompositions can be represented by graphical struc- _ . o )
tures we callGAI networkswhich are essentially similar ~ This property usually implies that’ contains numerous
to the junction graphs used for Bayesian netwddensen, €lements, if not an infinite number. However, this restricts

1996: Cowellet al, 1999: neither the potential field of applications nor the applitgb
" n of the elicitation process. Indeed, if an attribute is ndvso
Definition 2 (GAI network) Let & = [[i_; Xi. Let  gpje then its domain can always be enriched so that solvabil
Zlk’ ..., Z), be some subsets of = {1,...,n} such that jiy holds as long as only the projection on the original sgace
U;—1 Z; = N. Assume thal; is representable by a GAI- used when making decisions. As for the applicability of-elic
decomposable utility,(z) = Zle ui(xz,) forall z € X. itation, X’ being infinite is notaproblem bepau_se indifference
Then a GAI network representing(-) is an undirected curves —the sets of elements in a same |nd|_fference C_Iass—
networkG = (V, E), satisfying the following properties: are u_sually very_smooth and thus can be easily approximated
1.V ={Xz,....Xz}; knowing only a limited number of points.
2. Forevery(Xz,,Xz,) € E, Z; N Z; # 0. Moreover, Under certainty, the central idea for elicitation lies ireth
for every pair of nodes(z,, X7, such thatZ; N Z; = construction of standard sequences: #ebe a preference

Ti; # 0, there exists a path it linking X 7, and Xz, relation onX; x X, representable by an additive utility
such that all of its nodes contain all the indexeg/pf ~ 1(-) +ua2("). Leta? € X1, 25, x; € X5 be arbitrary points.

(Running intersection property)_ As by SOlvabiIity utilities are Unique up to Strictly pom
Nodes of/” are calledcliques Every edgd X, X, ) € E  affine transforms, we may assume without loss of general-
is labeled byXr,, = Xz,nz, and is called aseparatar ity that (a9, 23) = (29,29), w1(2?) = uz(zf) = 0 and

) ) ) _ us(zd) = 1. Letx] € X; be such thatzl, 29) ~ (29, 3)
Throughout this paper, cliques will be drawn as ellipsessee Figure 2 which represents indifference curves in space
and separators as rectangles. Moreover, we shall only be i L X Xz), thenuy(z}) = 1. More generally, for any

terested in GAl trees, i.e., in singly-connected GAIl netwgor . i i+l i+l 0V L (i ol

As mentioned infGonzales and Perny, 2004his is not re- zll(itﬁﬁ:’fl Segﬁesr%?é?cZit)h?si(gélle’dxé)stand(;rld :ge)due-rnhceen:
strictive as general GAIl networks can always be compile
into GAI trees. For any GAIl decomposition, by Definition 2 Definition 4 (standard sequence)For any setV of consec-
the cliques of the GAI network should be the sets of vari-utive integers{z}, k € N} is a standard sequence w.rX;

ables of the subutilities. For instanceuifs, b, ¢, d, e, f,g) =  iff there existz® = (a9,...,27) andz' = (z5,...,7,)

U (a’ b)+U2(C, e)+u3(b’ c, d)+u4(b’ d’ f)+U5(b7 g) then, as SUCh thatNOt[((E?, (Eg, Ce ,J]%) ~ (l’?, l'%, e ,$}l)] a.nd fOI‘
shown in Figure 1, the cliques ar&B, CE, BCD, BDF, all k,k+1 € N, (¥ 29,...,2%) ~ (aF,28,... z}).

rn rYn



{20, 2} is called the mesh of the standard sequence. Similauniqueness property does not apply to GAl-decomposable
definitions hold for the othek’s, i > 1. utilities. But this is easily fixed by the following propoisin:

Proposition1 Let X = [[, X; and letu(-) be a utility

decomposable according to a GAIl trée = (C, &) where

C={Xcy,...,Xe }ie,u(@) = % wi(ze,). Assume

that cliquesC;’s are ordered from the outer cliques gfto
X the inner ones, i.e., they are such that foralif Gc, denotes
the subgraph of induced byC; = C\{C} : j < i}, thenGe,
is connected. Let? be an arbitrary element ot’. Then:

