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Abstract

In many domains where experts are the main source of knowledge, e.g.,
in reliability and risk management, a framework well suited for modeling,
maintenance and exploitation of complex probabilistic systems is essential.
In these domains, models usually define closed-world systems and result
from the aggregation of multiple patterns repeated many times. Object
Oriented-based Frameworks such as Probabilistic Relational Models (PRM)
thus offer an effective way to represent such systems. They define pat-
terns as classes and substitute large Bayesian networks (BN) by graphs of
instances of these classes. In this framework, Structured Inference avoids
many computation redundancies by exploiting class knowledge, hence reduc-
ing BN inference times by orders of magnitude. However, to keep modeling
and maintenance costs low, object oriented-based framework’s classes of-
ten encode only generic situations. More complex situations, even those
repeated many times, are only represented by combinations of instances. In
this paper, we propose to determine online such combination patterns and
exploit them as classes to speed-up Structured Inference. We prove that
determining an optimal set of patterns is NP-hard. We also provide an ef-
ficient algorithm to approximate this set and show numerical experiments
that highlight its practical efficiency.

Keywords: Probabilistic Relational Models; Bayesian networks; inference;
pattern mining.

1. Introduction

Bayesian networks (BN) [1] are a valued framework for reasoning under
uncertainty and their popularity stimulated the need for handling problems
of ever increasing size. However BNs turn out to be inadequate for large
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scale real-world applications due to high design and maintenance costs [2, 3].
Indeed, defining a BN requires to specify explicitly probabilistic dependen-
cies and conditional probabilities over the whole set of its random variables.
This may lead to unrealistic modeling costs when dealing with complex sys-
tems. Furthermore, the BN’s design is static: any change in the topology
of their graphical structure induces significant costs to update their sets of
conditional probability tables.

Solving these problems has been the main concern of several BN ex-
tensions using the object-oriented paradigm [4, 2, 5, 6], including Proba-
bilistic Relational Models (PRM). Besides, first-order logic extensions were
proposed to offer more expressive power than the propositional framework
offered by BNs [7, 8]. Learning being a critical problem when exploiting
BNs over large knowledge bases, entity-relationship extensions were also
proposed for relational learning [9, 10]. These extensions are all allegedly
considered as First-Order Probabilistic Models (FOPM) or as Knowledge
Based Construction Models.

During the last decade, the Probabilistic Graphical Models community
has worked actively on FOPMs and object-oriented models have been some-
what neglected: since the introduction of Object-Oriented Bayesian Net-
works [11, 4], the amount of contributions on object-oriented probabilistic
graphical models has actually been relatively small [12, 13, 9]. However, in
many industrial areas, efficient frameworks for the construction of large-scale
complex systems are strongly needed and, in domains like risk management
or monitoring of complex industrial processes, this usually boils down to
experts modeling large-scale BNs by aggregating hierarchically small net-
work fragments repeated many times. Indeed, in the context of an applied
research, namely the SKOOB ANR project [14], we observed that the model-
ing of industrial processes, biological behavior, physical or chemical systems,
etc., implies a methodological approach based on the design of components
(e.g., numerous identical valves, many assembly lines, many cellular struc-
tures, repetition of elementary cells, etc.). It also often involves top-down
design where the components are integrated with other components in a
hierarchical construction.

In addition, all the relations between these fragments are usually fully
specified, thus resulting in modeling “closed worlds”. For these domains,
object-oriented frameworks seem more suitable than first-order logic exten-
sions. In particular, the “closed world” assumption strongly degrades the
behavior of lifted inference in FOPMs. For further details on the compari-
son between FOPMs, OOBNs and other component-based approaches like
Multi-Sectioned Bayesian Network (MSBN, [15]), we refer the readers to [6].
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Object-oriented frameworks and, a fortiori, PRMs assume that many
parts of a large BN are similar and can thus be described as instances of
a generic class defined only once. This scheme induces low construction
costs. In addition, maintenance costs are kept as low as possible since a
modification in the definition of a class updates many areas of the BN at
once. Furthermore, repetitions of structures in the BN (multiple instances
of the same class) can speed-up inference by performing computations once
within classes, caching them and using the cache for all their instances.
This process allows Structured Inference algorithms like Structured Variable
Elimination (SVE) to outperform classical BN inference engines by orders
of magnitude [5].

It is important to emphasize the differences between structured infer-
ence and lifted inference. The latter is a probabilistic inference scheme that
exploits FOPMs to lift identical worlds and reduce the amount of computa-
tions w.r.t. a given query and evidence [16, 17, 18, 19, 20]. In this paper, our
use of PRMs differs from their original use in [5] as we exploit them to model
closed world systems, i.e., systems with no structural uncertainty (see [21]
for more details). In such cases, lifted inference does not offer any substan-
tial gain compared to a classical BN inference as there is nothing to lift.
Consequently, we cannot compare both approaches as they do not apply to
similar systems. Structured inference and lifted inference are therefore not
rival inference schemes but rather complementary optimization techniques.

In real world applications, instances are often combined and form pat-
terns repeated many times throughout the network. Unfortunately, to keep
construction and maintenance costs at a low level, it is often the case that
such patterns are not encoded as classes by experts. For instance, in genet-
ics, classes usually encode relationships between a child and its parents, but
they seldom encode those among whole families (children, parents, grand-
parents, etc). Therefore, if a problem concerns many families with two
children, this pattern should be exploited to speed-up inference.

In this paper, we thus propose an enhancement of structured inference
for Probabilistic Relational Models [22, 23] that addresses this problem. By
using a frequent subgraph pattern mining algorithm, it is possible to discover
such repeated combinations, and their exploitation can actually speed-up
significantly structured inference. Mining optimally such patterns is time
expensive and, actually, we prove that it is a NP-hard problem. However,
we provide an efficient approximate algorithm that can quickly find patterns
that improve structured inference response times. This is confirmed by our
experiments.

The paper is organized as follows: Section 2 recalls the basics of object-
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oriented frameworks using PRMs. Section 3 describes structured inference.
Then, in Section 4, the pattern discovery problem is specified and it is proved
that its optimal resolution is NP-hard. Section 5 provides our approximate
algorithm. Experiments reported in Section 6 show the practical efficiency
of our approach. Finally, concluding remarks are given in Section 7. All
proofs are given in an appendix in Section 8.

2. Description of Probabilistic Relational Models (PRM)

PRMs were first proposed for relational learning [24]. By their definition,
they can be viewed as an extension of Object Oriented Bayesian Networks
[5] and, actually, they offer a sound object-oriented framework [23]. We
shall first introduce them in Subsection 2.1 as presented in [23]. Then, in
Subsection 2.2, we will extend PRMs adding the notion of an interface. For
an intuitive presentation of PRM’s key concepts, the reader should refer to
[25].

2.1. Basics of PRMs

In order to properly define PRMs, we shall use the following cross-
definitions1:

Definition 1 (Attribute, Reference slot, Class).

• An attribute C.X is a random variable enclosed in a class C. C is
called the resident class of X.
• A reference slot C.ρ is a local name enclosed in class C for another
class, say D. Then, class D grants the access to all of its attributes
and reference slots to C. range(ρ) denotes class D. domain(ρ) denotes
the resident class of ρ (i.e. C).
• A class is a quadruple 〈A(C),R(C),G(C),P(C)〉 where:

◦ A(C) is a set of attributes,
◦ R(C) is a set of reference slots. The set A(C) of all the attributes

that are located within C, i.e., A(C), or that are reachable by way
of reference slots is called the closure of C,
◦ G(C) = (A(C), E) is a Directed Acyclic Graph (DAG) where E ⊆

A(C)×A(C) : only the attributes of C have parents in this DAG.
◦ P(C) = {P (X|ΠX) , X ∈ A(C)} is the set of conditional proba-

bilistic tables (CPTs) of all attributes X ∈ A(C) conditionally to
their parents ΠX in G(C).
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(d) The CPTs of the BN.

P (Y |X) =
x x
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P (U |E .Y ) =
y y

u e f
u g h

(e) The class CPTs.

Figure 1: Analysis of a fragment of BN (a) and (d) reveals the use of two
recurrent patterns, which are confined into two classes (b) whose CPTs
are defined in (e). Hence, a system equivalent to figure (a) may be built
(c). The CPTs of the BN and of the classes are defined in (d) and (e)
respectively, where elements a, b, c, d, e, f, g, h represent probabilities and BN
random variables are all assumed to be Boolean.

