FAST MULTIPLE HISTOGRAM COMPUTATION USING KRUSKAL’S ALGORITHM

Raoul Berger, Séverine Dubuisson and Christophe Gonzales

Université Pierre et Marie Curie, Laboratoire d’Informatique de Paris 6
4 place Jussieu, Paris 75252 Cedex 05, France

ABSTRACT

In this paper, we propose a novel approach to speed-up the
computation of the histograms of multiple overlapping non
rotating regions of a single image. The idea is to exploit the
overlaps between regions to minimize the number of redun-
dant computations. More precisely, once the histogram of a
region has been computed, this one can be used to compute
part of the histogram of another overlapping region. For this
purpose, an optimal computation order of the regions needs
to be determined and we show how this can be obtained as
the solution of a minimum spanning tree of a graph model-
ing the overlaps between regions. This tree is computed us-
ing Kruskal’s algorithm and parsing it in a depth-first search
manner determines precisely how the histogram of a region
can be computed efficiently from that of its parent in the tree.
We show that, in practical situations, this approach can out-
perform the well-known integral histogram both in terms of
computation times and in terms of memory consumption.

Index Terms— Histogram, particle filter, spanning tree

1. INTRODUCTION

The complex nature of images implies that a large amount of
data needs to be stored in histograms (colors, edges, efc.), thus
requiring increasing computation times. Many approaches
in computer vision require multiple comparisons of the his-
tograms of rectangular patches of an input image. This ap-
plies in particular to Visual Tracking and the methodological
framework of Particle Filtering [1], whose goal is to estimate
the current state of a stochastic process given a set of past and
present noisy observations using both recursive Bayesian fil-
tering and Monte Carlo sampling. Monte Carlo simulation is
used to represent and approximate the posterior density by a
weighted sample of possible state realizations called particles.
A classical approach to compute the particle weights consists
in integrating the color distributions given by histograms into
particle filtering [2]. This is done by assigning a region (the
target region) around each particle and by measuring the dis-
tance between the distribution of pixels in this region and that
in the area surrounding the object detected in a previous frame
(the reference region). More often than not, particles’ target
regions are overlapping, which induces many redundant com-

] + [+
x| [|+
x|+ [+
++
+ |+ [+ |+|+
(@) (b)

Fig. 1. (a) Overlapping problem: some particle’s target re-
gions have a nonempty intersection (yellow parts). (b) A case
of two overlapping regions centered on locations p and q.

putations (i.e., some parts of histograms are computed several
times). Fig. 1(a) illustrates this problem: a tracked person is
modeled by a set of particles (blue plain squares), each one
having its own target region (blue square). As can be seen,
there exist some overlaps (in yellow) and the histograms of
those regions should definitely be computed only once.

Many approaches have been proposed to speed-up his-
togram computations. A first method was proposed in [3], in
the context of image filtering (median filter). The histogram
of aregion R' overlapping another one R? (whose histogram
has already been computed) is computed by removing from
the histogram of R? the pixels that do not belong to the inter-
section between R' and R? and by adding those that belong
to R' but not to R2. This approach can be very efficient if
the two regions considered have a large intersection. Similar
in spirit, the method proposed in [4] breaks up region R! into
the union of its columns in the image, and all their histograms
can be kept up to date in constant time with a two-step ap-
proach. In [5], the authors propose the distributive histogram
based on a distributive property of disjoint regions combined
with a per-column histogram maintenance and a row-based
update of these column histograms. This approach can be eas-
ily extended to cope with non-rectangular regions and multi-
scale processing. Another fast method designed specifically
to compute large amounts of histograms is the Integral His-
togram [6] (IH). This method is now used in many applica-
tions needing massive histogram computations, especially in
recent tracking algorithms [7]. This approach, inspired from
integral image, consists in first preprocessing the whole im-
age storing some histogram in every image cell and, then, in

computing the histogram of any region using only three arith-
metic operations over these cell histograms (two subtractions
and one addition) without resorting anymore to image pars-
ing. Recently, temporal histogram has been proposed [8], that
uses the information of spatial differences between regions of
images. The current histogram is computed using previous
ones and temporal changes between frames.