Figure 2: A standard sequence w.A, 1. Foreveryi € {1,...,|C| — 1}, clique X, has exactly
one neighbor, denoted by, ;, in G, -

Thus, elicitingu, (-) merely amounts to choosing two val- 2. LetS; = Ci N Cppy and D; = Ci\S;. There exists
ues Bor the other attnlbutes, safl, z;, aSS|gn|_ngu1(x?) - ‘a utililty v le-deggmposablle accérdilﬁg tHsuch that
uz(zz) = 0 andup(zs) = 1, and constructing a standard forall i < |C|, and all zs,, v; (2%, , s,) — 0 and such
sequence of mesfi), 3 }. This results in an additive utility 0 - 0 TRATD 0 o
defined onX; x {z9, z}}. Similarly an additive utilitys(-) = thatvi| (z¢,, ) = 0. Moreover such GAl-decomposable
v1(+) + va(-) can be defined ofiz;, 4} x X, by selecting utility is unique up to strictly positive linear transforms

/ H H 0y __ _
two Valu,es’xl’xl € X, assigninguy(z3) = vi(x1) = 0 Let us illustrate this proposition on the GAI network of
and vy (z}) = 1, and constructing a standard sequence Oi:igure 1:C can be set td AB, CE, BCD, BDF, BGY} be-
mesh{z,, 27 }. Constructing separately; () andv,(-) does 5,564 B andC'E are outer cliques as their removal keeps
not ensure thati (-) + va(-) is @ utility on Xy x Xo. In-  yhe graph connected. Similarly, after removirg3 and
deed, ifw(-) = wi(-) + wa(") is known to be an additive 5 "B pecomes an outer clique as its additional re-
utility on X, x X, then, by uniqueness up to strictly positive ,6,5| keeps the graph connected, and so on. Property 1
affine transforms, there exist > 0, 5 > 0 and%éoe R states that cliqueAB is connected to only one adjacent
such that the restrictions ofy (-) +wa(-) On Xy X {23, 23} clique, hereBCD:; after removing bothi B andCE, BCD
and {z1, 21} x X, are equal tarfu; () + ua())] +v and 5 connected to onlyBDF, etc. Property 2 states that if
Blv1 () +v2(-)]+0 respectively. This implies in particular that (a2, 89,0, d0, 0, £°, 4%) is an arbitrary element ot, then
au(-) +yandBu(-) + 6 must match oz, 1} x {3, 23}, ere exists a GAl-decomposable utility, b, ¢, d, e, f, g) =
hence resulting in constraints on the admissible values 1 (a,b) + va(c, €) + vs(b, ¢, d) + va(b, d, f) + vs(b 'g) such
a, B,7,48. As multiplyingw(-) by 1/« and subtracting does that%;l(ao,b) _ valc, 60)’ _ Ug(b,co,;l)7: v4(b,d6,f0) _
not alter its representability, (-) +,“2(') an(lﬁ/a)[vl(-) T u5(8°, ¢°) = 0. The idea behind this property is simple: the
vz ()] + 6 —v must match of{ay, ' } X {23, 25} Thevalue x5 are attributes belonging to separators, thus the prop-

of the ratioj/ « follows directly from: erty can be established by transferring via sepatstgrsome
ur(2)) + ua(2l) = (B/a)[vi(zh) + v2(23)] + 6 — v, quantity depending only on th&s,’s from one clique to its
u (1) + ua(2l) = (8/a)[vi(z1) + v2(29)] +6 — v, neighbor. For instance, assume thata®,b) # 0 for all

