
On Directed and Undirected Propagation
Algorithms for Bayesian Networks

Christophe Gonzales1, Khaled Mellouli2, and Olfa Mourali3

1 LIP6 – université Paris 6 – France
2 IHEC – Carthage – Tunisie

3 ISIG – Université de Kairouan

Abstract. Message-passing inference algorithms for Bayes nets can be
broadly divided into two classes: i) clustering algorithms, like Lazy Prop-
agation, Jensen’s or Shafer-Shenoy’s schemes, that work on secondary
undirected trees; and ii) conditioning methods, like Pearl’s, that use di-
rectly Bayes nets. It is commonly thought that algorithms of the former
class always outperform those of the latter because Pearl’s-like methods
act as particular cases of clustering algorithms. In this paper, a new vari-
ant of Pearl’s method based on a secondary directed graph is introduced,
and it is shown that the computations performed by Shafer-Shenoy or
Lazy propagation can be precisely reproduced by this new variant, thus
proving that directed algorithms can be as efficient as undirected ones.

1 Introduction

In the last years, Bayesian nets (BN) [1–3] have become an increasingly popu-
lar knowledge representation framework for reasoning under uncertainty. They
combine a directed acyclic graph (DAG) encoding a decomposition of a joint
probability distribution over a set of random variables with powerful exact in-
ference techniques [3–14]. These can answer various queries including belief up-
dating, i.e., computing the posterior probability of every variable given a set
of observations, finding the most probable explanation, i.e., finding a maximum
probability assignment of the unobserved variables, finding the maximum a pos-
teriori hypothesis, i.e., finding an assignment to a subset of unobserved variables
maximizing their probability. This paper will be restricted to belief updating.

Although the BN’s graphical structure is very efficient in its ability to provide
a compact storage of the joint probability, it is not well suited for probabilistic
computations when the DAG is multiply-connected [15]. A much more efficient
structure called a join or junction tree and representing an alternative decom-
position of the joint probability has been introduced in the 90’s [16, 9] to serve
as a support for inference algorithms [9, 10, 12, 17] (Fig. 1.c). Unlike the original
BN, this new structure is undirected and, since [15]’s paper, the idea that prop-
agation based on undirected graphs always outperform the variants of Pearl’s
algorithm (based on directed graphs) [18, 19, 3, 20] has often been conveyed in
the literature. However, in a BN, the arc orientations provide some indepen-
dence information called d-separation that can be effectively exploited to reduce



the inference computational burden [21] but that is lost by junction trees. For
instance, in Fig. 1.a, if the value of A is known, then d-separation asserts that
B is independent of C, D, F , G and I. Hence, upon receiving a new evidence
on B, only the a posteriori probabilities of E and H need be updated.

a) a Bayes net b) triangulated graph c) Shafer-Shenoy’s join tree

H I

B

E

C

F

D

G

H I

B

E

C

F

D

G

AF AG

FG AF

FGI ABF BF

AFG EF

HEF

P (F |C)
P (C|A)

P (A)

P (H|E,F )

P (E|B)EBF

P (B|A)P (I|F,G)

P (D|A)P (G|D)ACF ADGA A

Fig. 1. A Bayesian network and one of its join trees.

The aim of this paper is to show how undirected inference techniques such
as Shafer-Shenoy’s method [12, 17] or Lazy Propagation [10] can be viewed as a
variant of Pearl’s algorithm. More precisely, it is shown that the computations
performed by both algorithms in a join tree derived from a variable elimination
technique similar to [7] can be precisely reproduced by Pearl with local condi-
tioning performed on a particular DAG. The advantage of translating undirected
inference techniques into directed ones is that d-separation can easily be applied
to speed-up computations (see above). As for Lazy Propagation, which already
uses d-separation, the advantage lies in the possibility of improving online trian-
gulations or even avoiding them. Moreover, keeping the secondary structure used
for computations as close as possible to the original one is attractive as it min-
imizes the quantity of information lost passing from one structure to the other
(triangulation actually loses d-separation informations). This can prove useful for
instance in hybrid propagation methods [22, 23] where approximate algorithms
are used on some subgraphs of the BN, to select the most appropriate stochastic
algorithm for each approximated subgraph, e.g., in some particular cases, it can
be proved that logic sampling converges faster than Gibbs sampling.