Except IH, the above approaches aim at minimizing the
number of operations necessary to compute the histograms of
a given pair of regions. The approach proposed in this paper is
different in spirit: it considers the whole set of regions whose
histograms are needed and determines the order in which the
regions should be processed to minimize the number of oper-
ations to compute all the histograms, not only two of them.
For this purpose, we model sets of overlapping regions by
a graph whose nodes correspond to their centers and, using
Kruskal’s algorithm, we compute one of its minimum span-
ning tree which, when traversed in a depth-first manner, pro-
vides the order in which the histograms should be computed
to minimize redundancies. The organization of the paper is
as follows. Section 2 explains the principle of our approach.
Section 3 provides experimental results, and concluding re-
marks and perspectives are finally given in Section 4.

2. PROPOSED APPROACH

Let V denote the set of N 2D points x* = (z?,y*), which are
the centers of the regions the histograms of which we look
for. Our approach, described in Algo. 1, is divided into three
main steps, that are detailed in the next subsections:

1. Construct the Delaunay triangulation G = (V, E), and
compute the set of weights W of its edges.

2. Compute the minimum spanning tree (MST) 7 of (G, W).

3. Perform a depth-first search on 7 to compute with mini-
mal redundancy the histograms of the IV regions.

2.1. Graph construction

MST T results from a graph G representing the overlaps of
the regions: each node of V' corresponds to the center of a
region and edges are assigned weights representing the over-
lap rate of their extremities. Intuitively, as all pairs of regions
may overlap, G may be a complete weighted graph. How-
ever, in practice, distant regions are unlikely to overlap and
their corresponding edges can be safely discarded. Doing
so significantly speeds-up 7’s construction. Now, by setting
G = (V,E) as the Delaunay triangulation of V' (i.e., G is
the set of triangles connecting the points of V' such that their
circumcircles do not contain any point in V'), we discard pre-
cisely these unpromising edges. F thus contains 3N edges,
each one linking some nodes xP, x? that are the centers of re-
gions RP and RY respectively. Weights W are defined as the
distance between x” and x4, given by norm L.

| \; —
5
=

\""’y” .fEh.
g
iy 1. -H-H_
e
%

Fig. 2. Illustration of the proposed approach for N = 30
centers. A Delaunay triangulation is first constructed from
center set V' (in blue), on which Kruskal’s algorithm is applied
to give the minimum spanning tree, in red (bold red lines are
those satisfying overlapping criterion c defined below).

2.2. Minimum spanning tree (MST)

Kruskal proposed in 1956 an algorithm to determine the MST
T of a weighted graph G = (V, E) [9]. Initially, 7 is set to
(V,0), i.e., a graph with no edge. The edges of E are ordered
by increasing weight and are processed one by one in this or-
der. Processing an edge e € E consists in adding it to T if it
does not create any cycle in 7, else it is simply discarded. Af-
ter processing all the edges in F, T is guaranteed to be a MST
of G. Now, the key idea of our algorithm is that 7 contains
the edges with the smallest weights, i.e., the pairs of the clos-
est regions, those that should maximize overlaps. Therefore,
to compute the histogram of a given node, we shall exploit
those already computed in its neighbors to minimize redun-
dant computations. This is detailed in the next subsection.

2.3. Graph traversal: a depth-first search

We apply a depth first search on 7 to determine the process-
ing order of the regions that minimizes the number of oper-
ations necessary to compute their NV histograms. For each
edge (xP,x%) € T, we use an overlapping criterion to deter-
mine whether histogram H? of region 1R should be updated
from HP or computed from scratch. Histogram H ¢ is updated
from HP using the idea in [3] illustrated in Fig. 1(b): keep the
shared area (in gray), remove the pixels belonging only to
RP (|RP|~ subtractions) and add those only belonging to R?
(|R4|* additions). This scheme is attractive when the number
of operations necessary for updating H? from H? is lower
than the number of operations | R?| necessary to compute the

histogram of R? from scratch (for example, this is not the case
for Fig. 1(b)). The overlapping criterion is then given by:

ey

C =

D|— q|+
max(0;1_IRI+RI)

| R

If ¢ = 0, HY shall be computed from scratch, else it should be
updated from HP?. Figure 2 shows an illustration for N = 30
centers (numbered): regions are gray rectangles, the Delau-
nay triangulation is drawn in blue, the MST in red, and edges
satisfying the overlapping criterion are drawn in bold red.