Fig. 1.(b) shows a set of classes enabling to encode the BN fragment of
Fig. 1.(a). Class E is defined as 〈A(E),R(E), G(E),P(E)〉, where A(E) =
{X,Y } is the set of attributes encapsulated into E , R(E) = ∅ since no node
in class E is the child of another node that does not belong to E . G(E) is the
graph whose nodes are {X,Y } and whose arcs are {(X,Y )}. Finally, P(E) =
{P (X), P (Y |X)}. Note that the same table P (Y |X) defined on Fig. 1.(e)
is used as the CPT for all nodes Yj , j = 1, 2, in the BN fragment (see
Fig. 1.(a) and 1.(d)). As such, this mechanism enables to compactly define
the whole BN. Similarly, class F is defined as 〈A(F),R(F), G(F),P(F)〉,

1Note that we use standard Object Oriented notation “.” to indicate encapsulation.
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where A(F) = {U, V,W}, R(F) = {F .ρ} with F .ρ the reference slot point-
ing toward E , i.e., range(F .ρ) = E . GraphG(F) = ({E .Y, U, V,W}, {(E .Y, U),
(U,W ), (V,W )}) and the set of conditional probability tables of F is P(F) =
{P (U |E .Y ), P (V ), P (W |U, V )}. Again, table P (U |E .Y ) of Fig. 1.(e) defines
completely the CPTs of nodes Uj , j = 1, 2, 3, in the BN fragment.

Classes are not meant to be used as is, but through instances. For
example, a class may represent various failure odds of a cooling system in a
nuclear power plant and, when modeling a given power plant, such a class
is instantiated for each occurrence of the cooling system in the whole plant.

Definition 2 (Instance, System). Let B be a BN,

• An instance c of a class C is a subset of the random variables of B
such that:

◦ there exists a one-to-one mapping between c and A(C). We note
c.X the random variable in c corresponding to the attribute C.X,
◦ for each reference slot C.ρ of C, there exists an instance r of class
range(C.ρ) such that if C.X has a parent range(C.ρ).Y then c.X
has a parent r.Y in B.
We then note range(c.ρ) = r and domain(c.ρ) = c.
◦ The CPT of c.X in B is the same as that of C.X in class C.

By abuse of notation, every notion and notation defined for a class also
applies to instances (A(c), R(c), range, domain, resident instance,
etc.).
• A system S is the representation of B in the PRM framework: it is a
finite set of instances such that:

◦ S forms a partition of B,
◦ ∀i ∈ S, ∀ρ ∈ R(i),∃j ∈ S such that range(i.ρ) = j.

Fig. 1.(c) illustrates the notion of a system: here, a system is simply the
set of instances {e1, e2, f1, f2, f3}. Note that all reference slots are actually
bound. For instance, range(f1.ρ) = e1. Definition 2 enforces the “closed
world” feature of systems, i.e., they are finite sets of instances with all refer-
ence slots properly bound. As mentioned in the introduction, this constraint
is reasonable for complex systems of many domains. For instance, to reason
on industrial milk fermenters, all pipe connections need to be fully specified.

Using a graph whose nodes are instances instead of random variables
allows to have a very synthetic view of a complex BN. For instance, Fig. 1.(c)
is much more compact than Fig. 1.(a). This graphical representation is called
a relational skeleton.
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Definition 3 (Relational skeleton, ground BN).

• The graph representing instances by nodes and connections between
range and resident instances by edges is called the relational skeleton
of S.
• The Bayesian network corresponding to a relational skeleton is called
the ground BN or the grounded BN.

Note that the BN fragment of Fig. 1.(a) has two connected components,
i.e., the random variables on its left part are independent of those on its
right part. In terms of relational skeletons, this corresponds to the latter
having several connected components as well (as shown in Fig. 1.(c)). Of
course, a BN with only one connected component, which is most common
in practice, can also be described in terms of PRMs and, in this case, the
corresponding relational skeleton also has only one connected component.

We now extend this basic PRM framework by importing into it the object
oriented notion of an interface. This results in a new probabilistic language
with an increased expressive power.

2.2. Interface

Inheritance in PRMs, and more generally in Object Oriented frame-
works, is a complex feature. A complete description of the inheritance
paradigm proposed in our PRM framework would be out of the scope of
this paper and the interested readers shall refer to [23, 6] for details. How-
ever, the notion of an interface is closely related to that of inheritance and
we will need it in the next sections. So, we will now briefly define a “light”
notion of interface.

When some attribute, say D.Y , of a class D is addressed within some
class C through one of its reference slot C.ρ, this implies that D.Y is a parent
of some attribute of C, say C.X ∈ A(C). Consequently, D.Y shall be one the
variables on the right hand side of the conditioning bar of the CPT assigned
to C.X. Now, for this CPT to be correct, it is not absolutely necessary
that Y belongs precisely to class D. Rather, the weaker condition that Y
has the same domain as D.Y is sufficient to ensure that the CPT of C.X is
valid. Hence, we can relax the constraint that the range of a reference slot
is necessarily a given class and only require that the attributes referenced
have a specified domain. We shall see below that this relaxation is necessary,
for instance, to model dynamic Bayesian networks (dBN) by PRMs. This
suggests the notion of interface below, which represents exactly the minimum
information needed for a reference slot to be used as a container of parents
(in order to have a valid joint probability distribution).
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Definition 4 (Interface, implementation).

• An interface I is defined by a set of attributes, denoted A(I), and by a
set of reference slots, denoted R(I). Interfaces cannot be instantiated.
• A class C implements an interface I (denoted by CJ I) if:

◦ A(I) ⊆ A(C)
◦ R(I) ⊆ R(C)

The only distinction between a class and an interface is that the latter
does not contain any CPT. This feature thus prevents it from being instan-
tiated. For a class that implements an interface, the latter is just a contract
that enforces the presence of a set of attributes and a set of reference slots
inside the class. Note that the class will have to specify CPTs for all the
attributes of the interface.

In order to use this notion of interface, the definition of reference slot
needs to be slightly modified:

Definition 5 (Reference slot with interface).
A reference slot of a class C is a local name for a class or an interface

giving access to all of its attributes and reference slots from within C.

• If the range of a reference slot C.ρ is a class then, for every instance
c of C, range(c.ρ) is an instance of the class range(C.ρ).
• If the range of a reference slot C.ρ is an interface then, for every
instance c of C, range(c.ρ) is an instance of a class that implements
the interface range(C.ρ).

Interfaces and reference slots over interfaces prove to be useful, for in-
stance, to model dBNs by PRMs: actually, a dBN represents the uncertain-
ties about the state of a system evolving over some discrete time horizon
[26] (Figure 2a). A 2TBN is a compact representation for a dBN defined
over this horizon using a pair of BNs (B1, B→). B1 is the BN fragment used
in time slice 1 and B→ is used for all the other slices (Figure 2b). Of course,
the nodes in the BN fragments of consecutive time slices can be dependent
and, therefore, there exist some arcs across consecutive time slices.

Intuitively, to model such problem using PRMs, one would create a class
B1 for B1 and a class B→ for B→. However, Definition 1 would not allow this.
Actually, an arc, say (Xi

1, X
j
2) linking some node in time slice 1 to another

node in time slice 2, would require that class B→ contains a reference slot
B→.ρ pointing to class B1 so that range(B→.ρ).Xi = B1.Xi is a parent of
B→.Xj (Figure 3a). But, by definition of 2TBNs, for any time t > 2, arc
(Xi

t , X
j
t+1) shall also belong to the dBN and this would require that reference

8



...

X0
0

X1
0

X2
0

X0
1

X2
1 X2

T

X1
T

X0
T

X2
2

X1
2

X0
2

Slice B1 B3 Slice BTB2

X1
1

(a) A dynamic BN (dBN).

B→B1

X0
0

X2
0

X1
0

X2
t

X1
t

X0
tX0

t−1

X2
t−1

X1
t−1

(b) The equivalent 2TBN.

Figure 2: A dBN and its compact representation as a 2TBN

slot B→.ρ points to B→ instead of B1 so that range(B→.ρ).Xi = B→.Xi is
a parent of B→.Xj (Figure 3b). Thus, the strict application of Definition 1
would rule out modeling dBNs by PRMs.

B1

X0

X1

X2
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X0

X1

X2

ρ

(a) Relations between
B1 and B→ for in-
stances B1 and B2 :
range(B→.ρ) = B1

B→
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X2

ρ B→
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(b) Relations between
B→ and itself for in-
stances Bt−1 and Bt :
range(B→.ρ) = B→.

B1J I

X0

X1

X2

I

X0

X1

X2

B→J I

X0

X1

X2

ρ

(c) Resolution of the dilemma
using an interface imple-
mented by both B1 and B→ :
range(B→.ρ) = I.

Figure 3: The dilemma of modeling a dBN as a PRM.

Now, create an interface I without any reference slot and containing
the attributes referenced across time slices, and make classes B1 and B→
implement this interface (Figure 3c). Then, creating a reference slot ρ in
B→ whose range is I allows instances of B→ to reference random variables
of the instances of B1 in the first time slice and those of B→ in the other
slices.

