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Important decisions for both individuals and organizations often take into
account multiple objectives. From the purchase of a family car to the choice of
the most appropriate localization of a nuclear plant, decision makers’ choices
depend on many different objectives. Most often, the multiobjective nature of
important decisions is revealed by assertions like “we are willing to pay a little
bit more to gain the comfort or prestige of brand A instead of that of brand
B” in the case of a car purchase; or “we agree to increase a little the access
time to the airport if, in return, the possibilities of its future extension are
increased as well, or if this can reduce noise pollution for residents” in the case
of the localization of a new airport. These statements involve tradeoffs between
different objectives of the decision maker. These tradeoffs result either from an
introspective consideration performed by the decision maker herself or from an
explicit decision aiding process in which the decision maker expresses her will
to make coherent tradeoffs in order to make the “best” possible decision.

The first attempts of multiple objective decision aiding date back to the
60’s with the works by, e.g., Raiffa and Edwards [Rai69, Edw71], which gave
birth to Decision Analysis. In these works, the decision maker’s preferences
are represented numerically on the set of all possible choices using a numerical
function called a utility function (or “utility” for short). The key idea of this
approach lies in the fact that, after a utility function has been elicited (i.e.,
constructed) in a simple decision context, it can be used to assign “scores”
or utilities to all potential actions (i.e., the possible choices) that the decision
maker faces. These scores can thus be used to rank the actions from the least
desirable to the most desirable one (and conversely).

However, the very fact that such scores can be constructed requires two dif-
ferent kinds of conditions to hold. The first one concerns “coherence conditions”
that must be satisfied by the decision maker’s preferences for the latter to be
numerically representable by a utility function. The second condition concerns
other constraints that must be satisfied in order for the initial multiobjective
utility function to be decomposable as a “simple combination” of mono-objective
utility functions (these are also called multiattribute and single-attribute utility
functions respectively). The limited cognitive abilities of decision makers make
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it necessary to use such decompositions for constructing their utility functions.
Indeed, each individual having her own preferences, each decision maker has her
own utility function. To elicit utility, the analyst usually asks the decision maker
a series of simple choice questions. The presence of more than two attributes
is however cognitively more demanding (Andersen et al. [AAW86] provide an
example in which alternatives are represented by 25 attributes). When multiat-
tribute utilities can be decomposed into simple combinations of single-attribute
utility functions, the tradeoffs used for their elicitation only need to involve
a small set of differing attributes and, hence, they remain cognitively easy to
assess.

The aim of this chapter is to study the most commonly used decompositions.
More precisely, we will address in Sections 2 and 3 the additive decomposition
of utility functions, the difference between these two sections being in the infor-
mations available to the decision maker when she actually makes her decision:
in Section 2, she knows precisely which consequence results from each possible
choice. On the other hand, in Section 3, when the decision maker makes her de-
cisions, she does not know yet with certainty the precise consequence resulting
from her choice. Finally, Section 4 will address the very construction of mul-
tiattribute utility functions and especially the most recent techniques on this
matter will be presented.

1 Introduction

1.1 Utility functions

From a mathematical point of view, modeling preferences is a trivial task. As
an example, assume a decision maker has some preferences over a set of choices
X = {eat some lamb, eat some duck, eat an apple pie, eat some carpaccio}, that
is, for each pair of elements x, y of X, she can either i) judge these elements
incomparable (for instance, it may be difficult to express a definite preference
for duck against the apple pie as one is a main course whereas the other is
a dessert); or ii) assess a preference for one over the other, or an indifference
between both meals x and y. Mathematically, this amounts to represent the
decision maker’s preferences by a binary relation % defined on X × X. x % y
then simply means that “either the decision maker prefers x to y or she is
indifferent between both elements”. Thus, two elements being incomparable
translates into (Not(x % y) and Not(y % x)). The decision maker preferring x
at least as much as y corresponds to x % y, and a strict preference for x over
y can be expressed as (x % y and Not(y % x)), which is generally denoted by
x � y. Finally, when the decision maker is indifferent between x and y, i.e.,
when she likes x as much as y and conversely, then we have (x % y and y % x),
which is usually denoted by x ∼ y.

However, in practice, manipulating directly relation % for decision aiding
tasks is often neither easy nor efficient. For instance, storing in extension the set
S of all pairs (x, y) such that x % y may be impossible in complex situations due
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to the huge number of such pairs. Moreover, searching S, e.g., for determining
the most preferred elements, can be very time consuming, unless some structure
intrinsic to S is exploited. This explains why, in practice, instead of using
directly % for decision aiding, preferences are often first represented numerically
through so-called utility functions —or utilities for short— and the latter are
used for decision aiding. The idea underlying utility functions is quite simple:
these are functions u : X 7→ R attaching to each object of X a real number such
that the higher the preferred the object. More formally, this amounts to:

for all x, y ∈ X, x % y ⇔ u(x) ≥ u(y). (1)

1.2 Decision under certainty, uncertainty and risk

In general, it is admitted that the decision maker’s preferences on the set of
possible alternatives is related to her preferences on the possible consequences of
her choices. As an illustration, in [Sav54, page14], Savage presents the following
example: your are cooking an omelet. You already broke five eggs in a plate.
There remains a sixth egg to be broken and you must decide what you should
do with it: i) break the egg in the plate already containing the other five eggs;
ii) break this additional egg into another plate to check it before mixing it with
the other eggs; iii) do not use this egg. How should you decide which of these
options is the best one? Simply by analyzing what are the consequences of each
decision. Thus, if the egg is safe to eat, option i) will result in a bigger omelet,
but if it is unfit for consumption, the other five eggs will be wasted. Choosing
option ii), if the egg is OK, then you will dirty unnecessarily a plate, and so
on. By analyzing the consequences of each alternative, it is thus possible to
estimate which is the best option.

As shown in the preceding example, each alternative can have several con-
sequences, depending on the state of the egg. In Decision Theory’s technical
jargon, these uncertain factors —here the state of the egg— are called events
and, as in probability theory, elementary events play a very special role and
are called states of nature. For each state of nature (e.g., good egg or bad
egg) the choice of any alternative (options i), ii) or iii)) results in one and only
one consequence. Thus, alternatives can be described as sets of pairs (state of
nature,consequence). This is what is usually called an act in Decision Theory.
More formally, let A be the set of all possible alternatives, let X be the set of
all possible consequences and E be the set of the states of nature. Then, an
act is a function E 7→ X which, to any state of nature e ∈ E, assigns a unique
consequence in X. Thus, act f corresponding to the choice of option i) is such
that f(good egg) = “big omelet” and f(bad egg) = “five eggs wasted”.

Let us come back to utility functions. We have already seen that such func-
tions represent the decision maker’s preferences. Since, from a cognitive point
of view, alternatives can be described by acts, to the decision maker’s prefer-
ence relation over alternatives corresponds a preference relation over acts (see
Savage [Sav54] and von Neumann-Morgenstern [vNM44] for a deeper technical
discussion on this matter). Hence, let A denote the set of acts and %A be the
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preference relation over the set of acts. A utility function representing %A is
thus some function U : A 7→ R such that act1 %A act2 ⇔ U(act1) ≥ U(act2).

Of course, the decision maker’s preferences over acts reveal both her prefer-
ences over consequences —she would probably prefer a big omelet rather than
wasting five eggs— and her belief in the plausibility of occurrence of the events.
Thus, if the decision maker is obsessed by use-by dates, then the pair (bad egg,
five wasted eggs) will probably be only marginally be taken into account in the
evaluation of option i), whereas it will be of greater importance if the decision
maker is often inattentive. Utility function U must thus not only take into ac-
count the decision maker’s preferences on consequences, but also the plausibility
of the possible events. Now, this is possible only by taking into account the de-
cision maker’s knowledge about these events. To different types of knowledge
will correspond different decision models for U . The three most important ones
are certainly:

• decision making under certainty: whatever the state of nature that ob-
tains, an act always results in the same consequence. This can be the
case, for instance, when a decision maker chooses a given menu rather
than another one in a restaurant: here, the consequences are entirely de-
termined by the chosen menu.

Let %A denote the preference relation over acts and % be that over the
consequences. Assume that %A and % be represented by utility functions
U : A 7→ R and u : X 7→ R respectively. Call xact the consequence of
a given act. Then, choice under certainty amounts to assert that: for all
act ∈ A, U(act) = u(xact).

• decision making under risk: here, the alternatives can have several con-
sequences, depending on which event actually obtains. Moreover, it is
assumed that there exists an “objective” probability distribution over the
events. This is the case, for instance, when a decision maker chooses or
not to play games like a national lottery: the probabilities of winning as
well as the resulting gain are known in advance.

The expected utility model described below is the standard tool for deci-
sion making under risk. It was axiomatized by von Neumann and Mor-
genstern [vNM44]. Since to each event are assigned a probability and a
consequence, there exists an objective probability that a given consequence
obtains. Thus, acts can be represented as finite sets of pairs (probability of
a consequence,consequence). These sets are called lotteries. Assume that
an act corresponds to lottery (x1, p1; . . . ;xn, pn), that is, this act has con-
sequence x1 with probability p1, x2 with probability p2, and so on. Then
von Neumann-Morgenstern axiomatics implies the existence of a function
U such that U(act) =

∑n
i=1 piu(xi), where u is the restriction of U to the

set of consequences.

