
GAI-NETWORKS: OPTIMIZATION, RANKING AND
COLLECTIVE CHOICE IN COMBINATORIAL DOMAINS

Christophe GONZALES ∗ Patrice PERNY ∗ Sergio QUEIROZ ∗

Abstract. This paper deals with preference representation and decision-making
problems in the context of multiattribute utility theory. We focus on the general-
ized additive decomposable utility model (GAI) which allows interactions between
attributes while preserving some decomposability. We present procedures to deal
with the problem of optimization (choice) and ranking of multiattribute items. We
also address multiperson decision problems and compromise search using weighted
Tchebycheff distances. These procedures are all based on GAI networks, a graphical
model used to represent GAI utilities. Results of numerical experiments highlight the
practical efficiency of our procedures.

Keywords:
GAI networks, graphical models, optimization, ranking, compromise search

1 Introduction

The development of decision support systems and web recommender systems has
stressed the need for models that can handle users’ preferences and perform preference-
based recommendation tasks. In this respect, current works in preference modeling
and decision theory aim at developing compact preference models achieving a good
trade-off between two conflicting aspects: i) the need for models flexible enough to
describe sophisticated decision behaviors; and ii) the practical necessity of keeping
the elicitation effort at an admissible level as well as the need for fast procedures
to solve preference-based optimization problems. As an example, let us mention in-
teractive decision support systems on the web where the preferred solution must be
found among a combinatorial set of possibilities. This kind of application motivates
the current interest for qualitative preference models and compact representations

∗Laboratoire d’Informatique de Paris 6, UPMC. 104 Av. du Président Kennedy, 75016 Paris,
France. E-mail: firstname.lastname@lip6.fr

like CP-nets [3] and mCP-nets [19], and their extension to the multiagent case. Such
models are deliberately simple and flexible enough to be integrated efficiently in in-
teractive recommendation systems; the preferences of the agents must be captured
using only a few questions so as to perform a fast preference-based search over the
possible items.

In other applications (e.g. configuration system, fair allocation of resources, com-
binatorial auctions [11]), more time can be spent in the elicitation stage in order to get
a finer description of preferences. In such cases, utilities can significantly outperform
qualitative models due to their higher descriptive power [2]. Moreover, the use of car-
dinal utilities in the multiagent setting allows us to escape the framework of Arrow’s
impossibility theorem which considerably restricts aggregation possibilities [18].

In the literature, different quantitative models based on utilities have been devel-
oped to take into account different preference structures. The most widely used model
assumes a special kind of independence among attributes called “mutual preferential
independence” which ensures that the preferences are representable by an additive
utility [15]. Such decomposability makes the elicitation process very fast and sim-
ple. However, in practice, preferential independence may fail to hold as it rules out
any interaction among attributes. Some generalizations have thus been investigated.
For instance utility independence on every attribute leads to a more sophisticated
form called multilinear utilities [1]. Those are more general than additive utilities but
still cannot cope with many kinds of interactions among attributes. To increase the
descriptive power of such models, GAI (generalized additive independence) decom-
positions have been introduced by [12], that allow more general interactions between
attributes [1] while preserving some decomposability. Such decompositions have been
used to endow CP-nets with utility functions (UCP-nets) both under uncertainty [2]
and under certainty [5].

In the same direction [13, 6] propose general procedures to assess GAI utilities in
decision under risk. They consist in sequences of questions involving simple lotteries
that capture efficiently the basic features of the agent’s attitude with respect to risk.
These elicitation processes are guided by GAI networks, a graphical model introduced
in [13].

In this paper, we address the problems of optimization (choice of the best ele-
ment), ranking, and the determination of a good compromise solution for a group
of individuals. We assume here that the alternatives to be compared belong to a
product set the size of which prevents exhaustive enumeration. Our aim is to show
the potential of GAI-networks to provide a compact representation of preferences as
well as to perform efficiently preference-based recommendation tasks. The paper is
organized as follows: In Section 2, we recall some elements about GAI models and
GAI-Networks. Section 3 deals with the optimization problem, that will be the first
stage of the ranking problem, presented in Section 4. Section 5 considers the problem
of looking for a compromise solution between individuals and provides an efficient
algorithm to find a good compromise solution according to a classic non-linear crite-
rion in multiobjective search: the weighted Tchebytcheff norm. Sections 4 and 5 both
present numerical results that indicate the efficiency of our algorithms.

2 GAI Networks

Before describing GAI networks, we shall introduce some notations. Throughout the
paper, % denotes a decision maker’s (DM) preference relation, which is assumed to
be a weak order, over some set X . Proposition “x % y” means that x is at least as
good as y. � refers to the asymmetric part of % and ∼ to the symmetric one. In
practice, X is often described by a set of attributes. For simplicity, we assume that X
is the product set of the domains of these attributes, although extensions to general
subsets are possible [7]. In the rest of the paper, we adopt the following notation:

• uppercase letters (possibly subscripted) such as A, B, X1 denote attributes as
well as their domains (as this is unambiguous and it simplifies the notation);

• unless otherwise mentioned, lowercase letters such as a, b′, x1 denote attribute
values;

• subscripted attributes Xi are characterized by their index. Their values are also
identified by this index. For instance, xi, yi, z

3
i represent values of Xi;

• non-subscripted attributes A, B are characterized by their letter. Their values
are also identified by this letter. For instance, a, a′, a3 represent values of A;

• By abuse of notation, for any set Y ⊂ {X1, . . . , Xn}, xY (resp. x−Y) will refer
to the projection of x ∈ X on ×Xi∈Y Xi (resp. ×Xi 6∈Y Xi).

2.1 Motivation

Under mild hypotheses [10], it can be shown that % is representable by a utility, i.e.,
there exists a function u : X 7→ R such that x % y ⇔ u(x) ≥ u(y) for all x, y ∈ X . As
preferences are specific to each individual, utilities must be elicited for each DM, which
is impossible due to the combinatorial nature of X . Moreover, in a recommendation
system with multiple regular users, storing explicitly for each user the utility of every
element of X is prohibitive.

Fortunately, DM’s preferences usually have an underlying structure induced by
independences among attributes that substantially decreases the elicitation burden
and the memory needed to store preferences. The simplest case is obtained when
preferences over X = X1 × . . . × Xn are represented by an additive utility u(x) =∑n

i=1 ui(xi) for any x = (x1, . . . , xn) ∈ X . This model only requires to elicit and
store ui(x

′
i) for any x′i ∈ Xi, i = 1, . . . , n. Unfortunately, such decomposition is not

always appropriate because it rules out interactions between attributes. When DM’s
preferences are more complex, a more elaborate model is needed, as is shown below:

Example 1 : Consider a set X of menus x = (x1, x2, x3), with main course x1 ∈
X1 = {meat (m1), fish (f1)}, drink x2 ∈ X2 = {red wine (r2), white wine (w2)} and
dessert x3 ∈ X3 = {cake (c3), ice cream (i3)}.

Assume that an individual has the following preferences:

1. Matching the main course with the wine (red wine for meat, white wine for fish)
is my most important choice criterion;

2. At a lower level of priority, meat is preferred to fish;

3. I prefer cake to ice cream when the main course is fish but the opposite when
the main course is meat (the combination cake + meat being too heavy).