The paper is organized as follows: Section 2 presents BN and describes Shafer-
Shenoy’s method. Section 3 illustrates on an example how the same computations
can be conducted using a particular DAG and a general scheme for constructing
this DAG is derived. Section 4 presents Pearl’s method with local condition-
ing and shows why a new variant, when applied on such DAG, corresponds to
Shafer-Shenoy. Section 5 extends these results to binary join trees and to Lazy
Propagation. Finally Section 6 concludes the paper.

2 Bayesian Networks and Shafer-Shenoy’s Algorithm

Definition 1. A Bayesian network is a triple (V,A,P), where V = {X1, . . . , Xn}
is a set of random variables; A ⊆ V × V is a set of arcs which, together with



V, constitutes a directed acyclic graph G = (V,A); P = {P (Xi|Pai) : Xi ∈ V}
is the set of conditional probability matrices of each random variable Xi given
the values of its parents Pai in graph G. The BN represents a joint probability
distribution over V having the product form: P (X1, . . . , Xn) =

∏n
i=1 P (Xi|Pai).

Thus, in the BN of Fig. 1.a, P (V) can be decomposed as P (A)P (B|A)P (C|A)
P (D|A)P (E|B)P (F |C)P (G|D)P (H|E,F )P (I|F,G). Shafer-Shenoy’s algorithm
uses a secondary undirected structure called a join (or junction) tree to perform
probabilistic inference, see Fig. 1.c. As shown by [24], this structure can always
be constructed from a triangulated graph (Fig. 1.b) resulting from an elimina-
tion sequence of the random variables. Here, we used H,I,E,D,C,B,A,F ,G. The
cliques (resp. separators) of the join tree, i.e., the ellipses (resp. rectangles), are
initially filled with functions (called potentials) of the variables they contain.
Usually, cliques are filled with the conditional probabilities of the BN and sepa-
rators with unity tables, i.e., tables filled with 1’s. Shafer-Shenoy then performs
inference by sending messages in both directions along the edges of the junction
tree. A message sent from a clique Ci to an adjacent clique Cj through separator
Sij = Ci∩Cj is computed by multiplying the potentials stored in Ci by the mes-
sages received from all the adjacent cliques of Ci except Cj and then summing
out the result over the variables not in Sij . For instance, on Fig 2, message ¶
corresponds to

∑
G P (A)××¯×°. Semantically, these operations correspond

to marginalizing out from the joint probability the variables in Ci\Sij .

¬



®

±

² ³

° ¯

¹ »

¸·

º ¶

ACF ADG

AF AG

FG AF

FGI ABF BF EBF

AFG

EF HEF

P (B|A)P (I|F,G)

P (A)

P (E|B) P (H|E,F )

P (D|A)P (G|D)P (F |C)P (C|A)

Fig. 2. The join tree and Shafer-Shenoy’s inward and outward pass.

As for the order in which messages are generated, Shafer-Shenoy advocates to
use an asynchronous algorithm, but we prefer presenting here a collect/diffusion
(or inward/outward) method as it is more convenient for the next Sections and
it is well known that both schemes produce the same set of messages:

Algorithm 1 (generation of messages).
1. choose an arbitrary clique, e.g., AFG, as the current clique;
2. inward pass: the current clique asks its adjacent cliques for their messages. In

turn, they recursively ask their other adjacent cliques for messages. When a
clique has received all the messages it waited for, it sends its own message.

3. outward pass: after the inward pass, clique AFG sends messages to its neigh-
bors; they recursively send messages to their other adjacent nodes, and so on.