• decision making under uncertainty: this is a situation quite similar to
the preceding one. However, in this case, the existence of a probability
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distribution over the events is not assumed but is rather derived from
a set of axioms defining the rationality of the decision maker [Sav54].
This applies to situations, e.g., where you decide or not to bet on soccer
games: the result of the games are not known at the time the decision
is made. Moreover, the objectivist approach to probabilities cannot be
applied since no infinite sequence of soccer games is available to estimate
the probabilities of the possible events. Hence, in decision making under
uncertainty, probabilities are subjective, i.e., they are estimated by the
decision maker.

In this model, the decision maker assigns to each state of nature a (sub-
jective) probability pi of occurrence and the utility of a given act is, as in
von Neumann-Morgenstern’s model, U(act) =

∑n
i=1 piu(xi).

In the remainder of this chapter, we will consider various situations in which
one or the other of these models can be applied, and we will focus our attention
on the utility functions over the consequences, i.e., u.

1.3 Multiattribute utility functions

In practical situations, decision makers have multiple contradictory objectives
in mind when making their decisions. This leads to describe the possible con-
sequences using various attributes, that is, the set of consequences is a multidi-
mensional space. Thus, a decision maker wishing to buy a new car may have
as a choice set X = {Opel Corsa, Renault Clio, Peugeot 206}, but if the choice
criteria (the attributes) are, among others, the engine size, the brand, and the
price of the car, then set X can also be described as X = {(1.2L; Opel; 11400e),
(1.2L; Renault; 11150e), (1.1L; Peugeot;11600e)}. Any utility function over
this set thus satisfies the following equation:

for all x = (x1, x2, x3), y = (y1, y2, y3) ∈ X, x % y ⇔ u(x1, x2, x3) ≥ u(y1, y2, y3).

This is precisely what is called a multiattribute utility function.
Of course, the meaning of the attributes of relation % heavily depends on

the domain of application. For instance, in [Wak89, Ble96], Wakker (1989, p.28)
and Bleichrodt cite, among others, the following domains:

• in consumer theory, the attributes represent the amounts of some commod-
ity and, for any x, y ∈ X, x % y means that, from the decision maker’s
point of view, commodity bundle x is at least as good as y;

• in producer theory, x ∈ X is a vector of inputs and x % y means that x
provides at least as much output as y. The utility function is then called
a “production function”;

• in welfare theory, x is an allocation or a social situation. Each attribute
represents the wealth of an agent or a player, and x % y means that the
wealth of group x is greater than or equal to that of group y;
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• in medical decision making, especially in QALYs theory (Quality Adjusted
Life Years), the first attribute represents the level of quality of life that can
be expected after undergoing some medical treatment, and the second one
corresponds to the expected number of years living at this level of quality
of life.

Of course this list is not exhaustive and, to each new situation, there exists
an appropriate set of attributes. In [KR93], Keeney and Raiffa show how these
attributes can be exhibited in practice (the so-called “structuring of objectives”).

1.4 Decompositions of utility functions

When the utility function over the consequences u is known, it is very easy to
exploit it using a computer: it is sufficient to apply the formulas given by von
Neumann-Morgenstern or Savage. Simple optimization software can then deter-
mine the best actions that the decision maker should take. However, in practice,
the effective construction of function u raises numerous problems. Indeed, al-
though the construction of single-attribute utility functions is generally quite
easy, that of multiattribute utility functions is usually very hard to perform due
to the cognitive limitations of decision makers. Hence, the usual requirement
that they be decomposable as a simple combinations of single-attribute more
easily constructed utility functions. Consider for instance the case of someone
wishing to buy a desktop computer. The attributes of interest are the brand of
the computer, its processor, the storage capacity of its hard drive, the size of its
LCD display, its memory amount and, of course, its price. One can easily un-
derstand why the decision maker should not have too much trouble comparing
tuples (Dell; core duo 2GHz; 120GO; 17”; 2GO; 700e) and (Apple; core duo
2GHz; 120GO; 17”; 2GO; 700e) as these computers differ only by their brand.
On the contrary, from a cognitive point of view, it is much more difficult to
compare (Dell; 3GHz; 120GO; 24”; 1GO; 800e) with (Apple; core duo 1.8GHz;
200GO; 19”; 2GO; 600e) as these computers have very different features.

This explains why it is usually not possible to construct directly a utility
function representing the decision maker’s preferences. Rather, it is more effi-
cient to construct a special form of this function the construction of which will
be cognitively more “feasible”.

Several such forms have been studied in the literature, the main ones being
described below. In this list, Xi denotes the set of possible values for the ith at-
tribute and it is assumed that X ⊆

∏n
i=1Xi. The axiomatizations guaranteeing

the existence of these various forms differ depending on whether the decision
problem is one of decision under certainty or decision under risk/uncertainty
with an expected utility (EU) criterion U(·) =

∑
j pju(xj) (as in von Neumann-

Morgenstern’s and Savage’s models). Hence, for each item of the list, the context
of application is explicitly mentioned.

1. the additive decomposition: there exist some functions ui : Xi 7→ R such
that u(x1, . . . , xn) =

∑n
i=1 ui(xi). Here are some references about this

decomposition: [Fis70, chapters 4 and 5], [KLST71, chapter 6], [KR93,
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chapter 3], [LT64], [Deb60] and [Wak89, chapter 3] for decision making
under certainty; and [Fis70, chapter 11] and [KR93, chapters 5 and 6] for
the EU context.

2. the multiplicative decomposition: there exist some functions ui : Xi 7→
R such that u(x1, . . . , xn) =

∏n
i=1 ui(xi). This decomposition is closely

related to the preceding one as it can be derived from it using a logarithmic
transformation (assuming the ui’s are such that ui ≥ 0).

3. the multilinear decomposition (it is also called polynomial or multiplicative-
additive): there exist functions ui : Xi 7→ R and, for every j ∈ J , where
J is the set of subsets of {1, . . . , n}, there exist some πj ∈ R such that
u(x1, . . . , xn) =

∑
j∈J πj

∏
k∈j uk(xk). This decomposition is described

in [KLST71, chapter 7], [Fis75], [Bel87] and [FR91] for decision making
under certainty; and in [KR93, chapters 5 and 6] and [Far81] for the EU
situations.

4. the decomposable structure: there exist functions ui : Xi 7→ R and some
function F : Rn 7→ R such that u(x1, . . . , xn) = F (u1(x1), . . . , un(xn)).
[BP02] and [KLST71, chapter 7] study this representation under certainty.
This structure is more general than the preceding ones but it has a major
drawback: the uniqueness of both the ui’s and F cannot be guaranteed.
As we shall see, this can raise some problems during the construction
phase of the utility functions.

5. the additive nontransitive decomposition: there exist functions vi : Xi ×
Xi 7→ R such that x % y ⇔

∑n
i=1 vi(xi, yi) ≥ 0. See [Fis91] and

[BP02, BP04] for decision making under certainty; and [Nak90] for cases
in which a generalization of the EU criterion is applied. Among the addi-
tive nontransitive functions lies the special case of the additive difference
model: there exist functions ui : Xi 7→ R and some functions Fi : R 7→ R
such that x % y ⇔

∑n
i=1 Fi(ui(xi)− ui(yi)) ≥ 0. See [Tve69], [Fis92] and

[BP02] for decision making under certainty.

In the remainder of this chapter, we will concentrate on models 1 (decom-
position under certainty) and 3 (decomposition under risk/uncertainty). Let
us now see the price to pay for guaranteeing that such decompositions actually
represent the decision maker’s preferences.

2 Decomposition under certainty

In this section, we consider situations in which every act has precisely one con-
sequence, which is furthermore independent of the state of nature that obtains.
In addition, we assume that the set of consequences X is the Cartesian prod-
uct of the attributes Xi’s. In other words, X =

∏n
i=1Xi. For instance, in the

“car” example mentioned in the introduction, we would have X1 = {1.1L; 1.2L},
X2 = {Opel,Renault,Peugeot}, X3 = {11400e, 11150e, 11600e} and X =

7



X1 ×X2 ×X3. Note that this implies that, from a cognitive point of view, we
do not preclude the existence of cars like (1.1L; Opel; 11600e), even if such
cars do not actually exist. We will see later how to relax, at least partially, this
restriction. Note however that it is not possible to cope with arbitrary subsets of
Cartesian product

∏n
i=1Xi: this is a price to pay to have decomposable utility

functions.
The rest of this section is devoted to the additive decomposability of function

u. In the first subsection, such decomposability is studied in the case where
X = X1 × X2. Then, we consider the case where the set of consequences X
is a Cartesian product of more than two attributes and, finally, special cases
where X (

∏n
i=1Xi. For each case, our aim is to present some conditions that

must be satisfied by the decision maker’s preference relation % over the set of
consequences in order to prove the existence of some functions ui : Xi 7→ R such
that:

a) for all x, y ∈
n∏

i=1

Xi, x % y ⇔ u(x) ≥ u(y) and

b) for all (x1, . . . , xn) ∈
n∏

i=1

Xi, u(x1, . . . , xn) =

n∑
i=1

ui(xi).

Of special interest, we will see that functions ui’s are unique up to very particular
transformations. This will prove useful for constructing the ui’s (the so-called
elicitation process).