Given the interaction between attributes X1 and X2, and between X1 and X3,
these preferences cannot be represented by a fully decomposable additive utility
function of the form u1(x1) + u2(x2) + u3(x3). Indeed, if such an additive utility
existed, (m1, r2, i3) � (f1, r2, i3) —which matches the above three rules— would
induce that u1(m1) + u2(r2) + u3(i3) > u1(f1) + u2(r2) + u3(i3) and, hence that
u1(m1) + u2(w2) + u3(i3) > u1(f1) + u2(w2) + u3(i3). However, the last inequality
is equivalent to proposition “(m1, w2, i3) � (f1, w2, i3)”, which contradicts the above
first rule. It is however interesting to remark that preferences can still be represented
by a decomposable utility of the form: u(x) = u1,2(x1, x2) + u1,3(x1, x3) by setting,
for instance:

u1,2(m1, r2) = 6 u1,2(f1, w2) = 4 u1,2(m1, w2) = 2 u1,2(f1, r2) = 0

u1,3(m1, c3) = 0 u1,3(m1, i3) = 1 u1,3(f1, c3) = 1 u1,3(f1, i3) = 0.

In this case, the utilities of the 23 possible menus x(i) will be:

u(x(1)) = u(m1, r2, c3) = 6 u(x(2)) = u(m1, r2, i3) = 7
u(x(3)) = u(m1, w2, c3) = 2 u(x(4)) = u(m1, w2, i3) = 3
u(x(5)) = u(f1, r2, c3) = 1 u(x(6)) = u(f1, r2, i3) = 0
u(x(7)) = u(f1, w2, c3) = 5 u(x(8)) = u(f1, w2, i3) = 4;

which induce the following order, consistent with the individual’s preferences:

x(2) � x(1) � x(7) � x(8) � x(4) � x(3) � x(5) � x(6).

It could be objected that u(x) is not so compact since it requires as many values
as an extensive representation of u. But this is only due to the small size of our toy
example. Note that, if m denotes the domain size of each one of the 3 attributes in
this decomposition, only 2m2 numbers are needed to store the utility instead of m3,
a gain as soon as m > 2. �

Such a decomposition over overlapping factors is called a GAI decomposition.
It includes additive and multilinear decompositions as special cases, but it is much
more flexible as it does not make any assumption on the kind of interactions between
attributes. GAI decompositions were introduced in [12] and brought into the realm
of the AI community by [1].

2.2 Definition

GAI decompositions can be defined more formally as follows:

Definition 1 Let X = ×n
i=1Xi. Let C1, . . . , Ck be subsets of N = {1, . . . , n} such

that N =
⋃k

i=1 Ci. For all i, let XCi = {Xj : j ∈ Ci}; in other words, XCi is
the product set of the attributes whose indices belong to Ci. A utility function u(·)
representing % over X is GAI-decomposable w.r.t. the XCi

’s iff there exist functions
ui : XCi

7→ R such that:

u(x1, ..., xn) =

k∑
i=1

ui(xCi
), for all x = (x1, . . . , xn) ∈ X ,

where xCi is the tuple formed by the xj’s, j ∈ Ci.

For instance, u(a, b, c, d, e, f, g) = u1(a, b)+u2(b, c, d)+u3(c, e)+u4(b, d, f)+u5(b, g)
is a GAI-decomposable utility, with XC1

= {A,B}, XC2
= {B,C,D}, XC3

= {C,E},
XC4

= {B,D,F} and XC5
= {B,G}. GAI decompositions can be represented by

graphical structures we call GAI networks [13] which are essentially similar to junction
graphs used in the Bayesian network literature [14, 8]:

Definition 2 Let u(x1, . . . , xn) =
∑k

i=1 ui(xCi) be a GAI utility function over X .
A GAI network representing u(·) is an undirected graph G = (C, E) satisfying the
following three properties:

Property 1: C = {XC1
, . . . , XCk

}. Vertices XCi
’s are called cliques. To each

vertex XCi is associated the corresponding factor ui from the utility function u;

Property 2: (XCi
, XCj

) ∈ E ⇒ Ci ∩ Cj 6= ∅. Edges (XCi
, XCj

)’s are labeled by
XTij

, where Tij = Ci ∩ Cj. XTij
is called a separator;

Property 3: for all XCi
, XCj

such that Ci ∩ Cj = Tij 6= ∅, there exists a path
between XCi and XCj in G such that for every clique XCk

in this path Tij ⊆ Ck

(running intersection property).

Cliques are usually drawn as ellipses and separators as rectangles. For any GAI
decomposition, by Definition 2, the cliques of the GAI network should be the sets
of variables of the subutilities. The edges in the network represent the intersections
between subsets of attributes. As the intersections are commutative, the GAI network
is an undirected graph. Note that this contrasts with UCP-nets, where the relation-
ships between vertices in the network correspond to conditional dependencies, thus
justifying the use of directed graphs for UCP-nets.

In this paper, we shall only be interested in GAI trees. As mentioned in [13], this
is not restrictive as general GAI networks can always be compiled into GAI trees. The
set of edges of a GAI network can be determined by any algorithm preserving the
running intersection property (see the Bayesian network literature on this matter [8]).
Figure 1 shows a GAI network for the example given just below Definition 1.

AB B BCD
C

BD

CE

BDF B BG

Figure 1: A GAI tree

2.3 CP-nets, TCP-nets and GAI-nets

One of the most distinguishable features of CP-nets [3] is their ability to represent
ceteris paribus preferences over attribute values (possibly conditioned by the values of
some other attributes). In this way, by using CP-nets in Example 1, we may formulate
preference statements in one of the following formats:

• an unconditional preference statement, for example “I prefer meat to fish”. We
write this compactly as m1 � f1, meaning that for all x2 ∈ X2, x3 ∈ X3,
(m1, x2, x3) � (f1, x2, x3).

• a conditional preference statement, for example “when I eat meat, I prefer red
wine to white wine but it is the contrary when I eat fish”. We write this
compactly as m1 : r2 � w2 and f1 : w2 � r2, meaning that for all x3 ∈ X3,
(m1, r2, x3) � (m1, w2, x3) and (f1, w2, x3) � (f1, r2, x3).

Assuming that preferences are transitive, other preferences can be deduced by
taking the transitive closure of the ceteris paribus preferences. However, not all
preferences can be obtained in this way. For instance, preferences like (m1, w2, i3) �
(f1, r2, c3) cannot be obtained. In order to discuss the descriptive potential of CP-nets
and GAI-nets, consider the following example:

Example 2 : In a recommender system for train tickets, the set X of the possible
configurations for a train ticket is described by three attributes: class x1 ∈ X1 =
{first class (c11), second class (c21)}; type of car x2 ∈ X2 = {smoking (s2), smoking-
free (s̄2)}; and pricing period x3 ∈ X3 = {blue period (b3), red period (r3)}. Suppose
that an individual’s preferences are as follows:

• I prefer to travel in second class;

• I prefer a smoking-free train car to a smoking one;

• Given the option between a second class smoking train car and a first class
smoking-free one, I prefer the latter;3

• I prefer traveling during the blue period, no matter the other conditions.