Following the elimination sequence mentioned above, the messages sent dur-
ing the inward and outward pass are computed as shown in the Table below. In
this table, messages like 1lK represents |K|-matrices filled with 1’s and those like
P (T )K represent |T | × |K|-matrices filled with P (T ) for every value of K:

Table 1. Shafer-Shenoy’s inward and outward pass computations.

in: elim node sending clique computation message

H HEF 1lEF =
∑

H P (H|E,F ) ¬

I FGI 1lFG =
∑

I P (I|F,G) 

E EBF 1lBF =
∑

E P (E|B)×¬ ®

D ADG P (G|A) =
∑

D P (D|A)P (G|D) ¯

C ACF P (F |A) =
∑

C P (F |C)P (C|A) °

B ABF 1lAF =
∑

B P (B|A)×® ±

out: message computation

¶ P (A,F ) =
∑

G P (A)1lFGP (G|A)P (F |A) =
∑

G P (A)××¯×°

· P (A)F =
∑

G P (A)1lFGP (G|A)1lAF =
∑

G P (A)××¯×±

¸ P (A)G =
∑

F P (A)1lFGP (F |A)1lAF =
∑

F P (A)××°×±

¹ P (B,F ) =
∑

A P (B|A)P (A,F ) =
∑

A P (B|A)×¶

º P (F,G) =
∑

A P (A)P (G|A)P (F |A)1lAF =
∑

A P (A)×¯×°×±

» P (E,F ) =
∑

B P (E|B)P (B,F ) =
∑

B P (E|B)×¹

Computation of a posteriori marginal probabilities is performed in a similar
way, except that new informations (evidence) about some random variables are
entered into cliques as if they were part of the product decomposition of P (V).

3 Constructing a New DAG for Shafer-Shenoy

The aim of this Section is to provide a generic algorithm based on a DAG that
produces precisely the same computations as those of the preceding Section. Note
that, for the moment, this algorithm is not related to Pearl’s method. This will
be the topic of the next Section. Here, our purpose is only the construction of a
new graph. This one is usually different from the original BN and, to explain how
it can be derived from the latter, it is best mimicking Shafer-Shenoy’s algorithm
using the same elimination ordering as before.

Before any elimination occurs, the conditional probabilities of the product
decomposition of P (V) are stored in the nodes of the BN as shown in Fig. 3.a.
As mentioned in the preceding Section, eliminating variable H (resp. I) amounts
to substitute P (H|E,F ) (resp. P (I|F,G)) by

∑
H P (H|E,F ) = 1lEF (resp.∑

I P (I|F,G) = 1lFG). Such operations can be performed on the BN by replac-
ing the probabilities stored in H and I by 1lEF and 1lFG (Fig. 3.b). As shown in
Table 1, eliminating E is achieved by computing 1lBF =

∑
E P (E|B)1lEF . If a

node in the BN had the knowledge of both P (E|B) and 1lEF , it would be able to
perform this operation. Unfortunately, 1lEF and P (E|B) are stored in nodes H
and E respectively. Hence either a message containing P (E|B) should be sent



to H or a message containing 1lEF should be sent to E. In this paper, to decide
between these alternatives, the following rule will always be applied :

Rule 1. Assume an algebraic operation F on some matrices stored into nodes
Xi1 , . . . , Xik of V needs to be performed. Let Xip be any node such that no Xiq ,
q 6= p, is a descendant of Xip , i.e., Xiq cannot be reached from Xip following a
sequence of arcs (along their directions). Then all the Xiq ’s, q 6= p, will send to
Xip a message containing the matrix they store, and Xip will perform F .

Using rule 1, to mimic the elimination of nodeH, node E must send toH mes-
sage P (E|B) and H computes 1lBF =

∑
E P (E|B)1lEF . H then replaces its own

probability 1lEF by 1lBF . As E sent its conditional probability, it need not store
anything anymore. Similarly, when eliminating D, node D should send message
P (D|A) and G should substitute P (G|D) by P (G|A) =

∑
D P (D|A)P (G|D).

The elimination of C leads to C sending message P (C|A) to F and F replac-
ing P (F |C) by P (F |A) =

∑
C P (F |C)P (C|A). Of course, neither C nor D

should store a conditional probability anymore since they already transmitted
their own (Fig. 3.c). The elimination of B should be performed by computing
1lAF =

∑
B P (B|A)1lBF . As 1lBF and P (B|A) are stored in H and B respec-

tively, by rule 1, B should send a message to H. This implies adding a new arc
(B,H) as illustrated on Fig. 3.d. Moreover, as after sending its message to H,
B does not store a matrix anymore, it will never send any other message, hence
arc (B,E) can be safely removed. This is illustrated by representing (B,E) by a
dashed arc. Eliminating A requires several messages sent to either H or G (here
rule 1 cannot settle), H was chosen arbitrarily on Fig. 3.e. Finally, eliminating
F can be performed either by H transmitting a message to I or the converse.
This example justifies the following scheme for constructing the new DAG:

Algorithm 2 (construction of a directed secondary structure).
1. Assign to every node Xk of the original BN a label L(Xk) = {Xk} ∪ Pak;
2. For every node Xk, in their order of elimination, let VXk

= {Xk1
, . . . , Xkp

}
be the set of nodes the labels of which contain Xk. Select among VXk

a node
Xi according to rule 1 and, for every node Xj in VXk

\{Xi}, add an arc
(Xj , Xi) if necessary, remove the other arcs outcoming from Xj. Let L(Xi) =
∪Xkj

∈VXk
L(Xkj

)\{Xk} and let L(Xkj
) = ∅ for all kj 6= i.

The following lemma summarizes this Section:

Lemma 1. Shafer-Shenoy’s inward pass can be precisely reproduced by con-
structing the DAG resulting from Algorithm 2, sending messages downward along
the solid arcs of this DAG and computing new messages as described above, the
latter being obtained by multiplying the messages received by a node by the con-
ditional probability stored into the node.

4 A New Variant of Pearl’s Algorithm

Pearl’s-like methods are applied on DAG such as a BN but, as they need singly-
connected networks, i.e., graphs without loops, to produce correct answers, they



H

B

E

I

D

GF

C

A

H

B

E

I

D

GF

C

A

H I

IH I

A

H I

F G

B

F G

b) after eliminating H and I

P (G|D)

P (D|A)

P (A)

P (C|A)P (B|A)

P (E|B) P (F |C)

1lEF 1lFG

a) the initial BN

P (G|D)

P (D|A)

P (A)

P (C|A)P (B|A)

P (E|B) P (F |C)

P (H|E, F ) P (I|F,G)

A

P (G|A)

P (A)

P (B|A)

P (F |A)

1lBF 1lFG

P (C|A) P (D|A)

P
(E

|B
)

c) after eliminating E, D and C

f) after eliminating F
P (G)P (F,G)

e) after eliminating A
P (F,G) 1lFG

P
(A

)
P
(F

|A
)

P (G
|A)

d) after eliminating B

P (G|A)

P (A)

P (F |A)

1lAF 1lFG

P
(B

|A
)

C D

E

DCB

E

A

B

E

C D

GF

A

D

GF

H

E

B C

Fig. 3. The construction of a directed secondary structure.

often use a preprocess called cutset conditioning that transforms the BN into a
singly-connected graph on which computations are then performed. The trans-
formation advocated by [19] consists of applying the following algorithm:

Algorithm 3 (local cutset). Let (V,A,P) be a BN. Select some arcs in graph
G = (V,A) the removal of which keeps the graph connected while removing all
cycles. Assign to every remaining arc (Xi, Xj) initial label Xi. For each arc
(Xk, Xj) removed, there still exists exactly one trail joining Xk to Xj, i.e., a
sequence of arcs that, without taking into account their directions, can be followed
to reach Xj from Xk. Add Xk to the label of every arc on this trail.

For instance, applying Algorithm 3 on the graph of Fig. 4.a results in the
graph of Fig. 4.c: arcs (A,B) and (C,F ) have been chosen arbitrarily to be re-
moved. Fig. 4.b shows the initial labels of the remaining arcs. Trail B,E,H, F, I,
G,D,A joins B and A, hence A is added to the label of every arc of this trail.
Similarly, trail F, I,G,D,A,C joins F and C, thus C should be added to the
label of every arc of this trail, hence resulting in Fig. 4.c. Once labels have been
established, [19] advocates to use the following propagation algorithm:

Algorithm 4 (Pearl’s-like method with local conditioning).
1. Select an arbitrary node, say Xi, in the graph resulting from Algorithm 3 (for

instance node I in the graph of Fig. 4.c).
2. inward pass: the current node asks its adjacent nodes for their messages. In

turn, they recursively ask their other adjacent nodes for messages. When a
node has received all the messages it waited for, it sends its own message.