2.1 Additive decomposition in 2-dimensional spaces

In this subsection, we consider decision problems in which the possible conse-
quences of every act can be described by two attributes, i.e., X = X1 × X2.
First, let us see some necessary conditions for the existence of functions u1 and
u2 such that:

for all x, y ∈ X1 ×X2, x % y ⇔ u1(x1) + u2(x2) ≥ u1(y1) + u2(y2). (2)

The most obvious necessary condition for (2) to hold is that % can be rep-
resented by a utility function —not necessarily additive— u : X1×X2 7→ R. In
[Deb54], Debreu gave some necessary and sufficient conditions to ensure this.
Among them is the completeness of %, that is, for every pair of consequences x
and y, either x % y or y % x. Indeed, if % is representable by a utility function
u, then u(x) and u(y) are real numbers and, consequently, either u(x) ≥ u(y)
or u(y) ≥ u(x) which, by (1) implies that either x % y or y % x. Similarly, ≥
being a transitive relation, % must be transitive as well, i.e., if x % y and y % z
then x % z. As a conclusion, in order to be representable by a utility function,
% must be a weak order (this is of course a necessary condition, but it is not
actually sufficient, see [Deb54]):

Definition 1 (Weak ordering): A weak order % is a binary relation that is
transitive ([x % y and y % z] ⇒ x % z) and complete (for all x, y ∈ X, either
x % y or y % x).
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Let us now see some properties specific to additive utilities. Assume there
exists u = u1 +u2 representing %. Then, for every x1, y1 ∈ X1 and x2, y2 ∈ X2,

(x1, x2) % (y1, x2) ⇔ u1(x1) + u2(x2) ≥ u1(y1) + u2(x2)
⇔ u1(x1) ≥ u1(y1)
⇔ u1(x1) + u2(y2) ≥ u1(y1) + u2(y2)
⇔ (x1, y2) % (y1, y2).

This property expresses some independence among the attributes: in her pref-
erences, the decision maker takes into account the attributes separately, that is,
there is no synergy effect between them. This leads to the following axiom:

Axiom 1 (independence): For all x1, y1 ∈ X1 and for all x2, y2 ∈ X2,
(x1, x2) % (y1, x2)⇔ (x1, y2) % (y1, y2),
(x1, x2) % (x1, y2)⇔ (y1, x2) % (y1, y2).

Let us represent %’s indifference curves in the outcome space X1×X2, that
is, curves the points of which are all judged indifferent. If X1 = X2 = R then
the independence axiom simply states that if a point (an outcome), say A, is
preferred to another one on the same vertical line, say C, then for all pairs of
points (B,D) such that ABCD is a rectangle (see Figure 1), B must also be
preferred to D. Similarly, if B is preferred to A, then, for all pairs (C,D) such
that ABCD is a rectangle, D must be preferred to C.

A B

DC

indifference
curves

x1y1

X1

y2

X2

x2

Figure 1: %’s indifference curves and the independence axiom

The independence axiom is of utmost importance for the additive decompos-
ability. To grab a strong understanding of this axiom, it may be worth working
in a space slightly different from X1×X2: let u(x1, x2) = u1(x1) +u2(x2) be an
additive utility function representing %. After assigning a given value x2 to X2,
u does only depend on X1. Denoting this function from X1 to R by u[x2], we
have u[x2](x1) = u(x1, x2) for all x1 ∈ X1. Now, we can represent u[x2] in the
classical space X1 × R (see Figure 2). u’s additive decomposition implies that:

for all x1 ∈ X1, for all x2, y2 ∈ X2, u(x1, x2)− u(x1, y2) = u2(x2)− u2(y2).
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Remark that this value does not depend on x1. This translates on Figure 2 as:
the graph of any function u[x2], x2 ∈ X2, can be deduced from that of any u[y2],
y2 ∈ X2, by a vertical translation. Conversely, if the graphs of functions u[x2],
x2 ∈ X2, can be deduced from one another by vertical translation, u is additively
decomposable. Indeed, assume that the graph of u[x2] is derived by a vertical
translation from that of u[x0

2]
, for a given value x02 ∈ X2. Then, for all x1 ∈ X1,

u(x1, x2) = u(x1, x
0
2) + constant h(x2). But, then, as x02 is fixed, u(x1, x

0
2) only

depends on x1, hence u(x1, x2) is the sum of a function of x1, i.e., u(x1, x
0
2), and

a function of x2, i.e., h(x2). The following proposition summarizes the above
discussion:

h

h

h

X1

u[y2]

u[x2]

z1x1 y1

R

Figure 2: Additive utilities in two-dimensional spaces

Proposition 1 (additive decomposability): Let % be a preference relation
on X1×X2 representable by a utility function u. Then u is additive if and only
if, for all x2, y2 ∈ X2, the graph of function u[x2] in space X1×R can be deduced
from that of u[y2] by a vertical translation.

Now, let us come back to the independence axiom: (x1, x2) % (x1, y2) ⇔
(y1, x2) % (y1, y2) can be translated in terms of utility functions as u[x2](x1) ≥
u[y2](x1) ⇔ u[x2](y1) ≥ u[y2](y1). This simply means that if u[x2]’s graph is
“above” that of u[y2] for a given point x1 ∈ X1, then the same holds for all
the other points of X1. But then, if the graphs of the u[·]’s are sufficiently
close to each other, any even slight variation of height between two graphs —
which would rule out u’s additive decomposition— would inevitably result in
the intersection of at least two graphs, which would violate the independence
axiom.

Under some structural conditions, it can be shown that, when the outcome
set X has at least three attributes, the u[x2]’s graphs are always “so close to
each other” that the independence axiom is almost sufficient by itself to induce
u’s additive decomposability. Unfortunately, this is not the case when X =
X1 × X2 and other necessary conditions such as the Thomsen condition are
needed: assume again that u is additive. Then, for all x1, y1, z1 ∈ X1 and for
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all x2, y2, z2 ∈ X2,

(x1, z2) ∼ (z1, y2) ⇔ u1(x1) + u2(z2) = u1(z1) + u2(y2)
(z1, x2) ∼ (y1, z2) ⇔ u1(z1) + u2(x2) = u1(y1) + u2(z2)

Summing both equalities on the right hand side of ⇔, we get:

u1(x1) + u2(z2) + u1(z1) + u2(x2) = u1(z1) + u2(y2) + u1(y1) + u2(z2).

Cancelling out the terms belonging to both sides of the equality, we get u1(x1)+
u2(x2) = u1(y1)+u2(y2) and, consequently, (x1, x2) ∼ (y1, y2) since u is a utility
function. Hence the following necessary condition for the additive decompos-
ability:

Axiom 2 (Thomsen condition): For all x1, y1, z1 ∈ X1, for all x2, y2, z2 ∈
X2, [(x1, z2) ∼ (z1, y2) and (z1, x2) ∼ (y1, z2)]⇒ (x1, x2) ∼ (y1, y2).

When we can exhibit sufficiently many indifferent (∼) elements in X, the
combination of independence and the Thomsen condition is sufficiently strong
to imply that the vertical distances between any two u[·]’s graphs are constant,
hence that u is additive. The Thomsen condition can be illustrated graphically
using indifference curves: it simply states that if A ∼ B and C ∼ D then E ∼ F .

z1 x1 y1

x2

z2

y2

X1

A

B

C E

D

F

X2

Figure 3: Thomsen condition

There still remains one important problem to fix in order to guarantee the
additive decomposability: % must not have “many more” indifference curves
that there are real numbers, else it cannot be represented by a utility function.
Indeed, by definition, all the points lying on a same indifference curve are in-
different among each other and, consequently, they have the same utility, i.e.,
the same real number is assigned to all of them. But if there exist much more
indifference curves than there exist real numbers, how can we assign to each in-
difference curve a different real number? The following Archimedean axiom will
prevent this kind of situation to occur. Assume that % is representable by an
additive utility function u. Let (x01, x

0
2) and (x01, x

1
2) be two arbitrary elements

of X such that:
(x01, x

0
2) ≺ (x01, x

1
2).
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If there exists x11 ∈ X1 such that (x11, x
0
2) ∼ (x01, x

1
2) then, in terms of utility

functions, this indifference is equivalent to:

u1(x11) = u1(x01) + (u2(x12)− u2(x02)).

Let α = u2(x12)− u2(x02). Since u represents %, we must have α > 0. Moreover,
as by hypothesis u is additive, we know that the independence axiom holds.
Hence, as X is a Cartesian product, (x11, x

1
2) belongs to X and satisfies:

(x11, x
0
2) ≺ (x11, x

1
2).

We can then iterate this process: if there exists x21 ∈ X1 such that (x21, x
0
2) ∼

(x11, x
1
2) then:

u1(x21) = u1(x11) + α = u1(x01) + 2α.

By induction, this creates a sequence {x01, x11, . . . , xk1} called a standard sequence
such that u1(xk1) = u1(x01)+kα. So, as α > 0, when k tends toward +∞, u1(xk1)
must also tend toward +∞. Hence, if there existed z ∈ X such that, for any
k, (xk1 , x

0
2) ≺ z, then the utility of z would be equal to +∞, which is of course

impossible. As a consequence, the next axiom is necessary for the additive
decomposability.

Definition 2 (standard sequence w.r.t. the 1st attribute): For any set
N of consecutive integers1, a set {xk1 ∈ X1, k ∈ N} is a standard sequence w.r.t.
the first attribute if and only if Not((x01, x

0
2) ∼ (x01, x

1
2)) and (xk1 , x

1
2) ∼ (xk+1

1 , x02)
for all k, k + 1 ∈ N . {x02;x12} is called the mesh of the sequence.
A similar definition holds for standard sequences w.r.t. the other attribute.