�

These preferences may be represented by a GAI utility u(x) = u1,2(x1, x2)+u3(x3)
with subutility values: u1,2(c21, s̄2) = 3, u1,2(c11, s̄2) = 2, u1,2(c21, s2) = 1, u1,2(c11, s2) =

3These first three preference statements are assumed to be ceteris paribus, i.e. all else being equal.

0, u3(b3) = 4, u3(r3) = 0. They result in the following utilities for the 23 possible
configurations x(i):

u(x(1)) = u(c21, s̄2, b3) = 7; u(x(2)) = u(c21, s̄2, r3) = 3; u(x(3)) = u(c11, s̄2, b3) = 6;
u(x(4)) = u(c11, s̄2, r3) = 2; u(x(5)) = u(c21, s2, b3) = 5; u(x(6)) = u(c21, s2, r3) = 1;
u(x(7)) = u(c11, s2, b3) = 4; u(x(8)) = u(c11, s2, r3) = 0;

which induce the following preference ordering:

x(1) � x(3) � x(5) � x(7) � x(2) � x(4) � x(6) � x(8).

This GAI model is completely consistent with the stated preferences. Using CP-
nets, we can easily represent the first two statements (all we need is writing c21 � c11
and s̄2 � s2) but we cannot add the last two into the model. Indeed, the third
statement reveals an interaction between attributes X1 and X2, therefore preventing
their decomposability. Hence, in order to obtain preference ordering (c11, s̄2, x3) �
(c21, s2, x3) in a CP-net where s̄2 � s2 we should add the conditional statement s̄2 :
c11 � c21 but this is inconsistent with the unconditional preference c21 � c11 expressed by
the individual. Similarly, the consequences of the last statement cannot be obtained
by simply adding b3 � r3. Actually, given that s̄2 � s2, c21 � c11 and b3 � r3, we are
unable to identify preferences over configurations like (c11, s2, x3) and (c21, s̄2, x3).

The descriptive limits of CP-nets have motivated the introduction of a richer for-
malism that allows different importance levels for the attributes. This idea has given
birth to TCP nets [4] which introduce “trade-offs” into CP-nets. They allow express-
ing statements about the relative importance of different attributes like, for instance,
X1 is more important than attribute X2 (denoted by 1 . 2). Additional preferences
can now be derived from these statements. For instance, (c11, s2, x3) � (c21, s̄2, x3)
can be deduced from the TCP-net, the undecidability mentioned in the preceding
paragraph being solved by the fact that X1 is declared to be more important than
X2. This additional sophistication addresses only partially the descriptive limitations
previously mentioned. Indeed, assume now that the domain of variable X1 has 5 ele-
ments c11, c

2
1, c

3
1, c

4
1, c

5
1 corresponding to decreasing fare levels in both pricing periods.

It would be natural that an individual had the following preferences:

(c41, s̄2, x3) � (c51, s2, x3) and (c11, s̄2, x3) ≺ (c51, s2, x3).

These preferences may be explained by the fact that the decision maker is willing
to pay a small amount of money (an increase from c51 to c41) to benefit from a smoking-
free train car. However, the fare’s difference between tickets from class c51 and c11 being
too large, the decision maker would prefer the low-fare smoking car to the high-fare
smoking-free car. In a TCP-net, the first of these two preferences would require the
statement 1 . 2 but this would induce the preference (c11, s̄2, x3) � (c51, s2, x3), an
undesired collateral effect. This shows a descriptive limit intrinsic to TCP-nets: it is
not possible to represent different degrees of preference between the attribute values.

We can now highlight the most distinguishable features of GAI networks:

• the descriptive power of GAI networks is not limited to preferences ceteris
paribus. They can describe every total weak order over a product set, which is
not the case for a CP-net or a TCP-net.

• the local utility tables in a GAI network allow us to express the intensity of
preferences for the attribute values, which is not possible with a CP-net or a
TCP-net.

However, note that unless utility functions map to a partially ordered set (a case we
do not consider in this paper), GAI-nets cannot be used to describe partial preference
structures, whereas CP-nets are able to represent some of them. In this respect, these
preference representations are complementary. In addition, the preference structures
representable by CP-nets being simpler than those representable by GAI-nets, the
former are easier to elicit than the latter. In practice, the choice of the appropriate
representation depends highly on factors such as how much information on the user’s
preferences is available, the level of sophistication the recommendations need to reach,
or how much time the user is willing to spend to elicit her preferences.

3 Optimal Choice

Several types of queries are of interest for recommendation tasks based on preferences
represented by GAI networks, in particular:

• global choice queries: find the preferred tuple x∗ over X ;

• constrained choice queries: find the preferred tuple x∗ over X given that some
attributes are fixed at some specific values;

• comparison queries: find which tuple among a given pair (x, y) ∈ X × X is
preferred by the DM;

• ranking queries: give a list of the k preferred tuples in X .

Note that the second type of query is a special case of the first one. The third type
of query is not critical from a computational point of view as a comparison query for
a given pair (x, y) can be solved simply by computing and comparing u(x) and u(y).
But the combinatorial nature of X prevents exhaustive pairwise comparisons, and so
we need to address the choice and ranking queries. Determining the preferred tuple
will be used as a preliminary step in the ranking procedure and is addressed in this
section. Then in Section 4 we describe a general ranking procedure. The key idea is to
take advantage of the structure of the GAI network to decompose the query problem
into a sequence of local optimizations, hence keeping the computational cost of the
overall ranking task at a very admissible level. For the clarity of the presentation,
the procedure is first introduced on a small example and, then, a general algorithm
is derived.

Example 3 : Consider a global choice query performed over a feasible set X = A×
B×C×D×E×F×G with A = {a0, a1, a2}, B = {b0, b1}, C = {c0, c1}, D = {d0, d1},
E = {e0, e1, e2}, F = {f0, f1}, G = {g0, g1}. The DM’s preferences are represented
by a utility defined, for any tuple (a, b, c, d, e, f, g), by:

u(a, b, c, d, e, f, g) = u1(a, b) + u2(c, e) + u3(b, c, d) + u4(b, d, f) + u5(b, g),

where the ui’s are given in Figure 2. Remark that utility u is completely characterized
by only 32 integers whereas storing u in extension requires |X | = 288 integers. When
attributes are continuous, the tables of Figure 2 are substituted by functions providing
an analytical representation of u. Figure 1 depicts the GAI network representing u’s
decomposition.

u1(a, b) b0 b1

a0 8 2

a1 4 3

a2 1 7

u2(c, e) e0 e1 e2

c0 6 3 5

c1 3 4 0

b0 b1u3(b, c, d)
d0 d1 d0 d1

c0 0 2 7 1

c1 5 1 2 4

b0 b1u4(b, d, f)
f0 f1 f0 f1

d0 4 2 5 8

d1 3 8 9 0

u5(b, g) g0 g1

b0 0 9

b1 6 4

Figure 2: Utility tables for u(·)

Finding the most preferred item is equivalent to solving maxa,b,c,d,e,f,g u1(a, b) +
u2(c, e) + u3(b, c, d) + u4(b, d, f) + u5(b, g). This can be efficiently performed by ex-
ploiting the properties below:

1. the max over variables X1, . . . , Xn of u(X1, . . . , Xn), can be decomposed as
maxX1 maxX2 . . .maxXn u(X1, . . . , Xn), and the order in which the max’s are
performed is not important;

2. if u(X1, . . . , Xn) can be decomposed as f() + g() where f() does not depend on
Xi, then maxXi

[f() + g()] = f() + maxXi
g();

3. in a GAI-net, the running intersection ensures that a variable contained in an
outer clique XC (i.e. a clique with at most one neighbor) but not contained in
XC ’s neighbor cannot appear in the rest of the net.