3. outward pass: after the inward pass, node Xi sends to its neighbors messages;
they recursively send messages to their other adjacent nodes, and so on.

A message sent by a node Xj to one of its children (resp. parents) Xk is the sum
over the variables not belonging to the label of arc (Xj , Xk) (resp. (Xk, Xj)) of
the product of P (Xj |Paj) by all the messages sent to Xj except that sent by Xk.

a) a Bayesian network b) initial labels c) final labels

F FF

H IIHIH

E GG E G

C CCB DD B D

F

B D

GF
ACF

ACGAF

ACDAB

A
AC

AC

AE

E

B

A A

E

A
A

Fig. 4. Local conditioning and arc labeling.

For instance, in Fig. 4.c, I would send a message to F equal to λ(ACF ) =∑
IG P (I|F,G)π(ACG), where π(ACG) is the message sent to I by G. Note that

λ(ACF ) and π(ACG) are messages of size A×C×F and A×C×G respectively.
Thus arc labels indicate the size of messages sent throughout the network.

Now, let us come back to the unification of Pearl’s and Shafer-Shenoy’s al-
gorithms. Applying the labeling algorithm below, which is a simple variant of
Algorithm 3, to the secondary structure resulting from Algorithm 2, we obtain
the graph of Fig. 5.a. It is striking that the labels correspond precisely to the size
of the messages sent by Shafer-Shenoy, as described in the preceding Section.

Algorithm 5 (secondary structure labeling). Let G be a BN and G′ be
the result of the application of Algorithm 2 to G. For every arc (Xi, Xj) in G′,
assign label {Xi} if it also belongs to G, else ∅. For each arc (Xk, Xj) removed,
add Xk to the label of every arc on the trail still joining Xj to Xk.

The messages of the inward pass of Algorithm 4 performed on the graph
of Fig. 5.a are precisely the same as those of Shafer-Shenoy. For instance, the
message from H to I is equal to

∑
A,B,E,H P (E|B)×P (B|A)×P (A)×P (F |A)×

P (G|A)×P (H|E,F ) =
∑

A P (A)P (F |A)P (G|A)×
∑

B P (B|A)×
∑

E P (E|B)×∑
H P (H|E,F ). The last sums are those of Shafer-Shenoy as they correspond to

the messages and computations mentioned in Fig. 3. This suggests that Pearl can
perform the same computations as Shafer-Shenoy when appropriately ordering
its sequence of products and summations. This is, in essence, quite similar to the
algorithm in [25], except that we use BN for inference rather than a secondary
structure related only to computations and not to the original graph.

For the outward pass, Algorithm 4 will also produce messages of the same
size as Shafer-Shenoy. However, if care is not taken, computations may be more
time-consuming than in Shafer-Shenoy. For instance, assuming that I is selected



A

H

B

E

I

D

GF

C

A

H

B

E

I

D

GF

C

AB
A

E
B

GA

F
A

DACA

a) labels of the secondary structure

FG

P (D|A)

e) Shafer-Shenoy’s messages

P
(A

)
P
(F

|A
)

P (G
|A)

P
(E

|B
)

P
(B

|A
)

P (F,G)

P (C|A)

Fig. 5. Arc labeling on the new Shafer-Shenoy’s DAG.

at step 1, the outward pass will start by I sending to H message
∑

I P (I|F,G) =
1lFG. The message sent by H to G is:

πF,G =
∑

A,B,E,F,H P (E|B)P (B|A)P (A)P (H|E,F )1lFGP (F |A) (1)

=
∑

A,F P (A)P (F |A)1lFG

∑
B P (B|A)

∑
E P (E|B)

∑
H P (H|E,F ) (2)

=
∑

A,F P (A)P (F |A)1lFG1lAF , (3)

the latter being message ¶. Now, to actually perform the computations of (3)
rather than those of (1), remind the sequence of messages sent to H, i.e., first
P (E|B) from E, then P (B|A) from B, and finally P (A), P (F |A) and P (G|A)
from A, F and G. The corresponding products/sums performed when these
messages were received are described in Table 2. Remark that (3) corresponds
to multiplying P (A)P (F |A) by the output of the penultimate computation
(the third one) and by the message sent by I, and then to summing out un-
wanted variables. When H computes messages sent to F and A, the same el-
ement of the stack 1lAF can be used to calculate