Axiom 3 (Archimedean): Any bounded standard sequence is finite: if (xk1)
is a standard sequence of mesh {x02;x12} such that there exist y, z ∈ X such that
z - (xk1 , x

0
2) - y for all k ∈ N , then sequence (xk1) is finite.

Figure 4 shows the graphical interpretation of this property: the construction
of the standard sequence starts at the point on lower left corner of the figure.
Moving vertically from that point, when we reach the horizontal dotted line we
have increased the utility by α > 0. Now, moving down along the indifference
curves (represented by solid curves on the figure) does not change the value of
the utility. Consequently, the sequence of actions (vertical move, move along
indifference curves) defines a sequence of points (xk1) the utility of which always
increases by α: this is a standard sequence.

Of course, the Archimedean axiom is useful only if standard sequences can
be constructed. One consequence is that there must exist some points such that
x12 � x02 and x11 � x01. Hence the following axiom must be used in conjunction
with the Archimedean axiom:

1No restriction is imposed on N : it may be finite or infinite and its integers may be positive
or negative.
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x31

Figure 4: The Archimedean condition

Axiom 4 (essentiality): X1 is essential if and only if there exist a1, b1 ∈ X1

and x2 ∈ X2 such that (a1, x2) � (b1, x2). A similar axiom holds for the other
attribute.

The Archimedean axiom and the Thomsen condition are very powerful to
structure the consequence space. However, they have a major drawback: to
be useful, they require indifferences between many points of X. When such
indifferences do not exist, these axioms become useless and the additive decom-
posability cannot be proved to hold. For instance, when X = R × {0, 2, 4, 6}
and % is representable on X by the following utility function:

u(x1, x2) =

{
x1 + x2 if x2 ≤ 4
0, 5(x1 mod 2)2 + bx1/2c+ 6, 5 if x2 = 6,

there are not enough indifferences in X and, although the independence axiom
holds, it can be shown that the Thomsen condition does not. Similarly, if
X = [0, 2]× N and if % satisfies the following properties:

% is representable by u(x1, x2) = x1 + 2x2 on [0, 2]× N∗,
% is representable by u(x1, x2) = x1 on [0, 1]× {0},
(x1, 0) � (y1, y2) for all x1, y1 ∈ [0, 2] and for all y2 6= 0,

then the Archimedean axiom is utterly useless as it is impossible to construct
standard sequences with more than two elements. In this very example, it can
be shown that there exists no additive utility representing %. So, to enable
the Archimedean axiom and the Thomsen condition to strongly structure the
outcome space, the following additional axiom is traditionally required in the
literature. It will induce the existence of a huge amount of indifferences within
set X.

Axiom 5 ((restricted) solvability w.r.t. the first attribute):
For all y01 , y

1
1 ∈ X1, for all y2 ∈ X2 and for all x ∈ X, if (y01 , y2) - x - (y11 , y2),

then there exists z1 ∈ X1 such that x ∼ (z1, y2). A similar axiom holds for the
other attribute.

In two-dimensional spaces X1×X2, the graphical interpretation of restricted
solvability is quite simple, as shown on Figure 5: if points (y01 , y2) and (y11 , y2)
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lie on each side of the indifference containing point x, then the horizontal line
passing through (y01 , y2) and (y11 , y2) intersects the indifference curve (of course
this intersection belongs to X).

y11z1
X1

X2

y2

x

increasing preferences

y01in
cr

ea
si

n
g

p
re

fe
re

n
ce

s

Figure 5: Restricted solvability

The combination of all the axioms presented so far is sufficient to ensure the
additive representability of relation %, as is shown by the following proposition
[KLST71, chapter 6]:

Proposition 2 (existence and unicity of additive utilities):
Let X = X1 ×X2 be an outcome set, and let % be a binary relation on X ×X
satisfying restricted solvability and essentiality w.r.t. X1 and X2. Then, the
following statements are equivalent:

1. % is a weak order satisfying the Thomsen condition and, for each attribute,
the independence axiom and the Archimedean axiom;

2. there exists an additive utility u = u1 + u2 representing %. Moreover, this
utility is unique up to scale and location. In other words, if there exists
another additive utility v = v1 + v2 representing %, then there exist α > 0
and β1, β2 ∈ R such that v1(·) = αu1(·) + β1 and v2(·) = αu2(·) + β2.

Assertion 2 implying Assertion 1 has been shown previously. As for 1 ⇒ 2,
the intuition of the proposition can explained using Figure 6: start from an
arbitrary point x0 = (x01, x

0
2) ∈ X. Assign utility value 0 to this point. By

essentiality, there exists x12 � x02. Without loss of generality, assign utility value
1 to (x01, x

1
2). Using restricted solvability and the Archimedean axiom, construct

standard sequence (xk1) and assign u1(xk1) = k. Similarly, construct a vertical
standard sequence of mesh {x01;x11}, say (xr2), and assign u2(xr2) = r. The
Thomsen condition guarantees that what has just been constructed is actually
coherent since, if the decision maker is indifferent between A and B and between
C and D, then she must also be indifferent between E and F . Fortunately, the
utility assignment process used so far guarantees that the same values have been
assigned to both E and F . More generally, the construction process ensures that
the values assigned to all the points on the grid {(xk1 , xr2)} actually forms a utility
function representing %. Now, either this grid corresponds to the whole set X

14



and we just constructed an additive utility function on X, or there exist points
in X that do not belong to this grid. In this case, the model can be refined
by doubling the set of points on the grid: generally, the idea is to find a point

(x
1/2
1 , x

1/2
2 ) such that, in standard sequences of mesh {x02;x

1/2
2 } and {x01;x

1/2
1 },

every other element corresponds to an element of (xk1) and (xr2) defined above.

It is then obvious that u1(x
1/2
1 ) = u2(x

1/2
2 ) = 1/2. The process is iterated until

a utility function is defined on the whole space X. This technique is used in
particular in [Wak89].

centre

A

B

EC

D

F

x21 x41

x0

x−12

x−22

x−11x−21

x12

x22

x32

x31x11

Figure 6: Intuitions behind Proposition 2

2.2 Extension to more general outcome sets

In this subsection, we will briefly see two extensions of the additive decompos-
ability results presented so far: first, we will consider outcome sets that are still
Cartesian products but that are described by more than two attributes; then,
we will briefly address the case of subsets of Cartesian products.

Additive decomposability for n-dimensional Cartesian products, n ≥ 3, is
not fundamentally different from that in 2-dimensional spaces. The main differ-
ence lies in the fact that the graphs of functions u[·], which were not necessarily
very close to each other in dimension 2, are now very close due to the combined
effects of independence and restricted solvability in n-dimensional spaces. As a
consequence, the Thomsen condition, which was primarily used to ensure that
the vertical distances between pairs of u[·]’s graphs could not vary significantly,
is no more needed. The other axioms seen so far are still used and just require
slight modifications to be adapted to the higher dimension of X. Only the
independence axiom can be extended in several ways:

Axiom 6 (independence a.k.a. coordinate independence):
For all i, for all zi, ti ∈ Xi and for all xj , yj ∈ Xj, j 6= i,
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(x1, . . . , xi−1, zi, xi+1, . . . , xn) % (y1, . . . , yi−1, zi, yi+1, . . . , yn)
⇔ (x1, . . . , xi−1, ti, xi+1, . . . , xn) % (y1, . . . , yi−1, ti, yi+1, . . . , yn).

or

Axiom 7 (weak separability):
For all i, for all zi, ti ∈ Xi and for all xj , yj ∈ Xj, j 6= i,

(x1, . . . , xi−1, zi, xi+1, . . . , xn) % (x1, . . . , xi−1, ti, xi+1, . . . , xn)
⇔ (y1, . . . , yi−1, zi, yi+1, . . . , yn) % (y1, . . . , yi−1, ti, yi+1, . . . , yn).

Axiom 6 obviously implies Axiom 7. On the other hand, the converse is false
and Axiom 7 is too weak to induce by itself the existence of additive utilities.
Hence, we should rather extend the independence axiom of the preceding sub-
section by Axiom 6. As we shall see later, weak separability can nevertheless
also be used in some representation theorems.

In the context of n-dimensional spaces, we shall introduce new notations
to simplify the formulas we need to manipulate. So let XJ denote the set of
attributes the indices of which belong to J ⊂ N = {1, ..., n}. Let xJy denote the
consequence in X with attributes’ values xj for j ∈ J and yk for k ∈ N −J . By
abuse of notation, when J = {j}, we will write xjy instead of xJy. Coordinate
independence can thus be stated as:

Axiom 6 (independence):

For all i, for all zi, ti ∈ Xi and for all x, y ∈ X, zix % ziy ⇔ tix % tiy.

Proposition 2 of the preceding subsection can now be extended to n-dimensional
spaces by the following proposition:

Proposition 3 (existence and unicity of additive utilities):
Let X =

∏n
i=1Xi, n ≥ 3, be an outcome set and let % be a binary relation

on X ×X satisfying essentiality and restricted solvability w.r.t. every attribute.
Then the following statements are equivalent:

1. % is a weak order satisfying, for every attribute, independence (Axiom 6)
and the Archimedean axiom;

2. there exists an additive utility function u =
∑n

i=1 ui representing % on X.
Moreover, this utility is unique up to scale and location. In other words,
if there exists another additive utility v =

∑n
i=1 vi representing %, then

there exist α > 0 and βi ∈ R, i ∈ {1, . . . , n}, such that vi(·) = αui(·) + βi
for all i ∈ {1, . . . , n}.