As we shall see in Section 4, interfaces will allow us to prove that de-
termining the optimal set of patterns in a relational skeleton that shall be
converted into classes to speed-up inference is a NP-hard problem. But be-
fore proving this result, we shall recall how inference is performed in PRMs.
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3. Structured Inference

Determining the probabilities of a set of random variables given evi-
dence is the most common query performed in probabilistic graphical mod-
els. There exists a wide variety of inference algorithms to compute these
distributions [1, 27, 28, 29, 30, 31]. They often rely in some way to a Vari-
able Elimination scheme [30, 31]. The basic idea consists of marginalizing
out random variables one by one from the joint distribution (or more gener-
ally from a set of CPTs or potentials) until there only remains the variables
of interest, as shown in Algorithm 1. Algorithm 2 shows another inference
method, called a Junction Tree inference, based on a similar idea. Many ef-
ficient variants like Lazy Propagation [31] actually follow the same scheme.
Conditional probabilities P (X|e) are computed similarly by first adding to
the pool some potentials representing the additional knowledge brought by
evidence e.

Algorithm 1: Variable Elimination (VE).

Input: a set of potentials P and a set of target random variables X
Output: P (X)

1 W← all the variables of the potentials of P except X
2 while W 6= ∅ do
3 let Xj be some variable in W; remove Xj from W
4 let Q be the set of tables in P containing variable Xj

5 compute potential q =
∑

Xj

∏
f∈Q f

6 P← (P\Q) ∪ {q}
7 return potential

∏
f∈P f

The above scheme is efficient and can be used in PRMs by applying it
on their grounded BN. However, by processing random variables separately,
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Algorithm 2: Junction tree inference (JT).

Input: a set of potentials P and a set of target random variables X
Output: P (X)

1 create a Markov network G = (V,E) whose nodes represent the random
variables of the potentials of P and such that (Xi, Xj) ∈ E if and only if
there exists a potential in P containing both variables Xi and Xj

2 triangulate G by eliminating all the nodes in V\X and, then, by creating a
clique for the nodes in X

3 create a junction tree T = (C,F) from the triangulated graph G
4 put each potential of P in any clique of C containing all its variables
5 let R be the clique of T corresponding to the set of nodes X
6 call collect(T ,R,R) // see Algorithm 3

7 let Q be the set of tables in clique R plus those in the messages sent from
the neighbors of R toward R

8 let W be the set of variables in the potentials in Q
9 compute potential q =

∑
Xi∈W\X

∏
f∈Q f

10 return potential q

VE and the other aforementioned inference algorithms are unable to exploit
the structural repetitions in the graphical model to avoid computation re-
dundancies. The aim of Structured Inference is to fill this gap [24, 5] and
Object-Oriented frameworks provide a simple and effective way to achieve
this goal [32]. Indeed, consider an attribute A of a class C such that all of its
children also belong to C and let c1, . . . , ck be some instances of C in which
no attribute received any evidence. Then it is easy to see that eliminating
attributes A ∈ A(ci) in the grounded BN prior to the elimination of any
other random variable produces precisely the same computations for all the

Algorithm 3: The collect phase of the junction tree algorithm.

Input: a junction tree T , a current clique Ci, a previous clique Cj

1 foreach clique Ck 6= Cj such that Ck is a neighbor of Ci do
2 call collect(T,Ck, Ci)

3 if Cj 6= Ci then
4 let Q be the set of tables in clique Ci plus those in the messages sent

from Ci’s neighbors Ck 6= Cj toward Ci

5 let W be the set of variables in the potentials in Q
6 let S be the set of nodes belonging to both Ci and Cj

7 compute potential q =
∑

Xi∈W\S
∏

f∈Q f

8 send a message containing potential q from Ci to Cj
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instances ci, i = 1 . . . , k. In this case, eliminating attribute A within class C,
i.e., at class level, and updating accordingly all the relevant instances before
constructing the grounded BN avoids the redundancies involved by elimi-
nating A in each ci, i.e., at instance level. This process is called Structured
Inference and the gain brought by this approach usually reduces computa-
tion times by orders of magnitude (see [25] for further details).

More formally, an attribute A ∈ A(C) is called an inner or internal
attribute if all of its children also belong to A(C), otherwise A is called an
outer attribute. In addition, the attributes referenced in R(C) are called non-
resident. For instance, in Fig. 1.(b), attributes X,U, V,W are internal, Y is
an outer attribute of class E and range(F .ρ).Y is a non-resident attribute
of F . Class-level elimination corresponds to the elimination of all the inner
attributes (using any inference algorithm) within the class itself. As such,
it amounts to substitute the pool of potentials P(C) of class C defined over
all of its inner, outer and non-resident attributes by a new set of potentials
P′(C) defined only over the outer and non-resident attributes. This opera-
tion is called class-level elimination. The pool of potentials corresponding to
any instance c of C is thus substituted by P′(c) if no inner attribute in c re-
ceived any evidence, else it is kept to P(c)∪{potentials(evidence)} (because
evidence may induce different distributions from one instance to another).
Once class-level elimination has been performed, Structured Inference goes
on with the attributes elimination process at the instance level, i.e., on the
resulting grounded BN with any classical inference engine. For instance,

U V

T

U V

T

U V

T

Z

CB

A

W

CB

A

W

CB

A

W

eA

eT

eW

Z Z

X

Figure 5: A BN with 4 classes: each set of variables inside a rectangle
corresponds to an instance. Some nodes received evidence eA, eT , eW .
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consider the PRM/BN of Fig. 5: it is composed of 4 different classes and an
overall of 10 instances (represented as rectangles). Nodes A,U, V, Z are the
internal nodes that should be removed at class-level. Some nodes received
evidence (denoted as eA, eT and eW ). At class level, the internal attributes
of the instances that received no evidence are removed. This leads to the BN
of Fig. 6, on which any inference algorithm (like VE or JT) can be applied.
SVE can be formally defined as Algorithm 4. In this algorithm, VE is used
only on Line 16. Substituting it by a call to JT (Algorithm 2) will thus
produce a junction tree-based structured inference.

As stated in [25], it is worthwhile to emphasize that even if this section
essentially focused on the description of a structured VE as a prototype for
Bayesian inference in order to ease the presentation, Structured Inference
can be used with many other inference algorithms ([27], [28], [30], [31], etc.).
Indeed, the ideas for caching intermediate computations between equivalent
topological patterns also applies to any inference algorithm that runs on the
graphs of the BNs or on their secondary structures (like junction trees).

T T

U V

T

CB

W

CB

A

W

CB

W

eA

eT

eW

Z

X

Figure 6: The BN resulting from class-level elimination.

4. PRM’s Patterns Discovery: Problem and Complexity

Marginalizing-out internal nodes at class level is the key to Structured In-
ference’s efficiency as it reduces significantly redundant computations. How-
ever, from a theoretical point of view, not all redundancies can be identified
by this scheme: consider the two classes E and F of Figure 7.(a) and let
Y ∈ A(E), U ∈ A(F) be two attributes such that the only non-resident
child of E .Y is F .U . Then E .Y cannot be eliminated at class level because
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Algorithm 4: Structured Variable Elimination (SVE).

Input: a set of classes C, a system S, a set of queried random variables X,
a set of evidence e

Output: P (X|e)
// compute class-level eliminations

1 foreach C ∈ C do
2 let I be the set of the inner attributes of C
3 P′(C)← P(C)
4 foreach attribute A ∈ I do
5 let Q be the set of tables in P′(C) containing attribute A
6 compute potential q =

∑
A

∏
f∈Q f

7 P′(C)← (P′(C)\Q) ∪ {q}

// Compute the instance-level pool of potentials

8 P← ∅
9 foreach instance c ∈ S do

10 let C be the class of instance c
11 if there exists a random variable A ∈ c such that A ∈ X or A received

some evidence eA ∈ e then
12 P← P ∪P(C)
13 else
14 P← P ∪P′(C)

15 P← P ∪eA∈e {P (eA|A)} // add evidence probabilities to the pool

16 return Variable Elimination(P,X, e)

it is not internal. However, if we consider the “new” class EF of Figure 7.(b)
defined by compound (E ,F), attribute EF .Y is no longer an outer attribute
since U ∈ A(EF). Hence, pairs of instances (e, f) of E and F that fit the
definition of EF can be considered as instances of EF . In these new instances,
Y is internal and, thus, is eligible to class-level elimination.

From a practical perspective, such situations occur frequently in com-
plex systems modeled by PRMs. Indeed, experts usually encode as classes
very generic knowledge and, as such, many relations among classes that
are specific to a given problem are not taken into account by Structured
Inference. For instance, in genetics, a class often reflects the probabilistic
genetic relationships between parents and one of their children, and those
between grand-parents and children are modeled using one instance of the
aforementioned class to represent the relationships between grand-parents
and parents, and another one to represent those between parents and child.
Therefore, by identifying the situations where such pairs of instances ap-
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Figure 7: Compound classes.

pear frequently in the relational skeleton, and by creating the corresponding
compound classes, Structured Inference can be significantly improved since
the opportunities for class-level eliminations are increased. The rest of the
section aims at determining such compound classes.