Properties 2 and 3 suggest computing the max recursively by first maximizing over
the variables contained only in the outer cliques as only one factor is involved in these
computations, then adding the result to the factor of their adjacent clique, remove
these outer cliques and iterate until all cliques have been removed. In our example,
this corresponds to solving the expression:

maxb,c,d[u3(b, c, d) + maxf [u4(b, d, f) + maxg u5(b, g)] + [maxe u2(c, e)]
+[maxa u1(a, b)]]

(1)

by performing the following operations:

1. on clique AB, compute u∗1(b) = maxa∈A u1(a, b) for all b ∈ B;

2. on clique CE, compute u∗2(c) = maxe∈E u2(c, e) for all c ∈ C;

3. on clique BG, compute u∗5(b) = maxg∈G u5(b, g) for all b ∈ B;

4. on clique BDF , substitute u4(b, d, f) by u4(b, d, f) + u∗5(b) for all (b, d, f) ∈
B×D×F . Then, compute u∗4(b, d) = maxf∈F u4(b, d, f) for all (b, d) ∈ B×D;

5. on clique BCD, substitute u3(b, c, d) by u3(b, c, d) + u∗1(b) + u∗2(c) + u∗4(b, d) for
all (b, c, d) ∈ B×C×D. Then, compute maxb,c,d u3(b, c, d), the maximal utility
in the GAI-net (34, in the example).

The contents of the u∗i ’s and ui’s after substitution are given in Figure 3. At the
end of step 5, we have precisely computed the value of Eq (1), and thus that of the
optimum of the utility function (here 34).

b0 b1

u∗
1(b) 8 7

c0 c1

u∗
2(c) 6 4

b0 b1

u∗
5(b) 9 6

b0 b1u4(b, d, f)
f0 f1 f0 f1

d0 13 11 11 14

d1 12 17 15 6

u∗
4(b, d) b0 b1

d0 13 14

d1 17 15

b0 b1u3(b, c, d)
d0 d1 d0 d1

c0 27 33 34 29

c1 30 30 27 30

Figure 3: Contents of the u∗i and ui after the substitutions

The above computations allow a fast determination of the optimal choices: first
note that 34, the optimal value computed at step 5, corresponds to u3(b, c, d) =
(b1, c0, d0). Hence, at the optimal choice, (B,C,D) = (b1, c0, d0). Now u∗4(b1, d0),
computed at step 4, was equal to u4(b1, d0, f1) = 14, hence at the optimal choice
F = f1. Then, on step 3, u∗5(b1) = 6 was equal to u5(b1, g0). Hence at the optimal
choice G = g0. Thus, had we saved in the 5 steps described above, the argmax’s of
the u∗i ’s, that is, had we computed:

1. M∗1 (b) = Argmaxa∈Au1(a, b) for all b ∈ B,

2. M∗2 (c) = Argmaxe∈Eu2(c, e) for all c ∈ C,

3. M∗5 (b) = Argmaxg∈Gu5(b, g) for all b ∈ B,

4. M∗4 (b, d) = Argmaxf∈Fu4(b, d, f) for all (b, d) ∈ B ×D,

5. Argmaxb,c,du3(b, c, d),

then it would have been sufficient to iterate back from step 5 to step 1, and extract
from the M∗i ’s the optimal values of the attributes conditionally to the values of the
attributes selected previously. In our example, this would correspond to:

• Step 5back: Argmaxb,c,du3(b, c, d) = (b1, c0, d0);

• Step 4back: M∗4 (b1, d0) = Argmaxf∈Fu4(b1, d0, f) = f1;

• Step 3back: M∗5 (b1) = Argmaxg∈Gu5(b1, g) = g0;

• Step 2back: M∗2 (c0) = Argmaxe∈Eu2(c0, e) = e0;

• Step 1back: M∗1 (b1) = Argmaxa∈Au1(a, b1) = a2.

The optimal choice is thus x∗ = (a2, b1, c0, d0, e0, f1, g0). �

The whole process can be performed using function Optimal choice below, which
is essentially similar to that used for most probable explanations in Bayesian networks
[14, 8]. It uses function Collect to compute Steps 1 to 5, and then, Instantiate,
to perform Steps 5back to 1back. Note that, in function Optimal choice, the value
xCk

passed as third argument to function Instantiate is an arbitrary value of clique
XCk

.

Function Optimal choice(GAI-net)
01 Let XCk

be any clique in the GAI-net
02 call Collect(XCk

, XCk
) and, then, call Instantiate(XCk

, XCk
, xCk

, ∅)
03 return the x∗Ci

’s computed by Instantiate, which, together,
constitute the optimal choice x∗

Function Collect performs the collect of data from XCi
’s neighbors toward clique

XCi
, while avoiding clique XCr

. This prevents from looping infinitely on lines 01–06.
Note that, to perform the computations of Step 1 through Step 5, in this precise
order, the recursive calls to function Collect must be done in the reverse order w.r.t.
Steps 1–5, that is, Collect should first be called passing BCD as first argument,
which, in turn, should call Collect of BDF , CE and AB, and Collect of BDF
should call Collect of BG.

Function Collect(XCi , XCr)
01 for all cliques XCj

∈ {cliques adjacent to XCi
}\{XCr

} do
02 call Collect (XCj

, XCi
)

03 for all xCi
∈ XCi

do
04 ui(xCi)← ui(xCi) + u∗j (xSj), where xSj is the projection of xCi on XCi∩Cj

05 done
06 done
07 if XCi 6= XCr then
08 for all xCi∩Cr

∈ XCi∩Cr
do

09 u∗i (xCi∩Cr
)← maxxCi\Cr

ui(xCi
)

10 done
11 endif

Function Instantiate performs the instantiation of the optimal values to the
attributes. As for Collect, its second argument prevents infinite loops 08–10. Argu-
ment x∗Cr

contains the optimal values of the attributes in XCr
. Finally, Forbidden is

a set of forbidden configurations of clique XCi that will be useful in the next section.
Of course, as Steps 5back to 1back instantiate cliques in the reverse order w.r.t. the
order in which cliques are examined in Steps 1 to 5, function Instantiate should per-
form its recursive exploration of the GAI-net in the same order as function Collect

performed its own recursive calls.