∑
A,G P (A)P (G|A)1lFG1lAF

and
∑

F,G 1lFG1lAFP (F |A)P (G|A). The former message corresponds to Shafer-
Shenoy’s ·. The latter is never sent by Shafer-Shenoy, but it will eventually be
computed to obtain the marginal probability of A, F or G as it corresponds
to the product of the messages sent to clique AFG or, when multiplied by
P (A), to the product of the messages sent via separators AF , FG and AF .
Similarly, when H computes the message sent to B, it should use the second
element of the stack to avoid computing twice

∑
H P (H|E,F ). Thus, to behave

as Shafer-Shenoy, Pearl should store in each node a stack of the temporary com-
putations performed during the inward pass (see Table 2) and use this stack
during the outward pass. Note that this does not actually require more space
than in Shafer-Shenoy’s algorithm since, in the latter, these temporary matrices
are stored within separators.

Additional savings can be gained observing that once H has sent messages
to A, F , G, the product of the messages it received from I and these nodes
will be used for computing those sent to E and B. Thus, provided each time a
node sends messages to some other nodes it keeps track of the product of the
messages the latter sent it, it can be shown that Pearl will perform the same



Table 2. H’s stack of temporary inward pass computations.

stack index stack content sender

1 1lEF =
∑

H P (H|E,F )
2 1lBF =

∑
E P (E|B)1lEF E

3 1lAF =
∑

B P (B|A)1lBF B
4 P (F,G) =

∑
A P (F |A)P (G|A)P (A)1lAF A,F,G

computations as Shafer-Shenoy. For instance, once messages to A, F and G have
been sent, node H can store P (A,F ) =

∑
G P (A)P (F |A)P (G|A)1lFG. Then it

can compute
∑

A,F P (A,F )1lBF , which is precisely the message it should send
to B. Note that it also corresponds to the product of the messages sent to clique
ABF by Shafer-Shenoy and that 1lBF is the top of H’s stack when matrix 1lAF

has been popped. Then H can store P (B,F ) =
∑

A P (B|A)P (A,F ), and it can
send to E message

∑
F P (B,F )1lEF , which corresponds to the product of the

messages sent to clique EBF by Shafer-Shenoy. Note again that 1lEF is the top
of H’s stack once 1lBF has been popped. Finally, messages sent to C and D
correspond to marginalizations of the messages sent to cliques ADG and ACF .
This justifies the following Proposition:

Proposition 1 (unification of Pearl and Shafer-Shenoy). Let G be a BN.
Let G′ be the result of the application of Algorithms 2 and 5 on G, according to
an elimination ordering σ. Assign to each node Xi an empty stack T (Xi). Using
the two passes below, Pearl performs the same computations as Shafer-Shenoy:
Inward pass: Messages are like in Algorithm 4. For each message sent by a
node Xi, let Q be the union of P (Xi|Pai) and the set of messages received by
Xi. Let S be the set of variables of these factors ordered according to σ. For
every Xk ∈ S, select the factors in Q that contain Xk; remove them from Q,
multiply them and sum the result over Xk. Add the result to Q and to Xi’s stack,
and indicate which senders sent these factors.
Outward pass: Messages are like in Algorithm 4. For each node Xi in σ’s
reverse order, let M be the message received by Xi during the outward pass
(if any). Compute messages to Xi’s adjacent nodes as follows: Let S be the
variables in the “sender” column at the top of Xi’s stack T (Xi). For all nodes
Xk in S, send a message to Xk equal to the sum over the variables not in the
label of arc (Xk, Xi) of the product of M by the messages sent to Xi by nodes
in S\{Xk} and the stack content of the element just under the top if it exists
else P (Xi|Pai). After messages have been sent to all nodes in S, pop Xi’s stack
once. If the sender’s column is empty, pop it again. Update M by multiplying
it by the messages sent to Xi by all nodes in S and sum over the variables not
belonging to any factor in T (Xi). Iterate the process until the stack is empty.