Once compound classes have been identified, transforming the instances
of the relational skeleton into instances of these new compound classes must
be performed carefully. Indeed, consider again classes E ,F , EF of Figure 7,
then not all pairs (e, f) of E ,F are eligible for these transformations: in
Fig. 1, pairs (e1, f1) and (e1, f2) cannot be both considered as instances of
compound (E ,F) as e1 would be counted twice in the grounded BN. Pair
(e1, f3) is neither eligible because there is no edge between e1 and f3 in the
relational skeleton.

In order to find effective compounds/instance-class reassignments, it is
most convenient to search them in the following graph:

Definition 6 (boundary graph). A boundary graph is an undirected graph
BBGG = (II, EE), where

• II is a set of vertices representing instances;

• EE ⊆ II × II is a set of edges such that (c, d) ∈ EE iff

Lcd =
⋃

X∈A(c)

(Πc.X ∩A(d)) ∪
⋃

X∈A(d)

(Πd.X ∩A(c)) 6= ∅. (1)

Edge (c, d) is labeled by Lcd.

Fig. 8 illustrates a boundary graph for which different compound classes
will be mined. Each circle node corresponds to an instance of the relational
skeleton. An edge (c, d) of the boundary graph and its label define precisely
the attributes that should be eliminated at class level if (c, d) was considered
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Figure 8: A boundary graph. The different possible connections between
instances result in different edge labels (square nodes). We can see that
compound {c1, d1} is different from compound {c2, d2}.

as an instance of a compound. Actually, the first union in Eq. (1) lists the
attributes of instance d that are referenced by c and the second union lists
those of c referenced by d. Therefore, two pairs of instances (c1, d1) and
(c2, d2) of classes C and D should not be considered as instances of the same
compound if Lc1d1 6= Lc2d2 . For instance, in Figure 8, Y is an outer attribute
for compound {c1, d1} whereas it is an inner attribute for compound {c2, d2}.
Hence the two pairs of instances shall be treated differently by Structured
Inference since their class level eliminations clearly differ. This suggests
the following definition to identify which sets of instances should be treated
similarly:

Definition 7 (dynamic class). Let BBGG be a boundary graph. A dynamic
class F̂ in BBGG is a pair (F ,B), where:

• F is a compound class;
• B ⊆ A(F) is the set of all the outer attributes of F . Set B is called
F̂’s boundary.

Hence, given a dynamic class F̂, all the nodes in A(F̂)\B are internal
and can be eliminated at class level whereas nodes in B are referenced by
other instances and can only be eliminated at instance level. So, to im-
prove structured inference, we shall search the boundary graph for frequent
subgraphs, i.e., subgraphs repeated many times, create their correspond-
ing dynamic class, substitute each subgraph by one instance of its dynamic
class and, finally, apply a structured inference algorithm like SVE. However
substitutions must be performed carefully: it may actually happen that the
occurrences of frequent subgraphs share some nodes. In this case, only one
of these occurrences can be substituted else some instances of the “original”
system would be counted several times. As mentioned before, in Fig. 1,
the dynamic class resulting from the aggregation of classes E and F has
three possible instances: (e1, f1), (e1, f2) and (e2, f3). However, (e1, f1) and
(e1, f2) cannot be both considered as instances of this new dynamic class
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else e1 would appear twice in the grounded BN, hence resulting in incorrect
computations. Consequently, we shall enforce the following rule:

Rule 1. In the boundary graph, substituted subgraphs cannot share any node
(i.e. any instance of the original PRM).

Optimizing structured inference thus amounts to searching for the “best”
set of dynamic classes and subgraph substitutions satisfying Rule 1. Unfor-
tunately, as shown in the following proposition, this problem is NP-hard:

Proposition 1. The following problem is NP-hard:
Instance: A PRM, a boundary graph, an integer K ≥ 0.
Question: Is there a set of dynamic classes and boundary subgraph substi-
tutions of these classes such that the number of operations (multiplications
and summations) performed by structured inference to eliminate all random
variables is smaller than K?

The proof is given in the appendix. In a sense, this proposition is not
very surprising since determining the minimal number of operations in vari-
able elimination algorithms such as SVE or VE is equivalent to determining
an optimal elimination sequence, which is known to be NP-hard [33, 34]. In
addition, determining all the occurrences of a given subgraph in a graph is
NP-hard as well [35]. Finally, given a set of dynamic classes and their sub-
graph occurrences in the boundary graph, determining which ones should
be substituted amounts to solve an Independent Set problem in which each
vertex represents a boundary subgraph and edges link vertices correspond-
ing to overlapping boundary subgraphs. Again, this problem is NP-hard
[35]. However, the proof of Proposition 1 shows that finding the best dy-
namic classes/substitutions remains NP-hard even in cases where all the
above problems can be solved polynomially, in particular when inference in
the grounded BN is polynomial (singly-connected BNs). We shall however
present in the next section an efficient approximate algorithm for determin-
ing an effective set of dynamic classes.

5. A PRM’s Patterns Discovery Approximate Algorithm

The problem of finding frequent patterns in labeled graphs has received
many contributions in the literature, although the aim is somewhat differ-
ent in that it consists of finding subgraphs that appear in many graphs of
a database of labeled graphs [36, 37, 38]. However, the connection with our

17



problem is sufficiently high that techniques from this domain can be bor-
rowed to solve our problem. In this paper, we suggest to use a variant of
gSpan [38]. We will present the generic derived algorithm in the next subsec-
tion and, then, we will describe an efficient pruning rule that can speed-up
significantly this algorithm.

5.1. A gSpan-Based Approximate Algorithm

The basic idea of the algorithm consists of creating a search tree T that,
when fully constructed, contains all the dynamic classes that can be found in
the boundary graph as well as their substitutions. Then there just remains
to parse efficiently this tree to determine the best set of dynamic classes
and boundary subgraph substitutions that satisfy Rule 1. More formally,
we define the possible substitutions as:

Definition 8 (Matches of a dynamic class). Let BBGG = (II, EE) be a
boundary graph and let D̂ be a dynamic class. The matches of D̂, denoted as
M(D̂), is the set of sets of the instances of II such that each s ∈M(D̂) is a
set of instances matching D̂, i.e., the set of instances in s can be substituted
in II by one single instance d of D̂. In such a case, d is called the instance
substitution of s.

For instance, in Fig. 8, the dynamic class, say F̂, defined as compound
(C,D) with a boundary equal to {C.Y,D.Y }, has a set of matches equal to
{{c1, d1}, {c3, d3}}. Thus, pairs of instances (c1, d1) and (c3, d3) can both be
substituted by one instance of F̂ without altering the grounded BN.

Let BBGG = (II, EE) be a boundary graph and let {D̂1, . . . , D̂n} be a set

of dynamic classes. Denote as {m1
D̂i
, . . . ,m

kD̂i

D̂i
} the elements of the set of

matches M(D̂i) of dynamic class D̂i. Define a graph G = (V,E) where, to
each set mh

D̂i
is associated a node in V (which we shall call mh

D̂i
as well since

it is unambiguous), and E = {(mh
D̂i
,ml
D̂j

) : there exists an instance in II
belonging to both mh

D̂i
and ml

D̂j
}. Then:

Proposition 2. Any independent set2 of G defines a set of instance substi-
tutions satisfying Rule 1.

2Recall that an independent set of a graph G = (V,E) is a subset W ⊆ V such that
no pair of nodes of W are adjacent in G.
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Of course, some substitutions are better than others because they induce
higher speed-ups in Structured Inference. So the nodes of V should be
weighted according to the speed-up improvements they induce. We shall
see below how this can be estimated. The “best” substitutions we look for
then correspond to solutions of a Max Weighted Independent Set problem.
Unfortunately, solving exactly this problem is NP-hard [35]. Nevertheless,
in practice, there exist some algorithms that approximate it quite efficiently
[39, 40]. In our experiments, we used the approach advocated in [40].

There now remains to determine the set of dynamic classes {D̂1, . . . , D̂n}
and their matches that are to be given as input to the max independent set
problem. For this purpose, we use a variant of the gSpan pattern mining
algorithm [38]. As our goal is to create compound classes, we shall only
mine frequent connected boundary subgraphs. This is precisely what gSpan
is designed for. To describe the mining of these subgraphs, we define the
subgraph of the boundary graph corresponding to a dynamic class:

Definition 9 (Boundary subgraph of a dynamic class). Let BBGG =
(II, EE) be a boundary graph and let D̂ be a dynamic class compounding some
classes C1, . . . , Ck with a boundary equal to {B1, . . . , Br}. The boundary
subgraph of D̂, denoted by BG(D̂), is the generic subgraph G = (V,E) of BBGG
such that there exists one node in V per class Ci. The edges of E link all the
nodes of V as they are in the boundary graph and, for each Bi, i = 1, . . . , r,
there exists an edge (X,Y ) with X the node of V corresponding to the class
containing Bi and Y a dummy node. Edges whose both extremal nodes belong
to V are called internal, else they are called external.