. b, then substituting); (a, b) by v1(a,b) — v1(a®,b) for all
and is equal tqui () — ui(x1)]/[v1(zy) —vi(zy)]. Con-  4y'c A'x B aswell ass (b, ¢, d) by vs (b, ¢, d) + o1 (a0, b)
stantsy andé need not be determined as adding constantéo; all (b,e,d) € B x C x D );ields the r;rc;perty for)17(-)
to a utility C!OGS not alter its representthty. H.enqeﬁ-) T The sam7e’can then be applied on the second cliqdeanid
(6/a)ua(-) is guaranteed to be an additive utility represent-p in i ction to all the cliques idi. As for the last clique, sub-
ing > on X x X and the elicitation is completed. Note 7 qting constants (69, ¢°) to vs(b, g) and property 2 holds.
that, without the above uniqueness, an overalll .Ut'l'w @NN N ow we can show how the elicitation can be conducted on
_be construct_ed ata low cost from margmal utilities. It\_/\d)ul_ the GAI network of Figure 1. Leta®,°, %, d°, ¢, f0, ¢°)
indeed require asking an exponential number of questiens i ", | arbitrary element of the prefe;en7ce 7spa{ce.7 B); Proposi-

volving tuples differing by many if not all their attributes tion 1, there exists a GAl-decomposable utility such that:
Of course, the above construction process can be gener- ™’

alized to spaces with more than 2 attributes: first, for every v1(a®,b) =0 va(c,e?) =0
attribute X;, a subutility u;(-) is elicited using a standard v3(b,®,d) =0 vg(b,d°, f°) =0 v5(6°, g%) = 0.
sequence, thems(-) is rescaled to fit withuy(-), us(-) is

rescaled to fit withu, () + u2(-), and so on. The elicitation process consists in constructing)’s on each

. . - X¢, in the order where they are appearCini.e., here AB,
3.2 Generalized Additive Utilities CE, BCD, BDF, BG. Then each newly constructed subu-
Eliciting a GAl-decomposable utility is similar in essertoe tility is rescaled to fit with the previously constructed ene
eliciting an additive utility: first subutilities on cliqseare First construct; (-) on A x B. Let b' be any value in

elicited using standard sequences, then they are resdaled. B. Note that the restriction of(-) on hyperplaneB =
the preceding section, such a process worked finely becausé is an additive utility: indeed (a,b') and [va(c,e) +
additive utilities are unique up to strictly positive affimans-  v3(b!, ¢, d) + v4(b', d, f) + v5(b, g)] are functions ofA and
forms. Unfortunately, even under restricted solvabilitgls C x D x E x F' x G respectively. Consequently eliciting



v1(+,b) just requires constructing a standard sequence w.r.questions involving only tuples on hyperplade= «° and

A, Let{(bt, et dt et f1gh), (bh, %, d?, €2, f?,g%)} bethe E = €°. Here separatoXs, of Proposition 1 isBD, so
mesh of this sequence. As we do not know the values of thes(-) should first be constructed on hyperplanes whgend
> vi(+)'s for the elements of the mesh, we will assume D’s values are fixed, i.exs3 (b, ,d") : C — R should be
they are 0 and 1 respectively, hence the utility we will con-constructed for several distinct valu@s, d*). Then they are
struct is notw(-) but ratherw(-) such thatbw(-) +v = v(-)  rescaled to form a global utilitys(-) on B x C x D. Finally,

for some constants and~y. So assign: this utility need also be rescaled to fit with(-) andvz (). As
wi(a%,b1) = 0 for Cl’E ictj_ca_n be a::hievefd Qilgg’g OTjeAqEJEStiofn"This (zn)e can

LTS involve distinct values of eit an thus fitting ws (-

wa(ch eN)tws(by el d)fwa(bd’, £ 1) +ws (b 97) =0, \ith 4, () or ¢ and  (thus fittinguws () with va(-)). This
wz(c?, %) Fwy (b, ¢, &%) +wa(b', &%, f7)+ws (01, 9%) =1 choice makes no difference on a computational point of view.