Function Instantiate(XCi
, XCr

, x∗Cr
, Forbidden)

01 if XCi = XCr then
02 x∗Ci

← Argmax{ui(xCi
) : xCi

∈ XCi
\ Forbidden}

03 else
04 Si ← Ci ∩ Cr; Di ← Ci\Si

05 x∗Si
← the projection of x∗Cr

over XSi

06 x∗Ci
← Argmax{ui(x

∗
Si
, xDi

) : xDi
∈ XDi

and (x∗Si
, xDi

) 6∈ Forbidden}
07 endif
08 for all cliques XCj

in {cliques adjacent to XCi
}\{XCr

} do
09 call Instantiate (XCj

, XCi
, x∗Ci

, ∅)
10 done
11 return the values x∗i ’s of the attributes found at the optimum

The computational complexity of the whole process is equal to the sum of the
sizes of the cliques in the network, where the size of a clique is the product of the
domain sizes of the variables contained in the clique. As a matter of fact, function
Collect is called only once per clique XCi

; each clique XCi
computes on lines 08–10 a

message to be sent to one of its separators, thus requiring O(|XCi
|) operations. Such

messages are added to the factor stored into the clique on lines 03-05, again requiring
O(|XCi |) operations. Hence the complexity of function Collect is equal to the sum
of the sizes of the cliques in the network. Similarly, function Instantiate is also
called once per clique XCi

. When Forbidden = ∅, finding the Argmax on line 02 can
be performed in O(1) provided each time a max is computed on line 09 of function
Collect, the value of the related tuple is kept in an Argmax table. When Forbidden
= ∅, computing the projection x∗Si

of x∗Cr
on line 05 and the Argmax on line 06

both require O(|Si|) operations, where |Si| is the number of variables contained in
separator XSi

. Consequently, the complexity of function Instantiate is equal to the
sum of the number of variables stored in the separators. As these are smaller than
the domain sizes of the variables contained in the cliques, the overall complexity of
the choice procedure is that of Collect, hence the sum of the sizes of the cliques.

4 Ranking

Consider again the example of the preceding section and assume that Optimal choice

has returned tuple x∗ = (a2, b1, c0, d0, e0, f1, g0). Then, the next best tuple, say x2,
differs from x∗ by at least one attribute or, equivalently, there exists at least one
clique XCi such that the projection of x2 on XCi differs from that of x∗. As we do
not know in which XCi the difference occurs, we cover all possibilities by dividing the
space of remaining alternatives according to the partition scheme proposed in [17].

Set 1: (B,C,D) 6= (b1, c0, d0)

Set 2: (B,C,D) = (b1, c0, d0) and (B,D,F) 6= (b1, d0, f1)

Set 3: (B,C,D, F) = (b1, c0, d0, f1) and (B,G) 6= (b1, g0)

Set 4: (B,C,D, F,G) = (b1, c0, d0, f1, g0) and (C,E) 6= (c0, e0)

Set 5: (B,C,D,E, F,G) = (b1, c0, d0, e0, f1, g0) and (A,B) 6= (a2, b1)

Note that this splitting scheme is heavily related to the collect phase in that the order
in which the cliques with new forbidden tuples are examined corresponds precisely
to the order in which they are examined by the Collect function. Now, finding the
optimal choice in Set 1 is equivalent to solving:

max
(b,c,d)6=(b1,c0,d0)

[u3(b, c, d) + max
f

(u4(b, d, f) + max
g

u5(b, g)) + (max
e

u2(c, e)) +

(maxa u1(a, b))].

This suggests using function Collect as in the preceding subsection and then calling
function Instantiate, taking care to prevent tuple (b1, c0, d0) to be chosen in step
5back. This amounts to calling Instantiate(BCD,BCD, (b1, c0, d0), {(b1, c0, d0)}).
Similarly, finding the optimal choice in Set 2 is equivalent to solving:

max
f 6=f1

[u4(b1, d0, f) + max
g

u5(b1, g)] + u3(b1, c0, d0) + [max
e

u2(c0, e)] + [max
a

u1(a, b1)].

This is achieved by first calling function Collect as previously and, then, perform-
ing Instantiate(BDF,BCD, (b1, c0, d0), {(b1, d0, f1)}). Clearly, the last call will
instantiate only cliques BDF and BG, as the other cliques cannot be reached by
the function because, due to the fact that BCD is passed as second argument,
line 08 of Instantiate will prevent any recursive call passing through clique BCD.
To constitute the tuple we look for, we will just have to assign to the attributes
of these “unreachable” cliques the values they had at the optimal solution. Thus
Instantiate(BDF,BCD, (b1, c0, d0), {(b1, d0, f1)}) is precisely what is needed to de-
termine the optimal choice in Set 2. Of course, this generalizes to the other sets and,
in our example, this results in:

Set 1: Instantiate(BCD,BCD, (b1, c0, d0), {(b1, c0, d0)}), u(x) = 33,

x = (a0, b0, c0, d1, e0, f1, g1),

Set 2: Instantiate(BDF,BCD, (b1, c0, d0), {(b1, d0, f1)}), u(x) = 31,

x = (a2, b1, c0, d0, e0, f0, g0),

Set 3: Instantiate(BG,BDF, (b1, d0, f1), {(b1, g0)}), u(x) = 32,

x = (a2, b1, c0, d0, e0, f1, g1),

Set 4: Instantiate(CE,BCD, (b1, c0, d0), {(c0, e0)}), u(x) = 33,

x = (a2, b1, c0, d0, e2, f1, g0),

Set 5: Instantiate(AB,BCD, (b1, c0, d0), {(a2, b1)}), u(x) = 30

x = (a1, b1, c0, d0, e0, f1, g0).

The second preferred tuple is thus the optimal choice of Set 1 or that of Set 4.
Assume we select the former. Then the next tuple, x3, is the preferred tuple that
is different from both (a2, b1, c0, d0, e0, f1, g0) and (a0, b0, c0, d1, e0, f1, g1). It can be

obtained using the same process. As x2 is in Set 1, we should substitute Set 1 by the
sets below to exclude x2:

Set 1.1: (B,C,D) 6∈ {(b1, c0, d0), (b0, c0, d1)}
Set 1.2: (B,C,D) = (b0, c0, d1) and (B,D,F) 6= (b0, d1, f1)

Set 1.3: (B,C,D, F) = (b0, c0, d1, f1) and (B,G) 6= (b0, g1)

Set 1.4: (B,C,D, F,G) = (b0,c0,d1,f1,g1) and (C,E) 6= (c0, e0)

Set 1.5: (B,C,D,E, F,G) = (b0, c0, d1, e0, f1, g1) and (A,B) 6= (a0, b0)

AB B BCD
C

BD

CE

BDF B BG

Figure 4: Propagation performed by Instantiate

and, then, iterate the same process. Note that whenever Instantiate is called,
it instantiates the attributes toward the “outer” cliques of the GAI tree, that is,
on Figure 4, it can easily be shown that Instantiate modifies only the values of
the cliques that can be reached following the arrows. For instance, after calling
Instantiate(BDF,BCD, (b1, c0, d0), {(b1, d0, f1)}), only the values of BDF and BG
can change. Similarly, after calling Instantiate(AB,BCD, (b1, c0, d0), {(a2, b1)}),
only the value of clique AB can change. As a consequence, the splitting algorithm need
only create one new set for each clique encountered following the arrows of Figure 4.
Note that, on this figure, to each arrow from a clique XCj

to another clique XCi
cor-

responds, during the collect phase, a call by Collect(XCj
, ·) to Collect(XCi

, XCj
).