For instance, in Fig. 8, the boundary subgraph of dynamic class F̂ de-
fined as compound (C,D) with a boundary equal to {C.Y,D.Y } is illustrated
on Fig. 9. Now, gSpan creates a tree T whose nodes correspond to dynamic
classes. A node N(D̂i) of this tree actually represents a pair (BG(D̂i),M(D̂i))
where D̂i is a dynamic class and M(D̂i) is the set of matches of D̂i. Tree T
is initialized with all the dynamic classes whose boundary subgraphs have 1
internal edge. In T, nodes at level k+ 1 are derived from those at level k by
extending their boundary subgraph with one of their adjacent node in BBGG,
i.e., at least one of their external edge becomes internal. This guarantees
that the nodes of T represent dynamic classes with nonempty matches. For

c X d YY

Figure 9: The boundary subgraph of dynamic class F̂.
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instance, the search tree T for the boundary graph of Fig. 8 is displayed
in Fig. 10: each node represents a dynamic class or, equivalently, a specific
subgraph of BBGG. The whole tree thus reveals precisely all the possible con-
nected dynamic classes and instance substitutions that can be applied to
the PRM. Fig. 11 illustrates a general tree. Once T is constructed, its nodes
can be exploited to feed the aforementioned max weighted independent set
problem in order to get, if not an optimal, at least a good set of instance
substitutions.

Ê = 〈(C,D), {C.Y,D.Y }〉 M(Ê) = {{c1, d1}, {c3, d3}}
F̂ = 〈(C,D), ∅〉 M(F̂) = {{c2, d2}}
Ĝ = 〈(C,D), {C.X,D.X}〉 M(Ĝ) = {{c1, d3}, {c3, d1}}
Ĥ = 〈(D1, C,D3), {D1.X,D3.Y }〉 M(Ĥ) = {{d3, c1, d1}, {d3, c3, d1}}
Ĵ = 〈(C1,D, C3), {C1.X, C3.Y }〉 M(Ĵ ) = {{c3, d1, c1}, {c3, d3, c1}}
K̂ = 〈(C1,D1, C3,D3), ∅〉 M(K̂) = {{c1, d1, c3, d3}}6

5
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1 2

Figure 10: Search tree T for the boundary graph of Fig. 8.

3 edges

2 edges

1 edge

4 edges pruned

N(D̂0) N(D̂1)

Figure 11: Dynamic classes search tree T.

Of course, the size of T is exponential and, thus, some pruning is nec-
essary to get a fast approximate algorithm. The most obvious pruning rule
consists of removing duplicate nodes in the search tree. Indeed, the children
of a node in T define the possible extensions of its corresponding dynamic
class. Hence, if another node of the search tree corresponds to the same
dynamic class (say, e.g., that dynamic class D̂1 is the same as D̂0), then both
nodes and their descendants represent identical dynamic classes. So, N(D̂1)
and its descendants can be safely pruned from the tree (see Fig. 11). Such
a case arises for instance when D̂0 is constructed by first compounding some
classes C and D, and then compounding the result with some class E , while
D̂1 is constructed by first compounding D with E , and then compounding
the result with C (see Fig. 10 for an example).

Determining whether two subgraphs are identical is known as the sub-
graph isomorphism problem and is NP-complete in the general case [41].
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However, in practice, there exist efficient algorithms for solving this task
[42, 43]. In gSpan, this is achieved using a DFS canonical labeling of sub-
graphs defined as follows: given a boundary subgraph BG(Ĉ) = (V,E), a
depth first search (DFS) tree T is created to parse all the nodes in V . The
depth-first discovery of the nodes induces a linear order on V and the latter
induces a linear order �E,T on E. The label or DFS code of BG(Ĉ) w.r.t. T
is the set of edges E sorted in increasing order w.r.t. �E,T . In gSpan, the
nodes of V are supposed to be labeled and it is assumed that there exists a
linear order �L on those labels. In our case, the classes of the PRM have
a unique identifier which is assigned as label to each instance of the class.
Using �E,T and �L, gSpan defines a lexicographic order on the codes of
BG(Ĉ). The minimal one w.r.t. to this order is the canonical label of the
BG(Ĉ). It is shown in [38] that two graphs are isomorphic if and only if they
have the same canonical label.

At first sight, this mechanism seems a heavy machinery since, in theory,
we shall need to compute all the DFS trees of BG(Ĉ) in order to get all the
codes of BG(Ĉ) and select the minimal one. Fortunately, it is shown in [38]
how the DFS code assigned to a node N(Ĉ) of search tree T can be extended
to form the prefix of the code of any of its children, say N(D̂). This imposes
a restriction on N(D̂): let T be the DFS tree generating the canonical label
of Ĉ and assume that BG(Ĉ) = (V,E). As mentioned previously, T generates
a linear order on the nodes of V . The path between the first and the last
node of V w.r.t. this order is called the right path of BG(Ĉ) and it is shown in
[38] that the children of BG(Ĉ) in T can only be formed by adding to BG(Ĉ)
an edge whose extremal nodes belonging to V also belong to the right path.
By adding only those edges, we get a fast mechanism for determining DFS
codes but this also speeds-up the mining algorithm by reducing the number
of duplicate dynamic classes in T.

The above paragraphs describe how the whole search tree T can be gener-
ated. However, as mentioned before, to get a fast algorithm, some pruning
rules are necessary. To guaranty their efficiency, we shall construct T in
such a way that the “best” dynamic classes are constructed first. For this
purpose, linear order �L is defined so that the more promising the class
for compounds the smaller its index in �L. Estimating whether a node
is promising is simply done by estimating the number of operations saved
if its class is part of a dynamic class. Then nodes of each level of T are
sorted according to this order [38]. Thus, parsing T in a depth-first search
(DFS) manner guarantees that the “most promising” dynamic classes are
constructed first. The whole process leads to Algorithm 5.
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Algorithm 5: Computing dynamic classes/substitutions.

Input: A PRM and its boundary graph BBGG
Output: A set of dynamic classes/substitutions

1 T← all dynamic classes of 1-edge subgraphs of BBGG
2 sort the nodes in T according to the gSpan linear order
3 parse T in a DFS manner
4 foreach node N(D̂) visited do
5 create the children of N(D̂), sort them w.r.t. gSpan’s linear order and

add them to T
6 prune the “unpromising” children

7 solve a Max Weighted Independent Set

8 return the set of “best” dynamic classes/substitutions

We will now describe the pruning rule that, besides the one removing
the duplicates, allowed us to prune significantly the search tree.

5.2. Pruning Rules

The rule we used is related to the gain achievable in Structured Inference
using dynamic classes: nodes N(D̂) that define classes whose instance sub-
stitutions do not speed-up Structured Inference can be pruned. To estimate
the gain in speed, recall that, by Rule 1, only a subset SD̂ of M(D̂) can
be substituted in BBGG by instances of D̂. The number of operations (multi-
plications, additions) performed by Structured Inference on these instance
substitutions is equal to:

|Comp(SD̂)| = wD̂ + |SD̂| × wD̂,

where |SD̂| denotes the cardinal of set SD̂ and where wD̂ and wD̂ denote the
number of operations necessary to eliminate D̂’s inner nodes at class level and
D̂’s outer nodes at instance level respectively. Now remember that BG(D̂)
corresponds to a 1-edge extension of the boundary subgraph of its parent
π(D̂) in tree T. So, the matches of M(D̂) that were not substituted, i.e., those
of RD̂ = M(D̂)\SD̂, have a boundary subgraph which is an edge extension
of the boundary subgraph BG(π(D̂)). Assuming that all the elements of
RD̂ were substituted as instances of π(D̂), their eliminations by Structured
Inference would have the following cost:

|Comp(RD̂)| = wπ(D̂) + (|M(D̂)| − |SD̂|)× wD̂
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where wD̂ = wπ(D̂) + kD̂ and kD̂ corresponds to the elimination of the edge
added to π(D̂). So the total cost incurred by the exploitation of N(D̂) is:

|Comp(M(D̂))| = wD̂ + wπ(D̂) + |SD̂| × wD̂ + (|M(D̂)| − |SD̂|)× wD̂

whereas, by just exploiting π(D̂), it would have been

|Comp′(M(D̂))| = wπ(D̂) + |M(D̂)| × wD̂.

So, class D̂ is unattractive for inference and N(D̂) may be pruned whenever:

αD̂ = |Comp(M(D̂))| − |Comp′(M(D̂))| = wD̂ + |SD̂| × (wD̂ − wD̂) > 0.