Then using the standard sequeneg,(a,b') can be esti- Assume thatwe chose i€, A) pair. Then:

mated for anya € A as described previously. Similarly, (a/,0°,c,d% e, 0, g°) ~ (a%,0°, ¢, d°, €%, f°, ¢°)
for another value? of B, a mesh{(b?, ¢, d% €3, f3,¢%), . . ) 10 0o 40

(b2, c*, d*, e*, f*,g*)} can be chosen and a utility (-) such !mplgil’[h?ﬁl(')_rz v2() + (vi(a ’g )/w3g.b ac ’C'f'l))lllvgg'.)

’. 200 . is a utility. The process can be applied until all cliques
thatfuw'() + ¢ = v(-) for somes ands and such that are eliminated from the graph, hence resulting in a GAI-
w)(a®, %) =0, decomposable utility over the whalg.
wh(c3, e3)+wh (b2, c3, d3)+w) (%, d3, f3)+wh (b3, g3) =0,
wh(ct, eh)+wi(b?, ¢, d) +wi (b?, d, ) +uwg (bt gt =1. Gep—|BDf—BDH— B—5C)
can be elicited. Now there remains to resea]¢-) so as to fit
with w1 (+). In other words, rati@/« need be evaluated. This
can be simply achieved by asking the DM for given values
a,a’ € Ato exhibit values:’ anda of A such that:

Figure 3: The GAl tree after removing cliquds3 andCFE

Finally, to conclude this section, we should mention that
this process can be easily extended to utilities decompmsab
(a,b',ct db et f1gh) ~ (a7, 0%, 3 d% e, f2, g°), according to GAl forests, i.e., to sets of GAl trees (suchnas i
(a/,b, et db el gl ~ (a”, %, 3, d3, €3, 3, g3). Figure 4). Indeed, the sum of the utilities on each connected
, Vo component forms an additive utility olf. Hence, eliciting
Tr,'en,,,ﬁ/f‘ = [wi(d,b)) — wy (a’.bl)]/[w_l(“ D) - g utility on this space merely amounts to applying the above
wy(a”,6%)]. Thus, functiorv, (¢, b) defined by: process on each connected component and, then, rescaling al
w1 (a, b) ifb=0b! these subutilities as we would do for a usual additive wtilit

”1(“’”:{ (5/a)u(a,h) it b=1? @ @

is a utility function overA x {b',b?}. The same process can (aB— B}—®BcD)

be used to extend the definition of(-) over A x B. Here E @ E @
again, it should be mentioned that only a few valueBaire
needed as; (-) can be approximated using the smoothness of Figure 4: A GAI forest

the indifference curves.
Oncew; (-) has been elicited, a similar process can be used

for eliciting a utility w(-) overC x E. Here againthe key 4  GAl-based optimization
point is to use the additive decomposition given fixed vaIuesOnce a utility function of the DM has been elicited, it can

of separatoC. And by asking questions to the DM involv- : .
ing only tuples on hyperpland — a°, function v, (-) can be used for recommendation ta§ks. Several type of queries
might be of interest, for instance:

be removed from the equations aga’,b) = 0 for all b's. o o

In graphical terms, this corresponds to removing cliglie ~ ® overall_optlmlzauon queriesfind the preferred tuple over

from the GAI tree and performing a new elicitation process on the entire product set’.

BxCxDxExFxG. Ofcoursep; (-) +ws(-) isnotguar- e restricted optimization queriesfind the preferred tuple

anteed to be a utility function as the scalef-) may not fit over the entire product sét conditionally to the values of

that of wy(-). Hencew,(-) need be rescaled. This can be @ given subset of attributes.

achieved by asking one question involving only the attelsut e preference queriedind which among a given pair of tuples

that do not belong to separators (thg,’s of Proposition 1), (z,y) € X x X is preferred by the DM.

i.e.,AandFE: leta € A ande € F be such that: We now focus on queries of the first type (overall optimiza-
0 0 0 0 £0 0 010 0 40 0 0 tion) and present an efficient procedure to solve them. Re-