This proposition, the proof of which can be found in [KLST71], chapter 6,
is restrictive in two respects: first, the assumption that restricted solvability
holds w.r.t. every attribute may be questionable in some practical situations.
This is the case for instance when some attributes are naturally defined over
continuums (like, e.g., money or time) while others are defined only over discrete
sets (e.g., the number of rooms in a flat or some qualitative attributes like the
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job of a human being). For such cases, there exist some extensions of the
above proposition requiring restricted solvability only w.r.t. a small number of
attributes [Gon00, Gon03] or even substituting restricted solvability by “lighter”
axioms requiring some density properties [Nak02]. Note however that these
extensions are more difficult to use in practice than the above proposition. This
is the price to pay to have theorems not requiring much structural conditions.

The second restriction imposed by Proposition 3 is the fact that X must
necessarily be the Cartesian product of the Xi’s: when X is only a subset of this
Cartesian product, the axioms used so far can be significantly less powerful and
can thus be unable to ensure the additive representability. For instance, without
solvability, we already saw that the Archimedean axiom can become utterly
useless if X does not contain sufficiently many pairs of indifferent elements to
ensure that lengthy standard sequences can be constructed. When X is only a
subset of a Cartesian product, it can have an “exotic” shape that prevents the
existence of any long standard sequences, even when restricted solvability holds.
Such a case is mentioned in [Wak93] where X has the shape of an Eiffel tower
lying at a 45 degrees angle. Hence, when X is a subset of a Cartesian product,
additive decomposability requires additional structural conditions on (X,%).

There are very few articles on this matter. First because we can often think
of X as a Cartesian product even if, in reality, this is not precisely the case.
Indeed, X corresponds to the very set of outcomes that the decision maker can
imagine, not to the set of outcomes that are actually possible. And the decision
maker can cognitively imagine outcomes that may be far from possible in the real
world. Second, the additive decomposability on subsets of Cartesian products
requires axioms that are much harder to use and to test than those presented so
far. In addition, these axioms often have no real meaning in terms of preferences
but rather are technical axioms only needed to complete mathematical proofs.
See for instance the next proposition, due to Chateauneuf and Wakker [CW93].
Before giving it, however, we need a last additional notion. By the independence
axiom (Axiom 6), or even by weak separability (Axiom 7), for every i,

(x1, . . . , xi−1, xi, xi+1, . . . , xn) % (x1, . . . , xi−1, yi, xi+1, . . . , xn)
⇔ (y1, . . . , yi−1, xi, yi+1, . . . , yn) % (y1, . . . , yi−1, yi, yi+1, . . . , yn).

Since this preference should be satisfied for whatever xj , yj ∈ Xj , j 6= i, this
means that, when the decision maker compares two outcomes, she only uses the
attributes that differ from one outcome to the other. Hence, we can define for
every i a new preference relation %i such that xi %i yi is equivalent to the above
preference.

Proposition 4 (additive representability on open spaces):
Let X ⊂

∏n
i=1Xi. Let % be a weak order on X. Assume that the Xi’s are

endowed with the order topology w.r.t. %i. Assume that X is endowed with the
product topology and that it is open. Moreover, assume that % is continuous
over X and that the following sets are connected:

1. int(X), the interior of X;
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2. all the sets of the form {x ∈ int(X) : xi = si} for all i, si;

3. all the equivalence classes of int(X) w.r.t. ∼.

Then, if % is representable by an additive utility function on any Cartesian
product included in X, then % is also representable by an additive utility on X.

As we can see, the interpretation in terms of preferences of the hypotheses
of this proposition is not easy. The key idea behind this proposition is to
construct an additive utility on a “small” Cartesian product and, then, to extend
this construction on another Cartesian product in the “neighborhood” of the
first one, and to iterate this process. int(X)’s connexity hypothesis ensures for
instance that this iterative construction process will result in an additive utility
function defined over the whole of X.

In [CW93, Seg94], Chateauneuf et al. and Segal propose other representation
theorems on even more general subsets. Here again, the axioms used in these
theorems are rather technical and are not prone to a simple interpretation in
terms of preferences. Nevertheless, there exist some subsets of Cartesian prod-
ucts in which the existence of additive utilities can be simply derived from that
on full Cartesian products. This is the case, for instance, of rank dependent
ordered sets, i.e., sets in which tuples (x1, . . . , xn) have the following property:
all their attributes belong to the same set X1 and there exists a weak order %′

over X1 such that x1 %′ x2 %′ · · · %′ xn [Wak91].

3 Decompositions under uncertainty

The preceding section concerned situations where each act had a unique conse-
quence, known with certainty. In this section, we address uncertain situations
where each act has m > 1 possible consequences depending on the state of na-
ture that obtains. Thus, the act having consequence xi when event Ei occurs is
now denoted by (x1, E1; ...;xm, Em), where {E1, ..., Em} is a partition of the set
of states of nature considered by the decision maker. Recall that the expected
utility criterion for decision under risk (see von Neumann and Morgenstern
[vNM44]) assumes that the probabilities of the events are known (objectively)
whereas Savage’s subjective expected utility criterion [Sav54] allows to assign
to each event a subjective probability that reflects the decision maker’s beliefs.
When the set of the states of nature is endowed with a probability measure,
act (x1, E1; ...;xm, Em) induces a lottery (x1, p1; ...;xm, pm), where pi denotes
the probability of event Ei. Note that in Savage’s axiomatics, acts can also
have infinite support. Finally, in both of these expected utility axiomatics,
consequences can be qualitative but also quantitative, unidimensional but also
multidimensional.

In the remainder of this section, we will consider that the set of consequences
X is equal to the Cartesian product

∏n
i=1Xi, as in Section 2. The set of

lotteries (x1, p1; . . . ;xm, pm) over X is now denoted by P and is assumed to be
endowed with the usual preference relation %. Indifference relation ∼ and the

18



strict preference relation � are defined as before. The expected utility criterion
requires the existence of a utility function u : X→ R, defined up to scale and
location, such that:

for all P,Q ∈ P, P % Q⇐⇒ E(u, P ) ≥ E(u,Q).

where E(u, P ) and E(u,Q) denote the mathematical expectations of the utilities
of lotteries P and Q respectively.

Similarly to the certain case, in practice, the construction of multiattribute
utility function u raises numerous problems. For instance, consider the case of
a decision maker having to make a decision involving h possible consequences
x1, ..., xh. In theory, using the expected utility criterion, each consequence may
be assigned a utility value as follows: assume that x0 and x∗ represent the least
and most preferred consequences respectively. As u is defined up to scale and
location, we can set without loss of generality u(x0) = 0 and u(x∗) = 1. Now,
for each consequence xi, asking a simple question to the decision maker, it is
possible to determine probability pi such that she is indifferent between receiving
a gain of xi with certainty and obtaining the lottery ticket providing consequence
x∗ with probability pi and consequence x0 with probability 1−pi. According to
the expected utility criterion, this indifference implies that u(xi) = pi for every
i = 1, ..., h.

Due to the cognitive limitations of decision makers, it is clearly impossible
to use this kind of elicitation method when the number of attributes is high.
Moreover, even when the latter stays relatively small, the combinatorial nature
of X can induce a large set of consequences which, again, prevents the above
elicitation method to be usable. Hence, in practice, analysts need decomposing
u in single-attribute utility functions much easier and more intuitive to elicit (see
[Pol67, Kee68, KR93, vWE93] among others). Of course, as in the certain case,
under uncertainty, utility function u being additively decomposable requires
that additional constraints on the decision maker’s preferences be satisfied. In
this direction, Miyamoto and Wakker have proposed a decomposition approach
based on models generalizing the classical expected utility model [MW96].

3.1 Decomposition in 2-dimensional spaces

The additivity of von Neumann-Morgenstern utility function requires an in-
dependence notion more general than in the certain case. Indeed, assuming
preferences can be modeled using the expected utility criterion, if u = u1 + u2,
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with ui : Xi 7→ R for i = 1, 2, then, for any x1, x
′
1, y1, y

′
1 ∈ X1, x2, z2 ∈ X2,

((x1, x2),
1

2
; (x′1, x2),

1

2
) % ((y1, x2),

1

2
; (y′1, x2),

1

2
)

m
1

2
u(x1, x2) +

1

2
u(x′1, x2) ≥ 1

2
u(y1, x2) +

1

2
u(y′1, x2)

m
1

2
u(x1, z2) +

1

2
u(x′1, z2) ≥ 1

2
u(y1, z2) +

1

2
u(y′1, z2)

m

((x1, z2),
1

2
; (x′1, z2),

1

2
) % ((y1, z2),

1

2
; (y′1, z2),

1

2
).

The above equivalences show that preferences over lotteries differing only on
attribute X1 do not depend on their common level on attribute X2. In such a
case, attribute X1 is said to be utility independent from attribute X2. A similar
reasoning implies that, for every x1, z1 ∈ X1, x2, x

′
2, y2, y

′
2 ∈ X2,

((x1, x2),
1

2
; (x1, x

′
2),

1

2
) % ((x1, y2),

1

2
; (x1, y

′
2),

1

2
)

m

((z1, x2),
1

2
; (z1, x

′
2),

1

2
) % ((z1, y2),

1

2
; (z1, y

′
2),

1

2
).