Finally, note that |SD̂|, wD̂, wD̂, kD̂ can be estimated quickly: as shown in
the preceding subsection, SD̂ can be estimated by solving/approximating a
Max Independent Set problem induced by M(D̂). To estimate wD̂, it is suffi-
cient to compute a junction tree of D̂’s DAG [44, 45], eliminating only inner
nodes, and to sum-up the sizes of its cliques. Incremental triangulations
are particularly fast to perform this task [46]. Eliminating the remaining
variables provides an estimation of wD̂. kD̂ can be estimated similarly.

Note however that T is not α-decreasing, i.e., it may happen that αD̂ > 0
for a given node N(D̂), but not for some of its descendants. This property
results from the fact that, in these descendants the number of inner nodes
may be far higher than that in D̂, hence decreasing wD̂ (dropping constraints
on the junction tree’s elimination order) as well as wD̂ (the inner nodes do
not belong to the boundary). The α-non-decreasing property does not allow
for a clear pruning rule. In the paper, we used the following rule: whenever
a node in T had an αD̂ > 0, we pruned the node and its descendants.

6. Experimental Results

We now describe different set of experiments that highlight the gain in
inference speed resulting from the combination of structured inference and
pattern mining. In each experiment, we compared our new algorithm (sub-
sequently denoted as PD for Pattern Discovery) with Structured Variable
Elimination (SVE), the standard inference algorithm for structured infer-
ence [32], and also with Variable Elimination (VE), a classic and standard
probabilistic inference algorithm for Bayesian Networks [30].

As explained in section 3, VE is used here as a prototypical inference
algorithm and we could have used other inference algorithms for the exper-
imentations. VE is peculiar among the probabilistic inference algorithms in
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that it mainly focuses on the computation of the posterior marginal distri-
bution of a single variable. One can roughly say that inference algorithms
often require two phases: i) collect all observations and ii) distribute them.
In this general scheme, VE would only correspond to the first phase. As the
second phase would also benefit from structured inference, using another
algorithm would just increase the gains for structured inference. In that
sense, using VE is a worst case for our algorithm.

It is important to note that we did not need to include evidence in our
experiments. This choice was motivated by the fact that the structure of
the network may vary drastically in the presence of evidence while our goal
here was to show how pattern mining can improve inference when there ex-
ist repetitions in the network. Indeed, evidence are not a good indicator
of repetitions as they can either be entered at the same location in every
pattern, thus preserving repetitions, or be entered randomly, thus breaking
the structure. This is why experiments 1 and 2 show the results of our new
approach on networks with and without repetitions rather than with or with-
out evidence, hence providing a much better insight of PD’s performance in
all possible situations.

Response times reported for PD take into account both pattern mining
and inference. For experiments using VE, results include both grounding and
inference time. All our experiments were performed on a 2.7 Ghz Intel Xeon.
The source code of our PRMs implementation, the inference algorithm and
the generation algorithms can be found in the aGrUM project3.

6.1. PRM random generation

The key to understand these experimentations lies in the generation of
the benchmarked PRMs. High level frameworks such as PRMs offer a wide
variety of generation methods. Here, our primary concern was the genera-
tion of PRMs in which we could control the amount of structure repetitions
in order to prove that, when confronted to a large amount of pattern rep-
etitions, i) a substantial speed gain can be achieved and ii) our approach
does not suffer from a prohibitive pattern mining cost. Our generator takes
the following parameters as inputs: domain is the domain size of each at-
tribute; minattr is the number of attributes common to all classes; maxattr
is the number of attributes in each class; c is the minimal number of classes;
maxref is the maximal number of reference slots allowed per class; n is the
number of instances in the system.

3http://agrum.lip6.fr
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Figure 12: Structural repetition is an important factor for PD’s perfor-
mance. Unsurprisingly, performance decreases dramatically for systems with
no structural repetition.

The PRM’s generation process is performed as follows: first, we generate
an interface I4 with minattr attributes which will be implemented by all
classes and will be the slot type of each reference slot in each class. Next,
for all k ∈ [0, . . . ,maxref ], a class with precisely k reference slots is created.
Then, if maxref < c, we generate new classes until exactly c classes have
been created. For those new classes, the number of reference slots is chosen
randomly in [0,maxref ]. Finally, we generate a DAG S representing the
relational skeleton of our system: each node represents an instance and an
arc i→ j represents the fact that there exists ρ ∈ R(j) such that i = j.ρ. For
a given node i with πi parents in S, we instantiate a class randomly chosen
among all the classes with precisely πi reference slots. A given class C is
generated as follows: we first create a DAG GC with maxattr nodes, we then
add to C k reference slots and maxattr attributes. Dependencies between
attributes are defined using GC . For each reference slot ρ, we create a slot
chain ρ.A, where A ∈ A(I) is chosen randomly among all the attributes in
A(I). The slot chain is then added as a parent of an attribute of C chosen
randomly. DAGs are generated using the algorithm provided in [47].

6.2. Experimental results

In our first set of experiments, we generated systems with an increasing
number of instances. Each class contains 15 attributes (maxattr = 15) and
has at most 4 incoming arcs (maxref = 4). Each attribute’s domain size

4Remember that if a class implements a given interface, then this guarantees the exis-
tence of the attributes and reference slots defined in that interface [23].
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is equal to 2 (domain = 2). This choice was made to penalize as much
as possible our algorithm against the other methods. As a matter of fact,
PD’s mining time is unaffected by the domain size of the random variables
and the inference improvement due to dynamic classes increases with it.
Finally, the minimal amount of classes required was set to c = 5, which
implies that there are precisely maxref + 1 = 5 classes in each system.
These experiments highlight the behavior of PD when many repetitions can
be found in the system. Fig. 12a shows the response times of PD, SVE and
VE when no evidence is observed and with a number of instances varying
from 100 to 1000. Clearly, in this case, PD significantly outperforms both
VE and SVE.

An important factor is the ratio of PD’s inference time over that of SVE.
The gain of PD against SVE and that of SVE against VE are due to the pres-
ence of structural repetitions in the generated networks. It can be seen that
SVE’s complexity is less impacted by the size of the system than VE’s com-
plexity. But for small systems with small classes, SVE does not guarantee a
considerable speed gain. By exploiting pattern mining, PD significantly in-
creases the gain obtained by repetition. Thus, where SVE does not perform
well compared to VE, PD infers larger patterns that can drastically increase
performance. In our first experiments, there is enough structure to see the
possible gain provided by our new approach. Yet, we must also consider
cases where there are few or even no structural repetitions. The amount
of pattern repetitions can be influenced by the number of classes, so if we
increase that number we should observe a less favorable ratio between PD’s
and SVE’s inference time against VE. This is the purpose of our second set
of experiments.

In our second set of experiments we generated systems with an increasing
number of classes (c ∈ [0, 500]) and 500 instances. The remaining parame-
ters are equal to those of the first experiment. The goal here is twofold: we
want to show that, when no structure is exploitable, there is no overhead
in proceeding with the pattern mining and that pattern repetitions is crit-
ical for PD’s performance. As stated below, these experiments are also a
fair presentation of the behavior of our algorithms in presence of randomly
chosen evidence. Actually, entering evidence into a BN amounts to make
the instances that received them belong to “new classes” that correspond
to classes whose CPTs include precisely the probabilities of these evidence.
As such, experiments in which we increase the number of classes are thus
a good representative of inference times in BNs in which the number of
random variables that received evidence increase.

Fig. 12b shows that when the number of classes increases dramatically,
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the speed gain induced by PD and SVE are considerably less significant.
If we compare those results with VE’s response times, we see that PD and
SVE are considerably counter-performing. To anyone familiar with struc-
tural inference, this is an unsurprising result which can be explained by the
fact that the elimination order used by PD and SVE (inner attributes are
eliminated before outer ones) is in most cases suboptimal. If PD and SVE
show better results than VE in Fig. 12a it is only because the gain resulting
from the reduction of redundant computations more than compensate the
suboptimal elimination order. Fortunately, detecting repetition is trivial in
an object-oriented framework as the amount of instantiations of each class
is a good indicator of structural repetition. The presence of evidence can
also be an indicator, as different evidence will break down the structure
and thus reduce the amount of repetition in the network. We can easily
switch to classic inference if needed by detecting situations which would
lead to counter-performing results: few instantiations of each classes, heavy
evidence, seemingly random evidence. Finally, we observe no over-cost due
to pattern mining. This is also an unsurprising result as our pruning rules
implicitly take into account frequencies and cut the mining process when
such value is too low.