(a,0% % d% €%, [0, g7) ~ (a7, 07, ¢ dVe, f, 7). stricted optimization being a particular specification okt
If va(+) = (vi(a,b°)/wa(c, e))wa(-), thenvi(-) + v2(-)isa  problem, our procedure can be directly adapted to solve it as
GAl-decomposable utility. well. The third type of queries is not critical on a computa-
Oncew;(-) andvs(-) have been elicited, cligu€ E can tional viewpoint as a preference query for a given pairy)
also be removed from the GAI tree, hence resulting in Fig-can be solved at a low cost by simply computing and com-
ure 3. A utility ws(-) can be elicited in this graph asking paringu(z) andu(y). However, extending such a pairwise



uy(a,b) | b9 | bt T 1T Since A’ is itself a product set, the same remarks applyito
0 S | 2 “2(%’ e)|e’|e |e If B’ represents the Cartesian product of the domains of all
- 113 c 6 |3]5 the attributes involved itd’ but B, then:
o2 117 ct 314160 maX, ey V() = Maxpe p MaXzep MaxXqea v(a, b, 2).

Herev(a, b, z) can be rewritten as, (a, b)+v} (b, z) wherev]
is a utility on.A’. Hence, denoting; (b) = maxge4 v1(a,b)

C(l) 012 C(l) 1 andvi*(b) = max,ep v’ (b, z) we get:
5 | 1 c 214 max,er v(z) = maxpe p{v(b) + v (b)}.

ug (b0, d, f) | f0 | | | ua(®tds f) | £ ST Now, assuming that utility}*(b) has been previously

d® 4 | 2 d® 518 computed for allb € B and stored onBC D, the optimal

L 3| 8 L 9] 0 solution can be simply obtained using the following 4 step

O IT AL procedure:

bo’ 0o ug(h) | KO | AY | B2 | B3 | B? 1. on cliqueAB, computevi (b) for all b € B and send the
o .y 6131411110 result as a message to clig&' D,

2. on cliqueBC D, compute the optimal value éfdefined by
b* = arg maxpe p{vy(b) + vi*(b)}

3. send message to clique AB so as to determine* =
argmaxqe A v1(a, b*)

Figure 5: Utility tables for

comparison to all pairéz, y) € X x X is prohibitive in the fi-
nite case and is simply not feasible in the infinite case. ldenc4. on BC'D, determinez* = arg max.cp v (b*, 2).
another approach is needed to perform overall optimization At the end of this process,a*,b*, z*) is optimal for v.
Fortunately, the GAI decomposability allows the computa-Hence, settingh* = argmaxpecm us(h), (a*,b*,z*, h*)
tional cost of the overall optimization task to be kept atgyve is optimal for . Remember that, as a preprocessing,
admissible level. The idea is to take advantage of the strue+{*(b) need be computed by optimizing; (b, z) over
ture of the GAI network to efficiently decompose the query8’ for every fixedb € B. But the decomposition
problem into a sequence of local optimizations. vi(b,c,d,e, f,g) = wvalc,e) + vh(b,d,e, f,g) suggests
For the clarity of presentation, the overall optimizatioop that this can be computed efficiently by exploiting the
cedure is introduced on a small example with a finite Cartereduced GAI tree resulting from cliquéB’s deletion. This
sian product, but it obviously generalizes to the infiniteeca  requires the optimization of; (b, d, e, f, g) for any fixedc
Consider a decision problem where alternatives are dethat, in turn, can be performed efficiently using a decompo-
scribed by 8 attributes. Assume the overall optimization issition such as/(b,d, e, f,g) = us(b,g) + u5(b,d, e, ) on
performed over the feasible s&t = A x B x C' x D x the reduced GAI tree where cligues AB and BG have been
E x F x Gx Hwith A = {a° a",a?},B = {1°,b'},C = deleted, and so on recursively. The details of computations
{2y, D = {d°d'},E = {e%e',e?},F =  inourexample are given below:
{fogfl}vG = {¢%9'}, H = {n° n'. 1 1 h'}. The Step 1:on cliqueAB, computevs (b) = max,e 4 v1(a, b) for
DM's preferences are represented by a GAl-decomposablg)| ;, « B and send the result as a message to cligae,