Algorithm 1: Global algorithm

Input: set of regions R = {RY,..., RN}
V ={x!,...,x"} < centers of {R!,..., RN}
G = (V, E) + Delaunay triangulation of V'
foreach e, = (x¥,x7) € E do

| wy « disty, (xP,x7)
W« {wy : ex, € E}
T < Kruskal(V,E,W)
Choose any vertex v in T
H? < compute the histogram of R” from scratch
depth_first_search(T,v,R) (see Algo. 2)

Algorithm 2: Depth first search algorithm

Input: tree 7, vertex v, a set of regions { R!, ..., RV}
Label v as explored
foreach neighbor vs of v in T do
if v, is not explored then
if overlapping criterion(RY, R*) # 0 then
| H"s < compute histogram from H"
else
| H"s < compute histogram from scratch
Label v, as explored

3. EXPERIMENTS

In this section, we experiment the efficiency of our Kruskal-
based approach on the problem of computing N different his-
tograms. We thus randomly generate N locations (x,y) cor-
responding to the centers of N non-rotated rectangular re-
gions of a fixed size w x h. The total area covered by all
these regions is called the region of interest (ROI). To test our
approach, we compare it against the naive one consisting in
computing each histogram by scanning all the pixels of its re-
gion, and also against Integral histogram (IH). The latter first
parses the ROI to generate an accumulator and, then, com-
putes the N histograms using only 3 arithmetic operations on
that accumulator. Different parameters affect the total com-
putation times: the number N of histograms to compute, the

number B of bins in the histograms, the size of the regions in
which histograms are computed, and the size of the ROI.

Figure 3.(a) shows comparative computation times in
function of the size of the ROI for computing N = 250
B = 16-bin histograms of 30 x 30-size regions. As we can
see, unlike TH, the naive and the Kruskal-based approaches
do not depend on the size of the ROI. Note that our approach
induces the lowest computation times.

Figure 3.(b) shows comparative computation times in
function of the size of the regions in which we compute
histograms (here we consider square regions: w = h). Com-
putation times increase quadratically with w in the naive
approach, and increase linearly in the other approaches. How-
ever, they increase faster with IH: for w > 40, computation
times are lower with our approach.

Figures 3.(c-d) show comparative computation times in
function of the number N of histograms to compute. As
shown in Figure 3.(a), the size of the ROI affects IH com-
putation times. This explains why we test the influence of NV
on two different ROI sizes. For the smaller size (150 x 170),
IH is better than our approach for N > 1250 histograms: this
is well-known that IH is well-suited for computing numerous
histograms. For a larger ROI (270 x 250), the Kruskal-based
approach always induces lower computation times. This is
due to the fact that the computation of IH’s accumulator is
very costly and depends directly on the size of the ROL.

Figures 3.(e-f) show comparative computation times in
function of the number B of bins in the histograms. Here
again, we test different values for N (number of histograms
to compute). All regions have a size of 30 x 30, and that of
the ROl is fixed. For N = 500, our approach induces lower
computation times whatever the value of B (note that IH is the
worst approach for N = 500: the computation of the accu-
mulator is far too costly). For N = 2000, IH becomes better
for B > 128. Our test have shown that IH becomes the best
approach for higher values of N.

The attractive feature of our algorithm is its capacity to
exploit spatial redundancies arising when regions overlap. We
define the overlapping rate of a set S of regions as the number
of pixels belonging to at least two regions in .S divided by the
number of pixels in the union of all the regions in S. Table 1
illustrates the behavior of our approach w.r.t. this rate. As
can be expected, the overlapping rate has an impact on the
computation times. Those can be reduced by a factor 5.