In our third experiment, we analyze the amount of patterns found by PD
with the parameters from experiment 1 (maxattr = 15, domain = 2,maxref =
4, c = 5,maxref + 1 = 5). The results of this experiment are summarized in
Table 1. A noticeable point is the low number of instances in each pattern.
This is a consequence of our pruning rule which was designed to be strict.
It favors smaller patterns because larger ones are in most cases less cost ef-
fective (they often induce a larger clique than an optimal elimination order
would) and because they are less frequent. In general, discovered patterns
consisted of few small patterns largely repeated and many different patterns
less repeated. The latter were used to fill-in the gaps in the structure once

Table 1: Third experiment: patterns mining efficiency for PD. Values are
averages. Inst. stands for instances, attr. for attributes and pat. for pattern.

#inst. #pat. pat. max pat. #inst. max inst. % of attr.

repetition repetition per pat. per pat. in a pat.

200 11.88 2.92 6.26 2.15 4.08 37.29%

400 24.68 3.40 10.46 2.25 4.71 47.20%

600 36.35 3.91 15.92 2.36 5.25 55.90%

800 46.51 4.50 20.25 2.45 5.62 64.09%

1000 54.19 5.25 30.07 2.62 6.12 75.54%
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the main patterns were applied. If we consider the last column of Table 1
we can see that the larger a system, the more the attributes covered. The
fact that the coverage increases with the system size explains why the infer-
ence time of PD increases linearly with the system size: the large number
of usable patterns compensates the complexity induced by the number of
instances.

To conclude our experiments, we applied PD to a classic BN: the Pigs
network5. This network is remarkable in that it only contains two distinct
CPTs, which are represented in our framework by two classes. The network
in itself is too small to point out any significant gain in inference time,
however it is still interesting to analyze the patterns found by PD. Our
approach mined 14 different patterns. On average, they are repeated 11
times and the maximal amount of repetitions equals 45. Only patterns
with 2 instances are found. Discovered patterns cover up to 69% of the
441 attributes present in the Pigs network. As for our previous results, our
pruning rules favor smaller patterns since larger ones tend to be less cost
effective and less frequent. While the size of the Pigs network does not
enable to point out the efficiency of our approach in terms of inference time,
the existence of such structures and the results we obtained over random
networks can help conclude to the efficiency of our approach. We can also
point out its usefulness w.r.t. modeling: by pointing out frequent patterns
in a system we can infer new classes which can then be used by experts for
modeling purposes.

7. Conclusion

In this paper, we showed that mining patterns can significantly alleviate
inference costs. Although finding the optimal set of patterns is NP-hard,
we provided an efficient approximate mining algorithm. Our experimental
results confirm that this approach can lead to a significant improvement of
inference tasks in PRMs. But there is still room for improving inference
in PRMs. For instance, our approach, especially its pruning, can still be
improved. In addition, many refinements of the PRM framework like class
inheritance, structural uncertainty or multiple references, should be used to
speed-up inference.

5see http://www.cs.huji.ac.il/~galel/Repository/
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8. Appendix: proofs

Proof of Proposition 1: We provide a reduction from Vertex Cover for cubic
graphs, which is known to be NP-complete [48]:
Instance: A graph G = (V,E), whose vertices V = {v1, ..., vn} and edges
E = {e1, ..., em} are such that each vi has 3 neighbors. An integer K ≥ 0.
Question: Is there a set of vertices C ⊆ V of size at most K such that each
ei is incident to at least one vertex in C?

Definition of a PRM related to the Vertex Cover problem:

Define a PRM as shown in Fig.13: let H = 8 and let X and Y be
the prototypes of two octary random variables (i.e., the domain sizes of
X and Y are equal to H). Let Ix = 〈A(Ix) = {X},R(Ix) = ∅〉 and
Iy = 〈A(Iy) = {Y },R(Iy) = ∅〉 be two interfaces. Create the following
classes S, T ,Q,Ui,Rij ,Zij :

• class S implements interface Iy. It contains only one attribute A(S) =
{Y }, no reference slot R(S) = ∅, a DAG containing only node Y and
a set of probability distributions P(S) = {PS(Y )};

• class T implements Ix. It has one attribute A(T ) = {X}, one refer-
ence slot R(T ) = {ρ} such that range(T .ρ) = Iy, a DAG Y → X and
a set of probability distributions P(T ) = {PT (X|Y )};

• class Q implements Iy. It contains one attribute A(Q) = {Y }, one
reference slot R(Q) = {ρ} such that range(Q.ρ) = Ix, a DAG X → Y
and a set of probability distributions P(Q) = {PQ(Y |X)};

• for each node vi ∈ V , class Ui implements Iy. It contains one attribute
A(Ui) = {Y }, one reference slot R(Ui) = {ρ} such that range(Ui.ρ) =
T . Class Ui’s DAG is X → Y and P(Ui) = {PUi(Y |X)};

• for any i, j, classRij implements Iy. It contains one attribute A(Rij) =
{Y } and one reference slot R(Rij) = {ρ} such that range(Rij .ρ) = T .
Class Rij ’s DAG is X → Y and P(Rij) = {PRij (Y |X)};

• for any i, j, class Zij implements Ix. It contains one attribute A(Zij) =
{X} and one reference slot R(Zij) = {ρ} such that range(Zij .ρ) = Iy.
Class Zij ’s DAG is Y → X and P(Zij) = {PZij (X|Y )}.

All the distributions PS , PT , PQ, PUi , PRij , PZij , for all i and j, are distinct.
Figure 13 illustrates all these classes.
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Figure 13: The classes used in the proof’s PRM.

Hereafter, for any instances, say a and b, of these classes, ab and
∏n
i=1 a

are shortcuts for subgraphs (or patterns) a → b and a → a → · · · → a
respectively. For example, if t, q, z are instances of the above classes T , Q
and Zij respectively, then tqz is a shortcut for the BN depicted in Fig. 14.a.

Y

PQ(Y |X)

Q

X

PZij (X|Y )

Zij

X

PT (X|Y )

T

Y Y X

PM (X|Y )

M̂

a) The BN represented by tqz b) The BN of class M̂

Figure 14: The BN represented by pattern tgz and its dynamic class.

In addition, for any pattern M = a1a2 . . . ar of instances, M̂ denotes a
dynamic class implementing ar’s class interface and such that A(M̂) con-
tains only the attribute ∈ {X,Y } in A(ar), call it b, R(M̂) contains only
the interface of the reference in a1’s class, call it Ic, c ∈ {X,Y }, the
DAG of M̂ is c → b and P(M̂) = {PM (b|c)}, where PM is the distri-
bution resulting from the elimination of instances a1, . . . , ar−1 from M .
For example, if t, q, z are instances of T , Q and Zij respectively, and if
M = tqz, then M̂ is the dynamic class depicted in Fig. 14.b, i.e., the dy-
namic class such that A(M̂) = {X}, R(M̂) = {Iy}, its DAG is Y → X
and its probability distribution is P(M̂) = {PM (X|Y )}, where PM (X|Y ) =∑

X′
∑

Y ′ PT (X ′|Y )PQ(Y ′|X ′)PZij (X|Y ′). Pattern M can thus be consid-
ered as a dynamic class in which we have eliminated all its internal nodes
a1, . . . , ar−1 and in which we have inserted back its interface into the bound-
ary graph. Note that, as M is a chain, computing its probability distribution
PM requires (r − 1)H3 operations since each ai’s elimination is of the form∑

b Pai(b|c)Pai+1(c|b).
Now, let us construct the PRM’s grounded network related to the Vertex
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Cover problem: for any vi ∈ V , let Ai and Bi represent patterns tuit and
qtuitq respectively, where t, q, ui are instance prototypes of the classes with
the same uppercase names. For any edge ei = (vj , vk) ∈ E, let Ci represent
pattern qtujtqtuktq. The PRM network we will consider in relation to the
Vertex Cover problem is defined as follows:

BN = s

 40∏
j=1

n∏
i=1

(Airji)

 z00

 15∏
j=1

n∏
i=1

(Bizji)

 m∏
i=1

(Ciz0i). (2)

As an example, for the instance of Vertex Cover corresponding to the graph
of Fig. 15, where the set of nodes is V = {v1, . . . , v4} and the set of edges is
E = {(vi, vj) : j > i}, Eq. (2) corresponds to:

BN = s
40∏
j=1

(A1rj1A2rj2A3rj3A4rj4)z00

15∏
j=1

(B1zj1B2zj2B3zj3B4zj4)
6∏
i=1

(Ciz0i),

where the first two products are related to the nodes of V and the last prod-
uct to the 6 edges of E. Substituting patterns Ai, Bi, Ci by their instances,
we get the following BN:

BN = s
∏40
j=1(tu1trj1tu2trj2tu3trj3tu4trj4)z00∏15
j=1(qtu1tqzj1qtu2tqzj2qtu3tqzj3qtu4tqzj4)∏3
i=1

∏4
j=i+1(qtuitqtujtqz0i).

v1

v3v2

v4

e1 e2
e3

e4

e5 e6

Figure 15: A simple cubic graph.