In this case, attribute X2 is said to be utility independent from attribute X1.
When X1 is in addition utility independent from X2, both attributes are said to
satisfy mutual utility independence. Note that the independence axiom under
certainty (Axiom 1) is a special case of mutual utility independence in which
probability 1

2 is substituted by probability 1.
Under expected utility, utility independence of attribute X1 from attribute

X2 implies that, for any two x2, x
′
2 ∈ X2, utility functions u(., x2) and u(., x′2)

represent the same preferences over X1. They are therefore identical up to scale
and location. In other words, u(., x2) = αu(., x′2) + β, where α > 0 and β ∈ R
depend only on the given consequences x2 and x′2. Assuming that x2 varies and
that x′2 is fixed at a given level x02, we can write more specifically that:

for all (x1, x2) ∈ X1 ×X2, u(x1, x2) = α(x2)u(x1, x
0
2) + β(x2) (3)

where α(.) > 0 and β(.) ∈ R depend implicitly on consequence level x02. Sim-
ilarly, if attribute X2 is utility independent from attribute X1, then, for any
consequence level x01, we have that:

for all (x1, x2) ∈ X1 ×X2, u(x1, x2) = γ(x1)u(x01, x2) + δ(x1) (4)

where γ(.) > 0 and δ(.) ∈ R depend implicitly on consequence level x01.
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Assume now that u(x01, x
0
2) = 0. By Equations (3) and (4), β(x2) = u(x01, x2),

δ(x1) = u(x1, x
0
2) and:

u(x1, x
0
2)[α(x2)− 1] = u(x01, x2)[γ(x1)− 1].

This equation obviously holds when x1 = x01 or when x2 = x02. Otherwise, i.e.,
when both x1 6= x01 and x2 6= x02, we get the following equality:

α(x2)− 1

u(x01, x2)
=
γ(x1)− 1

u(x1, x02)
= k

where k is a constant which is independent of variables x1 and x2. Hence, it
can be deduced that α(x2) = ku(x01, x2) + 1. Substituting in Equation (3), we
get:

∀(x1, x2) ∈ X1×X2, u(x1, x2) = u(x1, x
0
2)+u(x01, x2)+ku(x1, x

0
2)u(x01, x2) (5)

where u(·, x02) and u(x01, ·) are single-attribute utility functions. Constant k
represents a factor of interaction between attributes X1 and X2. As shown in
[KR93, page 240], the sign of this constant precises explicitly the nature of this
interaction. Thus, when u(·, x02) and u(x01, ·) are functions increasing in x1 and
x2 respectively, a positive (resp. negative) k means that attributes X1 and X2

are complementary (resp. substitutable). The following Proposition introduces
the above multilinear decomposition in a slightly different manner substituting
u(x1, x

0
2) and u(x01, x2) by k1u1(x1) and k2u2(x2) respectively, k1 and k2 being

scaling constants depending implicitly on the consequences used for normalizing
functions ui(.), i = 1, 2 (see [Fis65] and [KR93, pages 234–235]).

Proposition 5: Assume that X1 and X2 are mutually utility independent.
Then utility function u can be decomposed using the following multilinear form:

∀(x1, x2) ∈ X1 ×X2, u(x1, x2) = k1u1(x1) + k2u2(x2) + kk1k2u1(x1)u2(x2).

where:

• ui(.) is a single-attribute utility function normalized by ui(x
0
i ) = 0 and

ui(x
∗
i ) = 1, i = 1, 2, for x∗1 and x∗2 such that (x∗1, x

0
2) � (x01, x

0
2) and

(x01, x
∗
2) � (x01, x

0
2).

• k1 = u(x∗1, x
0
2) > 0, k2 = u(x01, x

∗
2) > 0 and k1 + k2 + kk1k2 = 1.

As shown above, mutual utility independence is not sufficient to induce the
additive decomposition of u. The latter actually requires in addition that con-
stant k be equal to 0. Let us now see a sufficient condition which, when combined
with mutual utility independence, results in the additive decomposability of u.
Assume that there exist some consequences x1, x

′
1 ∈ X1 and x2, x

′
2 ∈ X2 such

that:

((x1, x2),
1

2
; (x′1, x

′
2),

1

2
) ∼ ((x1, x

′
2),

1

2
; (x′1, x2),

1

2
). (6)
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Translating this indifference in terms of expected utilities, and cancelling out
the terms appearing on both sides of the resulting equality, we get:

k[u(x1, x
0
2)− u(x′1, x

0
2)][u(x01, x2)− u(x01, x

′
2)] = 0.

If Not[(x1, x
0
2) ∼ (x′1, x

0
2)] and Not[(x01, x2) ∼ (x01, x

′
2)], then k is constrained to

be equal to 0.
When k 6= 0, the multilinear decomposition (5) can be rewritten as:

v(x1, x2) = v(x1, x
0
2)v(x01, x2)

where v(x1, x2) = 1 + ku(x1, x2). This shows that mutual utility independence
actually induces a multiplicative decomposition of utility function u.

Using scaling constants ki as in Proposition 5, this model can also be written
as:

1 + ku(x1, x2) =

2∏
i=1

[1 + kkiui(xi)].

Now, since scaling constants k1 and k2 belong to the unit interval and since
1 + k1 =

∏2
i=1[1 + kki], constant k = [1 − (k1 + k2)]/k1k2 lies necessarily

between −1 and 0 for k1 + k2 > 1 and is greater than 0 for k1 + k2 < 1.
An extension of the cases in which indifference (6) holds induces a new condi-

tion called additive independence. This new condition is sufficient to guarantee
the additive decomposition of utility function u.

Definition 3: Attributes X1 and X2 are said to be additively independent if
indifference (6) holds for any consequences x1, x

′
1 ∈ X1 and x2, x

′
2 ∈ X2.

Substituting consequence (x′1, x
′
2) by the reference level consequence (x01, x

0
2)

in indifference (6), we obtain the following indifference:

((x1, x2),
1

2
; (x01, x

0
2),

1

2
) ∼ ((x1, x

0
2),

1

2
; (x01, x2),

1

2
).

Set u(x01, x
0
2) = 0. Then, the translation of the above indifference in terms of

expected utilities results in the equality below:

for all (x1, x2) ∈ X1 ×X2, u(x1, x2) = u(x1, x
0
2) + u(x01, x2) (7)

The following Proposition simply rewrites Equation (7) in a more additive man-
ner by introducing scaling constants.

Proposition 6: Assume that attributes X1 and X2 are additively independent.
Then utility function u can be written as:

for all (x1, x2) ∈ X1 ×X2, u(x1, x2) = k1u1(x1) + k2u2(x2),

where:
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• ui(.) is a single-attribute utility function normalized by ui(x
0
i ) = 0 and

ui(x
∗
i ) = 1, i = 1, 2, for x∗1 and x∗2 such that (x∗1, x

0
2) � (x01, x

0
2) and

(x01, x
∗
2) � (x01, x

0
2).

• k1 = u(x∗1, x
0
2) > 0, k2 = u(x01, x

∗
2) > 0 and k1 + k2 = 1.

As can be seen above, the very fact that, in a decision problem, the con-
sequences are described by several attributes raises the problem of choosing
the appropriate decomposition of the utility function. Most often, the analyst
must check with the decision maker whether mutual utility independence holds
among the attributes. For this purpose, a simple approach consists of verifying
whether the certainty equivalent w.r.t. a given attribute Xi of a lottery with
two equiprobable consequences having the same value of Xi depends or not
on the common level assigned to attribute Xi. More precisely, assume that
Xi = [x0i , x

∗
i ] for i = 1, 2. In order to check whether attribute X1 is utility

independent from attribute X2, it is sufficient to choose three equidistant lev-
els x2, x

′
2, x
′′
2 in [x02, x

∗
2] and to determine the certainty equivalents of lotteries

((x∗1, a), 12 ; (x11, a), 12 ), a = x2, x
′
2, x
′′
2 . Identical certainty equivalents (up to some

reasonable errors) lead to assume that attribute X1 is actually utility indepen-
dent from attribute X2. Utility independence of X2 w.r.t. X1 can be tested
using a similar approach in which the roles of both attributes are exchanged.

In situations where it is reasonable to assume that the appropriate model is
additively decomposable, it is possible to directly check additive independence.
To do so, it is sufficient to fix three or four equidistant consequences in each of
the intervals Xi = [x0i , x

∗
i ], i = 1, 2, and to check condition (6) for the elements

of the resulting Cartesian product.

3.2 Extension of the 2-dimensional decomposition

The decompositions of von Neumann-Morgenstern utility functions with more
than two attributes result from quite simple extensions of the concepts and
tools developed for the two-dimensional case. We just need introducing some
convenient notations to address the n-dimensional case.

Let us first recall that, if J ⊂ N = {1, ..., n}, xJy stands for the consequence
in X having coordinates xj for j ∈ J and coordinates yj for j ∈ N−J . Moreover,
when J = {j}, to simplify the notation, we write xjy instead of xJy. In addition,
xixjy means that the ith and jth coordinates of y have been substituted by xi
and xj respectively. Finally, xJ denotes the (sub-)consequence constituted only
by coordinates xj , with j ∈ J .