It is convenient to have a special notation to represent these arrows: let XCn(i)
de-

note the clique at the tail of the arrow directed toward clique XCi . As propaga-
tions of instantiations are performed in a unique way, each set of the current space
partition can be defined uniquely and unambiguously as a quadruple of the form:
(XCi

,ForbiddenCi
, z∗, u∗), where XCi

corresponds to the clique on which exclusion
constraints are set, ForbiddenCi

denotes the set of |Ci|-tuples already forbidden for
the clique XCi , z

∗ is an optimal tuple in the set we consider, and u∗ is the value of
the utility at z∗. For instance, Sets 1 to 5 above can be represented as:

Set 1: (BCD, {(b1, c0, d0)}, (a0, b0, c0, d1, e0, f1, g1), 33),

Set 2: (BDF , {(b1, d0, f1)}, (a2, b1, c0, d0, e0, f0, g0), 31),

Set 3: (BG, {(b1, g0)}, (a2, b1, c0, d0, e0, f1, g1), 32),

Set 4: (CE, {(c0, e0)}, (a2, b1, c0, d0, e2, f1, g0), 33),

Set 5: (AB, {(a2, b1)}, (a1, b1, c0, d0, e0, f1, g0), 30).

The slicing of the above sets can be performed by the function Split below: when
a set needs be splitted, as for instance Set 1, function Split must be called passing
as parameters the clique XCi

on which new forbidden constraints are added, the set
of all forbidden |Ci|-tuples of this clique, the optimal tuple of the set, and a Boolean
set to true. This Boolean is needed only to make a difference between the first call
to function Split and the other recursive calls.

Function Split(XCi , ForbiddenCi , y
∗, is root)

01 if is root = true then
02 ForbiddenCi

← ForbiddenCi
∪ {y∗Ci

}
03 else
04 ForbiddenCi

← {y∗Ci
}

05 endif
06 z∗ ← Instantiate(XCi

, XCn(i)
, y∗Cn(i)

,ForbiddenCi
)

07 complete the missing attributes in z∗ with their values in y∗ to form a tuple on X
08 u∗ ← u(z∗)
09 S ← {(XCi ,ForbiddenCi , z

∗, u∗)}
10 for all cliques XCj in {cliques adjacent to XCi}\{XCn(i)

} do
11 S ← S ∪ Split(XCj

, ∅, y∗, false)
12 done
13 return S

Using function Split, we can now define our ranking procedure k-best:

Function k-best(G, K)
01 x∗ ← Optimal choice(G)
02 S ← Split(XCk

, ∅, x∗, true)
03 i← 1
04 while i < K and S 6= ∅ do
05 S ← the element (XCj

,ForbiddenCj
, z∗, u∗) of S with the highest u∗ value

06 xi ← z∗

07 S ← S ∪ Split(XCj ,ForbiddenCj , z
∗, true) \ {S}

08 i← i + 1
08 done
09 return (x∗, x1, . . . , xi−1)

4.1 Integrating constraints

Until now, we have considered that all the configurations in the Cartesian product
X were possible. However, in many situations, some configurations are not allowed
or simply not available. These constraints may be directly integrated into the GAI
model by adding new subutility factors with utility value 0 for possible configurations
and −∞ otherwise. As such, the utility function plays the role of a member function
in a soft CSP setting [16, 20]: the preferences may be seen as soft constraints and the
feasibility constraints as hard constraints. Suppose that the pairs (a0, e1), (a1, e2),
(a2, e1) and (a2, e2) are impossible. In this case we should add utility factor u6(a, e)
defined by:

u6(a0, e0) = 0; u6(a0, e1) = −∞; u6(a0, e2) = 0;
u6(a1, e0) = 0; u6(a1, e1) = 0; u6(a1, e2) = −∞;
u6(a2, e0) = 0; u6(a2, e1) = −∞; u6(a2, e2) = −∞.

Similarly, if the pairs (e0, f0) and (e1, f1) are also forbidden, we should add utility
factor u7(e, f) defined by:

u7(e0, f0) = −∞; u7(e1, f0) = 0; u7(e2, f0) = 0;
u7(e0, f1) = 0; u7(e1, f1) = −∞; u7(e2, f1) = 0.

After adding these new utility factors specifying the feasibility constraints, we
need to recompile the GAI-net as it may no longer be a tree (if it is to satisfy the
running intersection property). This is achieved by first constructing the Markov field
of the utility, i.e., a graph in which i) the nodes correspond to the attributes, and
ii) each pair of attributes belonging to some subutility factor are linked by an edge.
This network is triangulated and the result is used to construct a join tree (as in the
Bayes net literature [14]). The latter is the new GAI-net in which computations are
performed. Figure 5 shows the new GAI-tree for our example after adding the utility
factors u6 and u7.

BBG BDE BE ABEBCDEBDEF

u5(b, g) u4(b, d, f)
u7(e, f)

u3(b, c, d)
u2(c, e)

u6(b, e)
u1(a, b)

Figure 5: A GAI-Tree after integrating constraints

Remark that u6 and u7 create new dependencies between variables. This results
in a tree with cliques larger than before, thus requiring more space to store the
utility tables corresponding to the cliques. However it is possible to use a “lazy”
implementation, in which the original utilities that should be in the larger cliques are
not merged but stored in their original form using linked lists (in our example, the
utility factors corresponding to each clique are pointed out in Figure 5). In this case,
the storage space used by the newly triangulated GAI-net is roughly equivalent to
that of the original net. However, optimal choice and ranking computations may be
considerably longer than what they would be without the addition of the constraints.

The next section presents some experimental results for the determination of op-
timal choice and ranking with GAI-nets.

4.2 Experimental Results

To test the choice algorithms, computation times have been recorded for various
randomly generated instances, both for the best element (choice) and for the top 50
and 100 elements (ranking). These instances were divided into 5 classes, K1, . . . ,K5,
described in the table below and characterized by the number of attributes, the size
of the attribute domains, the number of constraints in the problem, the size of the
decomposition (i.e., the number of subutility factors in the GAI decomposition), and
the arity of the subutility factors (and constraints):

Attr. nb. Dom. Size Constr. nb. Size of decomp. Arity of sub.

K1 40 2 5 5 4
K2 35 5 30 30 2
K3 15 10 20 20 2
K4 30 5 5 5 4
K5 10 10 5 5 3

In each class, 50 instances were randomly generated with various tightness indices
(i.e., the ratio of admissible tuples by constraint). For each category, every instance
was first processed without including the constraints into the GAI network, so as to
measure the computation time on a complete product set. Then, in a second stage,
constraints were included into the network, that is, additional utility factors repre-
senting the constraints were added to the GAI-decomposition, a new GAI-net was
then derived after triangulation of the corresponding Markov network, and the query
was answered using this new GAI-net. Our experiments were performed with a Java
program on a 2.4GHz PC-computer. The average times over the 50 instances are sum-
marized in the table below. For comparison, this table also shows the execution times
for finding the best element using Toolbar4. Toolbar is a freely available reference
software (implemented in C language) in the soft constraint domain [9]. However,
Toolbar does not allow us to enumerate the k-best solutions. For this reason we only
used it to find the best element (note that the obvious approach of introducing a
constraint over all attributes that forbids an already generated solution was infeasible
because it caused a tremendous increase in memory requirement).

