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Abstract. In this paper, we propose a novel algorithm for articulated
object tracking, based on a hierarchical search and particle swarm opti-
mization. Our approach aims to reduce the complexity induced by the
high dimensional state space in articulated object tracking by decom-
posing the search space into subspaces and then using particle swarms
to optimize over these subspaces hierarchically. Moreover, the intelligent
search strategy proposed in [20] is integrated into each optimization step
to provide a robust tracking algorithm under noisy observation condi-
tions. Our quantitative and qualitative analysis both on synthetic and
real video sequences show the efficiency of the proposed approach com-
pared to other existing competitive tracking methods.
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1 Introduction

Tracking articulated structures with accuracy and within a reasonable time is
challenging due to the high complexity of the problem to solve. For this purpose,
various approaches based on particle filtering have been proposed. Among them,
one class addresses the complexity issue by reducing the dimensionality of the
state space. For instance, some methods add constraints (e.g., physical) to the
mathematical models [4, 13], to the object priors [7] or to their interactions with
the environment [11]. Relying on the basic assumption that some body part
movements are mutually dependent, some learning-based approaches [16, 19]
reduce the number of degrees of freedom of these movements.

Alternatively, a second class of methods has been proposed in the literature
[5, 9, 12, 14, 17, 18] whose key idea is to decompose the state space into a set
of small subspaces where particle filtering can be applied: by working on small
subspaces, sampling is more efficient and, therefore, fewer particles are needed
to achieve a good performance. Finally, in the class of the optimization-based
methods, the approach is to optimize an objective function corresponding to the
matching between the model and the observed image features [3, 6, 8]. Recently,
Particle Swarm Optimization (PSO) has been reported to perform well on artic-
ulated human tracking [10, 20]. Its key idea is to apply evolutionary algorithms
inspired from social behaviors observed in wildlife to make the particles evolve
following their own experience and the experience of the global population.



In this paper, our approach consists in decomposing the search space into
subspaces of smaller dimensions and, then, in exploiting the approach proposed
in [20] to search within these subspaces in a hierarchical order. A hierarchical
particle swarm optimization has also been introduced in [10]. The main difference
between this approach and ours is that we incorporate the sampling covariance
and the annealing factor into the update equation of PSO at each optimization
step to tackle the problem of noisy observations and cluttered background.

The paper is organized as follows. In Section 2, we briefly recall PSO. Section
3 presents the proposed algorithm. Section 4 reports the results of our experi-
mental evaluation. Finally, Section 5 gives some conclusions and perspectives.

2 Particle Swarm Optimization (PSO)

Let X denote the state space: our goal is to search for state x ∈ X that maximizes
a cost function f : X → R, with a ≤ x ≤ b. A swarm consists of N particles, each

one representing a candidate state of the articulated object. Denote x
(i)
(m) the ith

particle at the mth iteration. x
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(m) is decomposed into K (object) parts, i.e.,
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the ability to memorize its best state computed so far s(i) = {s(i),1, ..., s(i),K} ∈
X . Let sg be the current global best state, i.e., sg = Argmax{f(s(i))}Ni=1. The
evolution of the particles in PSO is described by the following equations:
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where β1, β2 are constants, r1, r2 ∼ U(0, 1) are random numbers drawn from a

uniform distribution, w is the inertia weight and wv
(i)
(m−1) is the inertial velocity.

PSO has the ability to balance between the local and global search strategies
of particles by setting the appropriate values for constants β1, β2 and inertia
weight w. A large inertia weight results in an exploration of the search space
(global search) while a small inertia weight limits the search around the globally
best particle (local search). The value of the inertia weight can be fixed as a
constant or adaptively changed throughout the search.

In the next section, we introduce our approach, inspired from PSO, and
dedicated to articulated object tracking in cluttered environments.

3 Proposed approach

We propose to exploit the hierarchical nature of the kinematic structure of the
articulated object to improve tracking. First, the state space of the target ob-
ject is decomposed into lower dimensional subspaces. Then, optimal states are



searched for in these subspaces in the hierarchical order of the kinematic struc-
ture using Partitioned Sampling (PS) [12]. These optimal states are then used
to constrain the search in the next subspaces in the hierarchical order.

At time t, let x
(i),k
t (resp. s

(i),k
t ) denote the kth substate of the ith particle

x
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the global best state. Then, at the mth iteration, x
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proach proposed in [20], except that the state and velocity update equations for
each subpart k are written as follows:
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P(m−1) = α0 ∗P(m−2), m ≥ 2, is the sampling covariance, with α0 a constant,
and P(0) is a covariance matrix whose diagonal elements are fixed with respect
to the model configuration parameters. We propose to compute factors β1 and
β2 at each iteration m using the annealing principle so that:

β1 = β2 = β0βmax

(
βmax
βmin

)− m
M

(5)

where β0, βmax, βmin are constants, 0 < β0 ≤ 1, and M is the maximal number
of iterations.