The proof consists of showing that G has a vertex cover of size at most
K if and only if |Comp(BN)| ≤ ∆(K), where |Comp(BN)| is the number
of operations performed by Structured Inference (SVE) to remove all the
nodes in the BN and:

∆(K) = H +H2 +
H3

4
[78n+K + 2m].
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1. Proof that G has a vertex cover of size ≤ K ⇒ |Comp(BN)| ≤ ∆(K):

First, note that BN is a chain. Hence, using SVE, removing an attribute
at the end of the chain induces H2 operations. Similarly, when all the
attributes except s have been removed, removing s requires H operations.
Assume that G has a vertex cover C of size k ≤ K. For each node vi ∈ V ,
apply substitution Âi, i.e., substitute all the patterns Ai = tuit in the first
product of Eq. (2) by an instance ai of Âi which, by definition (see above),
has only one attribute t. Then, the first product of Eq. (2), which originally
corresponded to:

∏40
j=1

∏n
i=1(tuitrji) is now substituted by

∏40
j=1

∏n
i=1(trji),

which contains only 80n attributes. The cost of these substitutions, i.e., that
of class-level elimination, is equal to n × 2H3 since, in each dynamic class
Âi, 2 attributes are eliminated at this level.

For each node vi ∈ C (resp. vi ∈ V \C), apply substitution B̂i (resp.
Âi) in the second product of Eq. (2). Thus, the latter is replaced (up to
some permutation) by

∏15
j=1

∏
i:vi∈C(bizji)

∏
i:vi∈V \C(qaiqzji). Overall, this

product contains 15|C| × 2 + 15|V \C| × 4 = 30k + 60(n − k) attributes.
The class-level elimination cost of dynamic classes B̂i is equal to k × 4H3

since 4 attributes (qtuit) are eliminated at this level. Classes Âi do not incur
additional class-level eliminations since those were already performed in the
preceding paragraph.

Finally, as C is a vertex cover, each edge of E is incident to a node in
C, hence each pattern Ci corresponding to edge (vj , vh) can be substituted
by either bjahq or qajbh where aj , ah and bj , bh are instances of dynamic
classes Âj , Âh, B̂j , B̂h respectively. These substitutions do clearly not incur
any additional class-level cost, and they imply that each term of the last
product in Eq. (2) contains only 4 attributes (including z0i).

After all these substitutions, BN is a chain with s plus 80n attributes in
the first product, 1 attribute for z00, 30k+60(n−k) attributes in the second
product and 4m attributes in the last product. Overall, BN is a chain with
s plus R = 1 + 140n + 4m − 30k attributes. As shown at the beginning
of the proof, once probabilities PAi and PBi of dynamic classes Âi and B̂i
have been computed, the remaining number of computations to eliminate
all the attributes is H +RH2. Hence, the overall number of computations,
including class-level eliminations, is 2nH3 + 4kH3 + H + RH2 = ∆(k) ≤
∆(K) operations. Therefore, if G has a vertex cover of size k ≤ K, then
SVE can eliminate all the nodes in BN in |Comp(BN)| ≤ ∆(K) operations.

2. Proof that |Comp(BN)| ≤ ∆(K)⇒ G has a vertex cover of size ≤ K:

Assume now that there exists a set M̂M of dynamic classes enabling to
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substitute BN by another instance graph BN ′ such that the overall number
of computations (including class-level eliminations) is less than or equal
to ∆(K). Without loss of generality, we may assume that no substituted
pattern contains a node zij or rij . Actually, no two zij or rij in BN contain
the same probability distribution. Therefore, only one substitution of these
dynamic classes would be possible in BN . Using these substitutions would
thus result in an increase of computations compared to not using them
since the elimination of each internal node in dynamic classes requires H3

operations whereas removing them at instance level from the last attribute
to the first one as mentioned above requires only H2 operations. Therefore,
removing all the dynamic classes containing zij or rij from set M̂M produces a
new set of dynamic classes inducing an overall number of computations less
than or equal to ∆(K). For the same reason, we may safely assume that
substituted patterns do not contain ujtqtuk since such pattern also appears
at most once in BN (in the last product of Eq. (2)). The rest of the proof
consists of showing that including the substitutions described in part 1 of
the proof above into M̂M leads to a set of dynamic classes at least as efficient
as M̂M. Then the fact that |Comp(BN)| ≤ ∆(K)⇒ G has a vertex cover of
size ≤ K follows.

2.a. M̂M should contain Âi:

Let i be such that dynamic class Âi does not belong to M̂M. Then, sub-
stituting all patterns Ai by instances of Âi in the first product of Eq. (2)
reduces the overall number of operations in SVE. Actually, in this product,
pattern Ai appears 40 times in BN . Removing those occurrences at instance
level thus requires 40× 3H2 whereas exploiting Âi requires 2H3 operations
at class level and 40H2 operations at instance level. Of course, there may
already exist dynamic classes in M̂M that induced substitutions in the first
product of Eq. (2) but, as seen above, these classes do not include rij and,
as such, they can only be equal to either t̂ui or ûit, i.e., they correspond
to subpatterns of Ai. Whenever one of these two patterns occur, pattern
Ai also occurs and the latter eliminates more nodes at class level. There-
fore, replacing dynamic classes t̂ui and ûit by Âi reduces the overall number
of computations. Âi can also be used in the second and third products of
Eq. (2) where it was not substituted since this further decreases the infer-
ence’s number of operations. So we shall safely consider that M̂M contains
{Âi, i = 1, . . . , n}.

2.b. M̂M should only contain some Âi and B̂i:

It is easy to see that we shall never use q̂tui nor ûitq. Actually, such
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patterns appear only in the second and third products of Eq. (2). In the
second product, removing terms Bizji exploiting q̂tui (resp. ûitq) requires
2H3 class-level operations (removing qt, resp. uit) and 60H2 instance-level
operations (since there remains four attributes uitqzji or qtqzji). As for
the last product, there exists one pattern Cj per edge in graph G and, by
definition, each node of G has 3 neighbors. Hence, exploiting q̂tui (resp.
ûitq) in the last product results in eliminating all qtui (resp. uitq) in 3H2

instance-level operations (3 times 1 instance-level operation).
Now, whenever pattern qtui or uitq appears, the larger pattern Bi =

qtuitq also appears. By exploiting B̂i, eliminating all the instances bizji in the
second product only requires 4H3 class-level operations and 30H2 instance-
level operations. If we do not even use B̂i in the third product of Eq. (2)
and eliminate patterns qtui (resp. uitq) at instance level, this adds 9H2

instance-level operations, hence an overall of 4H3 class-level operations and
39H2 instance-level operations, which is less than the number of operations
using q̂tui or ûitq. Of course, we may use B̂i for the second product and q̂tui
or ûitq in the last one, but then, the latter would result in 2H3 class-level
operations and 3H2 instance-level operations instead of 9H2 instance-level
operations if q̂tui or ûitq were not used in the last product.

Similarly, we shall safely assume that neither q̂tuit nor t̂uitq belong to
M̂M since they induce 3H3 +45H2 operations to eliminate the attributes bizji
in the second product of Eq. (2) and can save up to 9H2 in the

∏m
i=1Ci

part, which is never better than not applying the substitution. Finally,
no dynamic class should strictly contain pattern Bi because such a pattern
would appear only once in BN and, therefore, its substitution would increase
the number of elimination operations. Consequently, we may safely assume
that set M̂M only contains some dynamic classes Âi and B̂i.

2.c. G has a vertex cover of size ≤ K:

To summarize: all Ai are substituted by Âi, some Bi are substituted by
B̂i and set M̂M contains only dynamic classes Âi and B̂i. Therefore, patterns
Bi that were not substituted by B̂i are either not substituted at all or are
substituted by qÂiq. As the latter decreases the number of computations,
we shall assume that the latter case obtains. For the same reason, Ci are
substituted by B̂jÂhq or qÂj B̂h or qÂjqÂhq.

Let f and g denote the number of Bi substituted by B̂i and the number
of Ci substituted by qÂjqÂhq respectively. Then the overall number of com-

putations, including class-level eliminations, is equal to H +H2 + H3

4 [78n+
f + g + 2m]. By assumption, this quantity is ≤ ∆(K), hence f + g ≤ K.
Now, as all the variables have been eliminated in product

∏m
i=1(Ciz0i), the
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f substitutions B̂j have been used to eliminate f = m − g attributes Ciz0i.
Hence, the nodes corresponding to substitutions in B̂i are adjacent to m− g
edges or, equivalently, to all the edges except g edges. By adding one node
from each of these edges, we construct a vertex cover of size f + g ≤ K. �

Proof of Proposition 2: In an independent set W , there exists no pair of
adjacent nodes. Therefore, no pair of nodesmh

D̂i
,mk
D̂j

inW share an instance

of II. Thus the elements of W represent instance substitutions satisfying
Rule 1. �
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