Time Without constraints With constraints
(in ms) TBBest Best Top 50 Top 100 TBBest Best Top 50 Top 100

K1 6153 8 44 82 2047 28 64 102
K2 < 10 2 8 17 < 10 65 100 133
K3 < 10 4 9 14 < 10 1272 1334 1365
K4 35510 40 65 82 11257 2553 2647 2702
K5 60 625 719 780 72 7858 7971 8062

As can be seen, solving choice or ranking problems on full product sets by GAI
network-based algorithms is very efficient. When constraints are added, computation
times remain satisfactory despite the additional complexity. In particular, it is re-
markable that ranking elements from the 2nd to the 100th position is only marginally
more time consuming than obtaining only the best element (this will be useful for the
ranking approach for compromise search in the next section). The increase in com-
putation times observed after adding n-ary constraints is due to the additional inter-
attributes dependencies induced by them. The impact of the new inter-attributes
dependencies during the triangulation stage amounts in worst cases to merge previ-
ously distinct cliques into one new big clique. The increase in the sizes of the cliques
then results in an increase of the computation times for solving choice and ranking
problems. However, in practical applications the arity of subutility factors is usually
small (≤ 3 in most cases); the computation time may thus depend essentially on the
constraint arity.

4http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro

5 Collective Choice

We consider now a multiperson decision making (MPDM) problem involving a set
A = {1, . . . ,m} of agents. We assume that, for each agent j ∈ A, a GAI utility
uj representing her preferences over X has been elicited. For simplicity, we assume
that each agent uses the same absolute utility scale, so as to have commensurability.
Then, a classical way of defining the best compromise solution for the group of agents
is to define an overall utility u(x) which gives, for any x ∈ X , the value of x for the
group. Thus we consider u(x) = h(u1(x), . . . , um(x)) where h is an aggregation func-
tion implicitly defining the type of compromise sought in X . The best compromise
solution is obtained by optimizing u over X . When h is non-decreasing in each com-
ponent, u-optimal solutions are weakly Pareto-optimal (i.e. there is no other solution
improving the satisfaction of all the agents). Moreover, if h is strictly increasing in
each component then u-optimal solutions are Pareto-optimal (i.e. there is no other
solution improving the satisfaction of an agent without decreasing the satisfaction of
another).

If h is linear, then u is the sum of GAI utilities and, as such, is itself a GAI
utility. Thus the problem reduces to a monoagent decision problem with a GAI utility.
However, linear aggregation functions are not good candidates as they may lead to
choose a solution having a very ill-balanced utility profile. For instance, consider a
problem with 3 agents and assume that X = {x, y, z, w} with:

u1(x) = 0, u1(y) = 100, u1(z) = 100, u1(w) = 65,
u2(x) = 100, u2(y) = 0, u2(z) = 100, u2(w) = 65,
u3(x) = 100, u3(y) = 100, u3(z) = 0, u3(w) = 65.

All solutions except w are unacceptable for at least one agent. Thus w is the only
possible compromise solution; yet it cannot be obtained by maximizing a linear com-
bination (with positive coefficients) of agent utilities. To find better compromise so-
lutions, we shall use the weighted Tchebycheff norm, a standard scalarizing function
allowing to reach any compromise solution within the set of Pareto optima [21]:

u(x) = max
j∈A

{
ωj(u

j(xj)− uj(x))
}
, (2)

where xj = Argmaxx∈Xu
j(x). This criterion is minimized over X . It represents the

distance (w.r.t. a weighted Tchebycheff norm) between two utility profiles: (u1(x), . . . ,
un(x)) obtained with solution x, and the ideal utility profile (u1(x1), . . . , um(xm))
corresponding to a fictitious ideal situation (generally not feasible) in which all agents
are optimally satisfied simultaneously. This ideal point is an upper bound of the
set of Pareto non-dominated solutions. Coefficient ωj is a weight attached to agent
j. It makes it possible to modulate the importance of agents and to control the
type of compromise. As mentioned above, as the Tchebycheff aggregation function
is only non-decreasing in its arguments (i.e., it is not strictly increasing), in general,
minimizing it over X only produces weak Pareto optimal solutions. However, as shown
in [22], any Pareto optimal solution can be obtained by optimizing the Tchebycheff
criterion with appropriate choices of ωj .

5.1 The ranking approach for compromise search

The determination of the best compromise solution w.r.t. function u (Eq. (2)) is NP-
hard as soon as there are n ≥ 3 attributes, m ≥ 2 agents, each having a GAI utility
function including at least one factor of size greater than or equal to 3. This can be
proved using a reduction from 3-SAT. Indeed, consider an instance of 3-SAT with n
variables and m clauses. To each variable, we associate a Boolean attribute Xi and
to any clause Cj over variables we associate an agent with Boolean function uj . For
instance Cj = x∨y∨¬z will be represented by function uj(x, y, z) = 1−(1−x)(1−y)z.
Hence, choosing ωj = 1 for all j’s, the optimal value of the Tchebycheff optimization
problem over X = X1 × · · · × Xn with functions u1, . . . , um is 1 if and only if the
initial 3-SAT problem is feasible. This shows the complexity of the search for a good
compromise solution. To overcome the problem and be able to optimize such a non-
decomposable function u on X , we suggest resorting to a ranking approach based on
the following 3-stage procedure:
Step 1: scalarization. we reformulate the problem as a monoagent problem, using
an overall criterion v(x) = 1/m

∑
j ωj(u

j(xj)−uj(x)) defined as a linear combination
of individual utilities. Such a function is easier to optimize than u since, as the sum
of GAI functions, it is also a GAI function. Similarly to u, v is to be minimized.
Step 2: ranking. we enumerate the solutions of X by increasing value of v. Here,
we use the ranking algorithm presented in section 4 which takes advantage of the
decomposability of v.
Step 3: stopping condition. we need to stop enumeration as early as possible due
to the size of set X . This can be done efficiently using the following proposition.

Proposition 1 Let x(1), ..., x(k) be the ordered sequence of k-best solutions generated
during Step 2. If v(x(k)) ≥ u(x̂(k)) where x̂(k) = Argmini=1,...,ku(x(i)), then x̂(k) is

optimal for u, i.e. u(x̂(k)) = minx∈X u(x).

Proof. Note that u(x) ≥ v(x) for all x ∈ X . Hence, for all i > k, we have, by
construction, u(x(i)) ≥ v(x(i)) ≥ v(x(k)). Since v(x(k)) ≥ u(x̂(k)) by hypothesis, we
get u(x(i)) ≥ u(x̂(k)) which shows that no solution found after step k in the ranking
can improve the current best solution x̂(k). �

Hence we can stop the enumeration whenever k is such that v(x(k)) ≥ u(x̂(k)).

5.2 Experimental Results

To evaluate our approach in practice, we have performed experiments on various
instances of the MPDM problem. We have recorded computation times and the
number of solutions generated before returning the optimal compromise solution using
the Tchebycheff criterion. The experiments were performed on a 2.4GHz PC with a
Java program.