5 Extension to Binary Join Trees and Lazy Propagation

It is well known that, in general, Shafer-Shenoy’s algorithm is slower than Jensen’s
and that, to be competitive, it needs to be run in a binary join tree, that is, in



a tree where no node has more than 3 neighbors. Algorithms do exist to map
a general join tree into a binary one [17]. The problem with general join trees
comes from the outward phase and is illustrated on Fig. 6.a: assume that mes-
sages ¬, , ® and ¯ were sent during the inward phase, then messages ¶, ·,
¸ and ¹ of the outward phase are computed as:

¶ =
∑

F P (A)×¬××® · =
∑

G P (A)×¬××¯,
¸ =

∑
A P (A)×¬×®×¯ ¹ =

∑
G P (A)××®×¯.



¬

¾

®

¯
°

¼
 ®

¯

¶

¸ ·

¬

¹ º

½ »

ACF

AF

FG

FGI

ADG

AG

AF

ABF

ACF ADG

AF AG

FG AF

FGI

AFG

ABF

P (F |C)P (C|A) P (G|D)P (D|A)

AFGAFG AFGP (A)

P (F |C)P (C|A) P (G|D)P (D|A)

P (A)

P (I|F,G) P (B|A)P (B|A) P (I|F,G)

Fig. 6. Join trees vs. binary join trees.

Remark that some products are done several times. To avoid these redun-
dancies, Shenoy proposes to modify the join tree so that no node has more than
3 neighbors (Fig. 6.b). Computations in this new structure are then:

° = P (A)×¬× º =
∑

F ®×° » =
∑

G ¯×°,
¼ = ®×¯ ½ =

∑
A P (A)×¼×¬ ¾ =

∑
G P (A)×¼×¯.

Actually, message ¼ captures the idea that product ® × ¯ should not be per-
formed several times. But avoiding these redundancies can also be obtained by
observing that if we multiply during the inward phase the messages that arrive
one by one and we store these results into a stack (see the left part of Table 3),
then the outward phase messages can be computed by using this stack and mul-
tiplying by the messages on the right part of the Table. As is noticeable, from
bottom up, these products can be computed incrementally requiring only one
product for each line. This justifies the following proposition:

Proposition 2 (binary join tree unification). Applying the algorithm of
Proposition 1 with the rules below is equivalent to performing Shafer-Shenoy in
a binary join tree:
Inward pass: When messages arrive to node Xi, perform the products one by
one and store all of them into Xi’s stack.
Outward pass: send outward messages to Xi’s neighbor in the reverse order in
which these neighbors sent their messages during the inward phase.

The second extension we should mention is the unification with Lazy Propa-
gation [10]. The latter is essentially similar to Jensen’s or Shafer-Shenoy’s algo-
rithms in that it uses a join tree to perform propagation of potentials. However,
it departs from these algorithms in the following manner:



Table 3. Binary join trees and the product of messages.

inward sending clique inward phase products outward phase products

initial potential P (A) ×·×¸×¹ = ¾

ACF P (A)×¬ ×¸×¹ = ½

FGI P (A)×¬× ×¹ = »

ABF P (A)×¬××® = º

1. Instead of storing only one potential in each clique, it stores a list of po-
tentials (or conditional probability tables). It performs products on some
potentials only when necessary, i.e., when they contain a variable that is to
be marginalized-out.

2. It recognizes summations like
∑

H P (H|T ) the result of which is known for
sure to be 1.

3. It uses d-separation to avoid sending a message from one clique to another if
the random variables of these cliques are independent due to some evidence.

In our algorithm, using d-separation is quite obvious since we are working on
a BN, and avoiding computing unity summations is easy: it only requires to
know which variables of the conditional probability tables are on the left of con-
ditioning bars. As for the first feature, our algorithm can be easily adapted: it
is sufficient manipulate lists of potentials instead of performing directly all the
products. Hence, Pearl’s algorithm can be adapted to behave as Lazy Propaga-
tion.

6 Conclusion

This paper has shown that Pearl’s-like methods could be adapted using a new
secondary directed structure and an appropriate ordering to perform the same
computations as Shafer-Shenoy or Lazy Propagation, thus proving that directed
inference methods could be as efficient as undirected ones. The advantage of
using directed secondary structures is twofold: first, it enables to perform quite
simply d-separation analyses and, secondly, it enables to limit the amount of
information lost during triangulation by keeping the secondary structure as close
as possible of the original one. For instance, there are cases in which even if
the BN contains cycles, Pearl’s algorithm can compute correctly all marginal a
posteriori probabilities without needing any conditioning, e.g., when the parent
nodes of the cycle sinks are independent. In such cases, working on a directed
structure is better than working on an undirected one since the latter requires
an unnecessary triangulation.