Table 1. Computation times ¢ (in sec.) with our approach
to compute N = 200 histograms of regions of size 20 x 20
depending on the total overlapping rate r of their regions.

r 0 0.25 0.5 0.75 1
t | 0.11 | 0.057 | 0.043 | 0.027 | 0.024

As a conclusion to our tests, first note that our Kruskal-
based approach depends neither on the quantification of the

Time (in seconds)
Time (in seconds)

Time (in seconds)

i s g 7 5
Size of the region of interest (in pixels)

2500 300

500 1000 1500 2000
Number of histograms (C)

Time (in seconds)
Time (in seconds)

035

Time (in seconds)

2000 2500 300 20 40

1500
Number of histograms (d)

500 1000

Fig. 3.

60 80
Number of bins

100 120 20 0 100 120

E) %
(e) Number of bins (f)

Comparison of computation times depending on (a) the size of the ROI (/N = 250) and (b) the size of the regions in

which histograms are computed (N = 2000), (c) the number IV of histograms to compute (w = h = 30, B = 16, ROI size:
150 x 170), (d) the number N of histograms to compute (w = h = 30, B = 16, ROI size: 270 x 250) (e) the number B of bins
(w = h =30, N = 500, ROI size: 150 x 170) and (f) the number of bins (w = h = 30, N = 2000, ROI size: 150 x 170).

histograms (B value) nor on the size of the ROI. Second, its
computation times slowly increase with the size of the regions
in which histograms are computed. In addition our approach
is more effective than the other tested approaches when the
regions are large. Finally, unlike IH, our approach is effec-
tive even when the number of histograms to compute is rather
small. However, it is less adapted than IH when the number
of histograms to compute is high (note that this also depends
on the size of the regions in which histograms are determined
as well as on the quantization of these histograms).

4. CONCLUSION

We have presented a new approach for fast histogram compu-
tation that exploits overlapping regions. The main idea con-
sists in finding the order in which the histograms of these re-
gions have to be processed to minimize the computation re-
dundancies. We have shown that this approach is very effi-
cient compared with the naive approach but also with integral
histogram when the size of the regions or that of the global
area they cover is large. In addition, our approach does not de-
pendent on the quantization of the histograms and is adapted
for the computation of a large number of histograms. This
makes this method well-suited when large spaces need to be
explored while keeping a fine description of regions. For fu-
ture researches, we work on the adaptation of our approach
on rotated rectangular regions.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

5. REFERENCES

N.J. Gordon, D.J. Salmond, and A.F.M. Smith, “Novel approach
to nonlinear/non-Gaussian Bayesian state estimation,” IEE Pro-
ceedings of Radar and Signal Processing, vol. 140, no. 2, pp.
107-113, 1993.

P. Pérez, C. Hue, J. Vermaak, and M. Gangnet, “Color-based
probabilistic tracking,” in ECCV, London, UK, 2002, pp. 661—
675.

G.Y. Tang, G.J. Yang, and T.S. Huang, “A fast two-dimensional
median filtering algorithm,” in IEEE Transactions on Acoustics,
Speech and Signal Processing, 1979, vol. 27, pp. 13-18.

S. Perreault and P. Hebert, “Median filtering in constant time,”
IEEE Transaction on Image Processing, vol. 16, no. 9, pp.
2389-2394, 2007.

M. Sizintsev, K.G. Derpanis, and A. Hogue, “Histogram-based
search: A comparative study,” CVPR, pp. 1-8, 2008.

F. Porikli, “Integral histogram: A fast way to extract histograms
in cartesian spaces,” in CVPR, 2005, pp. 829-836.

A. Adam, E. Rivlin, and I. Shimshoni, “Robust fragments-based
tracking using the integral histogram,” in CVPR, 2006, pp. 798—
805.

S. Dubuisson, “Tree-structured image difference for fast his-
togram and distance between histograms computation,” Pattern
Recognition Letters, vol. 32, no. 3, pp. 411-422, 2011.

J. B. Kruskal, “On the shortest spanning subtree of a graph and

the traveling salesman problem,” Proceedings of the American
Mathematical Society, vol. 7, no. 1, pp. 48-50, 1956.