utility defined, for any tupl€a, b, ¢, d, e, f, g, h) by: ]
y ytupléa,b.c,d.c. f,g,h) by Step 2:0n cliqueCE, computev;(c) = max.cg v2(c, e) for

u(a,b,c,d e, f,g,h) = ui(a,b) + ua(c, e) + usz(b, ¢, d) all ¢ € C and send the result as a message to cligaeD,
+ug (b, d, f) +us(b, g) + ue(h) Step 3:0n clique BC D, aggregate messagesandv; to vs

, . : . by computingv; (b, ¢, d) = v3(b, ¢,d) + v3(b) + v3(c) for all
where theu;’s are given by Figure 5. Remark that utilityis AN O 1 2
completely characterized by only 37 integers whereasrgjori (b,c,d) € B _>< ' x D and store the resuit on cliquec'D,
u in extension requirelst| = 1440 integers. When attributes  Step 4:on cliqueBG, computevs (b) = max,ec vs (b, g) for
are continuous, the tables of Figure 5 are substituted by-fun all b € B and send the result as a message to cligiy-,

tions providing an analytical representation«of Figure 4 gtep 5:0n cliqueBDF, aggregate messagg to vy by com-
depicts the GAI network representing decomposition. puting v; (b, d, f) = va(b, d, f) + vi(b) for all (b,d, f) €
We now introduce the optimization procedure for this case g x ) x F. Then compute;* (b, d) = max e g v} (b, d, f)
Let H’ represent the Cartesian product of the domains of alfg | (b,d) € B x D and send the result to cliqueC D,
the attributes bul. Remark first that for anyh’, h) € H’ x

H,u(h', h) can be rewritten as(h’) + ug(h). Hence: Step 6. on clique BCD, compute v3"(b,d) =

, max.cc vi(b,c,d) for all (b,d) € B x D and aggregate
maxyex u(z) = maxper v(h') + maxpem us(h). the result with message;* by computingv;**(b,d) =
The optimization ofug being straightforward, let us discuss v3*(b,d) + v;*(b,d) forall (b,d) € B x D.
the optimization ofv. Let A’ be the Cartesian product of gien 7 :on cliqueH. computes” — h
the domains of all the attributes involvedht but A. The Thepméssageqsent are gi\een in Figrgfg}éffl us(h)
product structure ok’ implies that: Step 7 shows that functions is optimal for A* with 10
maxzecn V() = Maxye 4 Maxqca v(a, y). points. Step 6 shows that functietj**(b, d) is optimal for



i) | B0 | bt || wi(e) | & |t || vi(b) | B° | b
8| 7 6 | 4 916
vi(%,c,d) | d° | d' || vi(bt, e, d) | d° | d
& 14 | 16 & 20 | 14
ct 17 | 13 ct 13 | 15
i, d, f) | O eitd ) |
d° 13 | 11 d° 11 | 14
d* 12 | 17 d* 15| 6
v3*(c,d)|d® |d" | |vi* (b, d)|d®|d" | |v3™*(b,d)|d°|d"
I 17|16 ° 13]17 ° 30(33
ct 2015 bt 14(15 bt 34|30

Figure 6: Messages sent in the GAl-network

(b, d") with 34 points. Hence the optimal value faris 10
+ 34 = 44 points. In order to recover the optimal solution,
optimality of componentgb!, d°) known on cliqueBC D

fined by some constraints on the values of the attributes. The
procedure we proposed cannot be used directly in this case
because it applies only on product set structures. Difteren
solutions can be considered, depending on the relations be-
tween the cliques of the constraints graph and those of the
GAl-networks. For example, when the former are included
in the latter, our procedure can easily be adapted by inte-
grating constraint-violation penalties in the utility fttions
stored in each clique. In the other cases, we have to solve
a general constraint satisfaction problem valued with a-GAl
decomposable utility.
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