References

1. Cowell, R., Dawid, A., Lauritzen, S., Spiegelhalter, D.: Probabilistic Networks
and Expert Systems. Statistics for Engineering and Information Science. Springer-
Verlag (1999)



2. Jensen, F.: An introduction to Bayesian Networks. Taylor and Francis (1996)
3. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufman (1988)
4. Allen, D., Darwiche, A.: New advances in inference by recursive conditioning. In:

Proceedings of UAI. (2003) 2–10
5. D’Ambrosio, B., Shachter, R., Del Favero, B.: Symbolic probabilistic inference in

belief networks. In: Proceedings of AAAI. (1990) 126–131
6. Darwiche, A., Provan, G.: Query DAGs: A practical paradigm for implementing

belief network inference. In: Proceedings of UAI. (1996) 203–210
7. Dechter, R.: Bucket elimination: A unifying framework for several probabilistic

inference algorithms. In: Proceedings of UAI. (1996) 211–219
8. Huang, C., Darwiche, A.: Inference in belief networks: A procedural guide. Inter-

national Journal of Approximate Reasoning 15(3) (1996) 225–263
9. Jensen, F., Lauritzen, S., Olesen, K.: Bayesian updating in causal probabilistic

networks by local computations. Computational Statistics Quarterly 4 (1990)
269–282

10. Madsen, A., Jensen, F.: LAZY propagation: A junction tree inference algorithm
based on lazy inference. Artificial Intelligence 113(1–2) (1999) 203–245

11. Poole, D., Zhang, N.: Exploiting contextual independence in probabilistic inference.
Journal of Artificial Intelligence Research 18 (2003) 263–313

12. Shafer, G.: Probabilistic expert systems. Society for Industrial and Applied Math-
ematics (1996)

13. Sharma, R., Poole, D.: Efficient inference in large discrete domains. In: Proceedings
of UAI. (2003) 535–542

14. Zhang, N., Poole, D.: Inter-causal independence and heterogeneous factorization.
In: Proceedings of UAI. (1994) 606–614

15. Shachter, R., Andersen, S., Szolovits, P.: Global conditioning for probabilistic
inference in belief networks. In: Proceedings of UAI. (1994)

16. Lauritzen, S., Spiegelhalter, D.: Local computations with probabilities on graphical
structures and their application to expert systems. The Journal of The Royal
Statistical Society – Series B (Methodological) 50(2) (1988) 157–224

17. Shenoy, P.: Binary join trees for computing marginals in the Shenoy-Shafer archi-
tecture. International Journal of Approximate Reasoning 17(1) (1997) 1–25

18. Diez, F.: Local conditioning in Bayesian networks. Artificial Intelligence 87 (1996)
1–20

19. Faÿ, A., Jaffray, J.Y.: A justification of local conditioning in Bayesian networks.
International Journal of Approximate Reasoning 24(1) (2000) 59–81

20. Peot, M., Shachter, R.: Fusion and propagation with multiple observations in belief
networks. Artificial Intelligence 48 (1991) 299–318

21. Geiger, G., Verma, T., Pearl, J.: Identifying independence in Bayesian networks.
Networks 20 (1990) 507–534

22. Dawid, A., Kjærulff, U., Lauritzen, S.: Hybrid propagation in junction trees. In:
Proceedings of IPMU94. (1994) 87–97

23. Kjærulff, U.: HUGS: Combining exact inference and Gibbs sampling in junction
trees. In: Proceedings of UAI. (1995)

24. Rose, D.: Triangulated graphs and the elimination process. Journal of Mathemat-
ical Analysis and Applications 32 (1970) 597–609

25. Bloemeke, M., Valtorta, M.: A hybrid algorithm to compute marginal and joint
beliefs in Bayesian networks and its complexity. In: Proceedings of UAI. (1998)
16–23