Definition 4: The set of attributes XJ , J ⊂ N , is said to be utility indepen-
dent if for all x, x′, y, y′, t, z ∈ X

(xJ t,
1

2
; yJ t,

1

2
) % (x′J t,

1

2
; y′J t,

1

2
)⇔ (xJz,

1

2
; yJz,

1

2
) % (x′Jz,

1

2
; y′Jz,

1

2
). (8)

There is mutual utility independence in the attributes of X if XJ is utility
independent for every J ⊂ N .
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Under certainty, the independence axiom (Axiom 6) is a particular case
of utility independence in which equivalence (8) above becomes xJ t % x′J t⇐⇒
xJz % x′Jz. Note that it is easy to show that, when u is additively decomposable,
equivalence (8) holds for every J ⊂ N .

Under expected utility, for a given J , utility independence of XJ implies
that, for any two distinct consequences t and z of X, utility functions u(., t−J)
and u(., z−J) represent the same preferences. As in the two-attribute case, it can
be deduced that these utilities are identical up to scale and location. Assuming
that t−J varies and that z−J is set to a given reference level x0−J , the following
can be written:

for all x ∈ X, u(x) = αJ(x−J)u(xJx
0) + βJ(x−J)

where αJ(.) > 0 and βJ(.) ∈ R depend implicitly on the reference level conse-
quence x0−J .

In cases where mutual utility independence holds, a similar reasoning to that
of the two-attribute case leads to the following decomposition:

for all x ∈ X, u(x) = u(x1x
0) +

∑n
j=2

∏j−1
i=1 [ku(xix

0) + 1]u(xjx
0) (9)

where k is a constant playing a role similar to that in (5). When this constant
is equal to 0, the above equation results in an additive decomposition:

for all x ∈ X, u(x) =
∑n

j=1u(xjx
0)

As in the two-attribute case, when k 6= 0 (
∑

i ki 6= 1), Equation (9) can be
rewritten as follows:

v(x) =
∏n

j=1v(xjx
0)

where v(xjy) = 1 + ku(xjy) for every xj ∈ Xj , j = 1, ..., n, and y ∈ X. Scaling
constants k1, ..., kn can also be emphasized by substituting u(xjx

0) by kjuj(xj)
for every j = 1, ..., n. Hence the (equivalent) multiplicative decomposition:

ku(x) + 1 =
∏n

j=1[kkjuj(xj) + 1] (10)

where uj(x
0
j ) = 0 and uj(x

∗
j ) = 1, j = 1, . . . , n.

As an illustration, in the three-attribute case X1, X2, X3, the decomposition
of the utility function implied by (10) reduces to the following equality:

u(x1, x2, x3) = k1u1(x1) + k2u2(x2) + k3u3(x3) + kk1k2u1(x1)u2(x2)

+ kk1k3u1(x1)u3(x3) + kk2k3u2(x2)u3(x3)

+ k2k1k2k3u1(x1)u2(x2)u3(x3)

where, as in the two-attribute case, u1, u2 and u3 are single-attribute utility
functions and k1 + k2 + k3 + kk1k2k3 + k2k1k2k3 = 1. Now, when mutual
independence is substituted by utility independence of XJ , for J = {1}, {2}, {3},
the resulting decomposition of the utility function is much richer. As a matter of
fact, it can be shown that coefficient k, which represents the interaction among
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the attributes, is substituted by some specific interaction coefficients k12, k13,
k23 and k123:

u(x1, x2, x3) = k1u1(x1) + k2u2(x2) + k3u3(x3) + k12k1k2u1(x1)u2(x2)

+ k13k1k3u1(x1)u3(x3) + k23k2k3u2(x2)u3(x3)

+ k123k1k2k3u1(x1)u2(x2)u3(x3).

The relative complexity of the above decomposition justifies why Keeney and
Raiffa [KR93, p.298] and other authors suggest to limit the set of admissible
decompositions to the multiplicative and additive forms when n ≥ 4. The
following proposition generalizes Proposition 5 [Fis65].

Proposition 7: Assume mutual utility independence. Then utility function u
can be decomposed as in Equation (9).

When mutual utility independence holds, determining an additive utility
function for m > 2 attributes requires checking a condition similar to that given
by indifference (6). Indeed, it can be shown that if there exist some consequences
y ∈ X, xi, x

′
i ∈ Xi and xj , x

′
j ∈ Xj , with i 6= j, such that:

(xixjy,
1

2
;x′ix

′
jy,

1

2
) ∼ (xix

′
jy,

1

2
;x′ixjy,

1

2
),

then utility function u must be additively decomposable [KR93].
Without mutual utility independence, the additive decomposability of func-

tion u requires a generalization of the additive independence condition intro-
duced for the two-attribute case. Attributes X1, ..., Xn are said to be additively
independent if, for any consequences x, x′, y, y′ ∈ X and any J ⊂ N ,

(xJy,
1

2
;x′Jy

′,
1

2
) ∼ (xJy

′,
1

2
;x′Jy,

1

2
).

Pollak [Pol67] proposes a slightly different condition which is both necessary
and sufficient for the additive decomposability.

As in the case of two-attribute decision problems, choosing between the
multiplicative and the additive models for more than two attributes requires
checking whether the corresponding conditions are approximately satisfied by
the decision maker’s preferences. This task is however slightly more complicated
as it requests from the decision maker a deeper cognitive effort. Finally, note
that, in [KR93, p. 292], Keeney and Raiffa provide another set of conditions
that enable checking utility independence while being more economical than
those resulting directly from the definition given in this subsection.

4 Elicitation of utility functions

The aim of elicitation of multiattribute utility functions is to assign scores or
utilities to the possible actions that can be chosen by the decision maker. These
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scores can then be used to rank the actions from the least desirable to the
most desirable, and conversely. However, the very fact that such scores can be
constructed from single-attribute utility functions requires some specific inde-
pendence conditions to hold. In this section, we will only address the problem
of eliciting utility functions in the two-attribute case. Similar methods can be
used in situations where there are more than two attributes.

4.1 Elicitation under certainty

Assume that the decision maker faces a decision problem involving two at-
tributes, and that her preferences can be represented by the additive model
given by:

for all x, y ∈ X1 ×X2, x % y ⇐⇒ u1(x1) + u2(x2) ≥ u1(y1) + u2(y2).

It is now well known that if there exist some additional functions v1 and v2
satisfying the above equivalence in place of u1 and u2 respectively, then there
exist α > 0 and β1, β2 ∈ R such that vi(.) = αui(.) + βi for i = 1, 2. As a
consequence, the origins of u1 and u2 —which can be distinct— can be set as
we wish, as well as a common unit for the scales of both u1 and u2. Assume
that x0i denote the smallest consequence of set Xi, for i = 1, 2.

The first step in u1’s and u2’s elicitations consists of setting the origins of
their utility scales as follows:

u(x01, x
0
2) = u1(x01) = u2(x02) = 0. (11)

Eliciting single-attribute utility function u1 now requires choosing a new conse-
quence R2 such that R2 � x02 and determining consequence x11 such that:

(x11, x
0
2) ∼ (x01, R2). (12)

Intuitively, the closer to x02 (in terms of preferences) the consequence R2, the
closer to x01 the consequence x11. The next step in u1’s elicitation consist of
determining a new consequence x21 such that:

(x21, x
0
2) ∼ (x11, R2). (13)

Translating indifferences (12) and (13) into the additive utilities model and
subtracting the resulting equations leads to the following equality:

u1(x11)− u1(x01) = u1(x21)− u1(x11). (14)

To summarize, u1’s elicitation amounts to construct a standard sequence of
consequences x01, x

1
1, ..., x

s1
1 which “covers” X1 using indifferences:

(xi1, x
0
2) ∼ (xi−11 , R2), i = 1, ..., s1.

Finally, setting u1(x11) = 1, we get u1(xi1) = i, i = 2, ..., s1. Figure 7 illustrates
the elicitation process thus described.
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Figure 7: Elicitation of function u1(.)

Similarly, eliciting function u2 starts by choosing a consequence R1 such that
R1 � x01 and determining consequence x12 such that:

(x01, x
1
2) ∼ (R1, x

0
2). (15)

After the construction of the initial indifference (15), the elicitation pro-
cess goes on with the construction of a standard sequence of consequences
x02, x

1
2, ..., x

s2
2 “covering” X2 and determined using the following indifferences:

(x01, x
i
2) ∼ (R1, x

i−1
2 ), i = 1, ..., s2.

Figure 8 illustrates graphically the process.
By indifferences (12) and (15), choosing R1 = x11 leads necessarily to R2 =

x12. This choice thus results in u2(xi2) = i, i = 1, ..., s2.
The value chosen for R1 can also be different from x11. This results inevitably

in x12 6= R2. In this case, the additive model below is to be used:

for all x ∈ X1 ×X2, u(x1, x2) = k1u1(x1) + k2u2(x2) (16)
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Figure 8: Elicitation of function u2(.)

where k1 > 0 and k2 > 0 are scaling constants such that k1 + k2 = 1. These
constant introduce an additional degree of freedom that allows us to assign to u2
a utility unit independent from that resulting from u1(x11) = 1 and, thus, to set
u2(x12) = 1. Determining the scaling constants requires using (or constructing)
an additional indifference. Thus, translating indifference (15) in terms of the
model described in Equation (16) results in the following equality:

k2
k1

=
u1(R1)− u1(x01)

u2(x12)− u2(x02)
= u1(R1).