To run the experiments, we generated synthetic data for GAI-decomposable pref-
erences. All GAI decompositions involved 20 variables, with 10 subutilities ui(xCi

) of

domain size |xCi | randomly drawn between 2 to 4. It does not seem realistic to con-
sider higher-order interactions as far as human preference modeling is concerned (such
complex interaction might actually be very difficult to assess in practice). Each ui’s
domain variables were randomly selected from the set of all variables. For variables
that were not selected in any subutility function, we created unary subutilities. Next,
we created 5 different utility functions for the structure previously generated, repre-
senting the preferences of 5 agents. For each subutility function uj

i of an agent j, we

first generated its maximum value max(uj
i), in the interval [0, 1]. Then we uniformly

generated the utility values for all configurations of uj
i in the interval [0,max(uj

i)].
This gave us 5 different GAI-decomposable utility functions with the same structure.
We generated test data for variables of domain sizes 2, 5 and 10, resulting in problems
with 220, 520 and 1020 possible configurations respectively.

The average results (t: times in ms and #gen: number of generated solutions) over
100 runs are summarized below (values within brackets are standard deviations):

Domain Tchebycheff criterion
size t(ms) #gen
2 37 (19) 1233 (863)
5 267 (178) 7268 (7040)
10 741 (384) 19956 (16338)

As can be seen, we obtained average times ranging from 0.03 to 0.7 seconds,
depending on attribute domain size. Fortunately, the number of elements that need
be enumerated before returning the solution increases at a much lower rate than the
problem size. For instance, from 20 attributes of domain size 5 to 20 attributes of
domain size 10, the number of configurations is multiplied by over 106 while, at the
same time, the average number of solutions enumerated increases by a factor lower
than 3. We also ran experiments where each agent had a different GAI decomposable
preference structure. In these cases, to generate the aggregated GAI network we
triangulated the Markov graph induced by the subutilities of all the agents. The
more the discrepancy between the agents structures, the larger the cliques, and the less
efficient our algorithm. Whenever the GAI network structures were very different, it
turned out to be impossible to conduct the ranking procedure due to the large amount
of memory required to fill the cliques. However, there are many practical situations
where interacting attributes are almost identical for all agents, the difference between
individual utilities being mainly due to discrepancies in utility values.

6 Conclusion

In this paper we have shown how GAI-networks could be used not only to efficiently
perform individual recommendations (choice and ranking) on combinatorial sets, but
also to solve collective recommendation requests for multiagent decision problems.
The proposed procedure allows the determination of various types of compromise
solutions and remains very efficient provided the number of agents is not too impor-
tant. It might be used in many real-world situations like preference-based design of

an holidays-trip for a group, preference-based configuration of a car for the family, or
for content-based movie recommendation tasks for a group of friends.

It is clear that for problems where there are hard constraints of great arity (e.g.,
knapsack problems), the solution consisting in including constraints as utility factors is
not appropriate. In these cases it would be interesting to separate the hard constraints
from the preferences, in order to keep the size of cliques manageable. The hard
constraints should then be treated separately using tools developed in the CSP and
operations research communities.

References

[1] F. Bacchus and A. Grove. Graphical models for preference and utility. In
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
(UAI’95), pages 3–10, Montreal, Canada, 1995.

[2] C. Boutilier, F. Bacchus, and R. Brafman. UCP-networks: A directed graphical
representation of conditional utilities. In Proceedings of the Seventeenth Confer-
ence on Uncertainty in Artificial Intelligence (UAI’01), pages 56–64, 2001.

[3] C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D. Poole. CP-nets: A
tool for representing and reasoning with conditional ceteris paribus preference
statements. Journal of Artificial Intelligence Research, 21:135–191, 2004.

[4] R. Brafman and C. Domshlak. Introducing variable importance tradeoffs into
CP-nets. In Proceedings of the Eighteenth Conference on Uncertainty in Artificial
Intelligence (UAI’02), pages 69–76, 2002.

[5] R. Brafman, C. Domshlak, and T. Kogan. Compact value-function representa-
tions for qualitative preferences. In Proceedings of the Twentieth Conference on
Uncertainty in Artificial Intelligence (UAI’04), pages 51–58, 2004.

[6] D. Braziunas and C. Boutilier. Local utility elicitation in GAI models. In Pro-
ceedings of the Twenty First Conference on Uncertainty in Artificial Intelligence
(UAI’05), pages 42–49, 2005.

[7] A. Chateauneuf and P. Wakker. From local to global additive representation.
Journal of Mathematical Economics, 22:523–545, 1993.

[8] R. Cowell, A. Dawid, S. Lauritzen, and D. Spiegelhalter. Probabilistic Networks
and Expert Systems. Statistics for Engineering and Information Science. Springer-
Verlag, 1999.

[9] S. de Givry, M. Zytnicki, F. Heras, and J. Larrosa. Existential arc consistency:
Getting closer to full arc consistency in weighted CSPs. In Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence (IJCAI’05),
pages 84–89, 2005.

[10] G. Debreu. Continuity properties of paretian utility. International Economic
Review, 5:285–293, 1964.

[11] Y. Engel and M.P. Wellman. Generalized value decomposition and structured
multiattribute auctions. In Proceedings of the Eighth ACM Conference on Elec-
tronic Commerce (EC’07), pages 227–236. ACM Press, 2007.

[12] P. C. Fishburn. Interdependence and additivity in multivariate, unidimensional
expected utility theory. International Economic Review, 8:335–342, 1967.

[13] C. Gonzales and P. Perny. GAI networks for utility elicitation. In Proccedings of
the Ninth International Conference on the Principles of Knowledge Representa-
tion and Reasoning (KR’04), pages 224–234, Whistler, BC, Canada, 2004.

[14] F. Jensen. An introduction to Bayesian Networks. Taylor and Francis, 1996.

[15] D. Krantz, R.D. Luce, P. Suppes, and A. Tversky. Foundations of Measurement
(Additive and Polynomial Representations), volume 1. Academic Press, 1971.

[16] J. Larrosa, P. Meseguer, and T. Schiex. Soft constraint processing. In Nineteenth
International Joint Conference on Artificial Intelligence (IJCAI’05) Tutorial,
2005.

[17] D. Nilsson. An efficient algorithm for finding the M most probable configurations
in probabilistic expert systems. Statistics and Computing, 8(2):159–173, 1998.

[18] M.S. Pini, F. Rossi, K.B. Venable, and T. Toby Walsh. Aggregating par-
tially ordered preferences: impossibility and possibility results. In Proceedings
of the Tenth Conference on Theoretical Aspects of Rationality and Knowledge
(TARK’05), volume 10, pages 193–206, 2005.

[19] F. Rossi, K.B. Venable, and T. Toby Walsh. mCP nets: Representing and reason-
ing with preferences of multiple agents. In Proceedings of the Nineteenth National
Conference on Artificial Intelligence (AAAI’04), pages 729–734, 2004.

[20] T. Schiex, H. Fargier, and G. Verfaillie. Problèmes de satisfaction de contraintes
valués. Revue d’Intelligence Artificielle, 11(3):339–373, 1997.

[21] R.E. Steuer and E.-U. Choo. An interactive weighted Tchebycheff procedure for
multiple objective programming. Mathematical Programming, 26:326–344, 1983.

[22] A.P. Wierzbicki. On the completeness and constructiveness of parametric char-
acterizations to vector optimization problems. OR Spektrum, 8:73–87, 1986.