Knowning u1(R1) and k1 + k2 = 1, scaling constants can thus be determined.
These allow to link appropriately the utility scales of both u1 and u2.
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4.2 Elicitation under uncertainty

The essential hypothesis underlying the expected utility-based decision model
is that the decision maker’s preferences are sufficiently stable that they can
be observed through very simple risky choices. These preferences are revealed
through her utility function by the analyst. The latter can then uses them to
infer the decision maker’s preferences over the set of all the possibles actions.
Being able to perform this inference is essential: if we are unable to elicit the
“appropriate” utility function, it may happen that we propose to the decision
maker some ranking of the possible actions that is utterly unrelated to her own
preferences.

In the rest of this subsection, we assume that Xi = [x0i , x
∗
i ] for i = 1, ..., n.

In addition, all the utility functions are considered to be normalized as follows:
ui(x

0
i ) = 0 and ui(x

∗
i ) = 1, i = 1, ..., n. Of course, these normalizations require

some scaling constants, as in the certain case.

E′2E1E20
Xi

1/2

1/4

3/4

1
ui(.)

x1i x∗ix0i x2i x′2i

Figure 9: Elicitation of ui(.) using the fractile method

The most popular method for eliciting single-attribute utility functions is
called the fractile method. The key idea is to choose a probability p, called
a reference probability, and to ask the decision maker to express for which
consequence x1i in the interval [x0i , x

∗
i ] she is indifferent between x1i with certainty

(hence a degenerated lottery) and lottery (x∗i , p;x
0
i , 1− p) denoted from now on

by (x∗i , p;x
0
i ).

Using the expected utility criterion, we get immediately ui(x
1
i ) = p. Ap-

plying a similar process to intervals
[
x0i , x

1
i

]
and

[
x1i , x

∗
i

]
, two other points of

the utility function can be obtained: indifference x2i ∼ (x1i , p;x
0
i ) implies that
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ui(x
2
i ) = p2 and indifference x′2i ∼ (x∗i , p;x

1
i ) implies that ui(x

′2
i ) = 2p − p2.

Iterating this process, we get as many points (xji , ui(x
j
i )) as needed for de-

termining utility function ui over interval [x0i , x
∗
i ]. Figure 9 represents one

such iterative utility construction process with reference probability p = 1/2
(E1=px∗i + (1− p)x0i , E′2=px∗i + (1− p)x1i , E2=px1i + (1− p)x0i ).

The increasing number of experimental results against expected utility has
attracted the attention of many researchers interested in applications of this
theory in decision aid. Already at the beginning of the 80’s, MacCord and de
Neufville [MdN83] showed that there was a direct connection between viola-
tions of expected utility and the systematic inconsistencies observed during the
elicitation process of the single-attribute utility functions. Among these incon-
sistencies, it was observed that there exists a systematic dependence between
the utility functions and the reference probabilities used for their elicitation.
The higher this probability, the more concave the utility function elicited.

Numerous experimental results, dating back to the end of the 40’s [PB48],
show a systematic trend from the decision makers facing simple risky choices
to subjectively transform probabilities. Nowadays, this phenomenon is taken
into account in many models of decision making under risk using a probability
transformation function (weighting) in addition to the utility function (which
actually can be thought of as a consequence transformation function). Thus, in
both rank dependent utility models [Qui82, TK92] and in Gul’s model [Gul91],
lottery P = (x, p; y), with x � y, is evaluated by the utility defined as follows:

V (P ) = w(p)u(x) + (1− w(p))u(y) (17)

where probability weighting function w is an increasing function from [0, 1] into
[0, 1], with w(0) = 0 and w(1) = 1. When w(p) = p for every p ∈ [0, 1], we get
back V (P ) = E(u, P ). As compared with the expected utility model, in this
new model, probabilities p and 1 − p are substituted by decision weights w(p)
and (1−w(p)) respectively. Knowing that x � y, it can be easily seen that the
weight assigned to a given consequence actually depends on its rank.

Note however that rank dependent utility model (17) cannot be used to elicit
function u using the fractile method or a similar method without prior knowledge
of transformation function w. Only the tradeoff (TO) method, initially proposed
by Wakker and Deneffe [WD96], can avoid this problem.

Eliciting a utility function by the tradeoff method TO essentially consists
of constructing a standard sequence of consequences. A standard sequence of
positive monetary consequences (gains) is usually constructed as follows. The
process starts by the determination of consequence x1 for which the decision
maker is indifferent between lotteries (x0, p;R) and (x1, p; r), with 0 ≤ r < R <
x0 < x1 and p ∈]0, 1[, r,R, x0 being set to a fixed value. As shown in Figure 10,
the gain induced by substituting x0 by x1 on the “p axis” outweights the loss
induced by substituting consequence R by r on the “(1− p) axis”.

Next, consequence x2i is determined such that the decision maker is indif-
ferent between (x1i , p;R) and (x2i , p; r). Using general model (17), both indiffer-
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Figure 10: Elicitation of function ui(.)

ences thus constructed induce the following equations:

w(p)ui(x
0
i ) + (1− w(p))ui(R) = w(p)ui(x

1
i ) + (1− w(p))ui(r) (18)

w(p)ui(x
1
i ) + (1− w(p))ui(R) = w(p)ui(x

2
i ) + (1− w(p))ui(r) (19)

Combining these equations and canceling out terms appearing on both sides of
the equalities, we get the following equality:

ui(x
1
i )− ui(x0i ) = ui(x

2
i )− ui(x1i ). (20)

It results from this equality that consequence x1i is exactly halfway in terms of
utilities between consequences x0i and x2i . Consequences x0i , x1i , x2i thus build up
a standard sequence. This conclusion clearly also holds under the expected util-
ity hypothesis. Thus, constructing standard sequence of consequences x0i , ..., x

q
i
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requires the construction of q indifferences (xj−1i , p;R) ∼ (xji , p; r), j = 1, ..., q.

Setting ui(x
0
i ) = 0 and ui(x

q
i ) = 1, we get ui(x

j
i ) = j/q, j = 1, ..., q.

In [MW96], Miyamoto and Wakker show that the propositions that enable
the decomposition of the von Neumann-Morgenstern utilities still hold even
when probabilities are subjectively transformed. This justifies the combination
of the new TO utility elicitation method with some classical techniques used for
eliciting scaling constants.

Determining scaling constants can be performed in two different ways, often
used in combination by the analysts. These two methods can be easily illustrated
in the two-dimensional multiattribute case (n = 2). Assume that mutual utility
independence holds. According to the preceding discussion, we then get:

U(x1, x2) = k1u1(x1) + k2u2(x2) + kk1k2u1(x1)u2(x2)

with Xi = [x0i , x
∗
i ], ui(x

0
i ) = 0, ui(x

∗
i ) = 1 for i = 1, 2 and k1 + k2 + kk1k2 = 1.

Constant k can be interpreted as an interaction factor among attributes X1 and
X2.

Indeed, three scaling constants require three equations to be unambiguously
determined. As we already know that k1 + k2 + kk1k2 = 1, we just need
two additional independent equations and therefore two additional indifferences
under certainty and/or uncertainty.

Assume that (x01, x
∗
2) � (x∗1, x

0
2), i.e., that k2 > k1. By monotonicity,

(x01, x
0
2) ≺ (x∗1, x

0
2). It is therefore possible to find a consequence x↓2 (< x∗2)

such that (x01, x
↓
2) ∼ (x∗1, x

0
2). Translating into the above multilinear form, the

following equation obtains:
k2u2(x↓2) = k1. (21)

A second equation, independent from the first one, can be obtained by substi-
tuting x02 (in (x01, x

∗
2) � (x∗1, x

0
2)) by x↑2 (> x02) such that (x01, x

∗
2) ∼ (x∗1, x

↑
2). In

general, this results in the following equation:

k2 = k1 + k2u2(x↑2) + kk1k2u2(x↑2). (22)

Combined with equality k1 + k2 + kk1k2 = 1, the last two equations enable the
determination of the scaling constants.

In the uncertain case, k1 and k2 can also be determined by finding probabil-
ities p1 and p2 such that:

(x∗1, x
0
2) ∼ ((x∗1, x

∗
2), p1; (x01, x

0
2), 1− p1),

(x01, x
∗
2) ∼ ((x∗1, x

∗
2), p2; (x01, x

0
2), 1− p2).

Translating these indifferences in terms of expected utilities, we get:

ki = pi, i = 1, 2. (23)

When probabilities are subjectively transformed, we get ki = w(pi), which re-
quires the additional elicitation of function w [Abd00].
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When there are more than two attributes in the decision problem, the ne-
cessity of having independent and compatible equations for evaluating the scal-
ing constants makes their determination all the more complicated. In [KR93,
p. 301-307], Keeney and Raiffa describe for the additive and multiplicative mod-
els several procedures avoiding both redundancy and incompatibilities (of these
equations).

5 Conclusion

The overview of multiattribute utility theory presented in this chapter is an
introduction to a literature with a profusion of results covering a wide domain.
We tried to present it in the most homogeneous possible way. We suggest
that readers interested in applications of the various techniques described in
the chapter read chapters 7 and 8 of [KR93], as well as chapters 15 and 16 of
[Cle96]. Chapter 12 of [vWE93] contains also some valuable material.
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