By combining PSO and hierarchical search, our approach aims to increase
the tracking accuracy and to reduce the computational cost of the tracking
algorithm by integrating the benefits of both methods. First, the search efficiency
is improved by performing PSO within lower dimensional subspaces, thereby
increasing tracking accuracy. Second, since the search is performed in the same
way as PS, the number of particles required and thus the computational cost of
the tracking algorithm is greatly reduced. Our proposed Hierarchical Annealed
based Particle Swarm Optimization Particle Filter (HAPSOPF) is described in
Algorithm 1, where x̄ is the estimated state of the object at time slice t, w(.,y)
is the cost function to be optimized by PSO, and y is the current observation.

4 Experimental results

We compare our approach with APF [6], PSAPF [2], APSOPF [20] and HPSO

[10]. The cost function w(x
(i),k
t,(m),y) to be optimized by PSO measures how well

a state hypothesis x
(i),k
t,(m) matches the true state w.r.t. the observed image y,

and is constructed using histogram and foreground silhouette [6]. An articulated
object is described by a hierarchy (a tree) of parts, each part being linked to its
parent in the tree by an articulation point. For instance, in the top row of Fig. 1,
the blue polygonal parts are the root of the tree and the colored rectangles are



Input: {s(i)t−1}Ni=1, α0, β0, βmax, βmin, P(0), M (number of iterations)

Output: {s(i)t }Ni=1

1 for k = 1 to K do
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t,(0) ∼ N (s
(i),k
t−1 , P(0)), i = 1, . . . , N

3 for m = 0 to M do
4 if m ≥ 1 then
5 Compute P(m) and update β1, β2
6 Carry out the PSO iteration based on Eq. (3) and (4)

7 Evaluate: f(x
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Algorithm 1: Our HAPSOPF algorithm.

the other nodes of the tree. The root is described by its center (x, y) and its
orientation θ whereas the other parts are only characterized by their angle θ.
For all algorithms, particles are propagated using a random walk with standard
deviations fixed to σx = 2, σy = 2 and σθ = 0.05. For APSOPF and HAPSOPF,
P(0) is a diagonal matrix with the values of σx, σy and σθ. Our comparisons are
based on two criteria: estimation errors and computation times.

4.1 Tests on synthetic sequences

Video sequences. We have generated two sets of various synthetic video se-
quences composed of 200 frames of 640 × 480 pixels (with ground truth). The
video sequences in the first set contain no noise while, in the second set, cluttered
background was generated to demonstrate the robustness of the proposed ap-
proach. The clutter is made up of polygons and rectangles randomly positioned

(a)

(b)
La = 3, Na = 4 La = 4, Na = 5 La = 3 , Na = 6 La = 4 , Na = 7

Fig. 1: Synthetic video sequences used for quantitative evaluation (number of arms
Na, length of arms La): (a) without clutter and (b) with clutter.



in the image. An articulated object is defined by its number Na of arms, and
their length La: some examples are given in Fig. 1.

Quantitative tracking results. The tracking errors are given by the sum of
the Euclidean distances between each corner of the estimated parts and their
corresponding corner in the ground truth. We used M = 3 layers for PSAPF and
APF since it produces stable results for both algorithms, and M = 3 maximal
iterations for HAPSOPF, HPSO and APSOPF. Table 1 gives the performances
of the tested algorithms for sequences without or with noise (cluttered back-
ground). In our experiments, tracking in noisy sequences is challenging due to
the background. In such cases, the annealing factor helps the particle swarm to
follow its own searching strategy without being affected by any wrong guide of
the local or global best states. On the contrary, the annealing process of PSAPF
forces the particle set to represent one of the modes of the cost function, which
causes some parts of the object to get stuck in wrong locations. This problem
of annealing approaches was reported in [1]. Moreover, the use of the sampling
covariance instead of the inertial velocity of Eq. (1) leads to an efficient explo-
ration of the search space without losing the searching power of PSO. This is
validated by our experiments on sequences without cluttered background, where
our approach outperforms all the other ones. Fig. 2 gives comparative conver-
gence results (error depending on the number N of particles) and computation
times for a synthetic sequence (behaviors are similar for other sequences). Note
that our approach converges better and faster than the other methods.

4.2 Tests on real sequences

Dataset. We used sequences S1 Gesture and S2 Throwcatch of the HumanEva-I
dataset [15] that include ground truths, thus allowing to evaluate quantitatively
our approach. For both sequences, the lower right hands of the subject move
quickly, which makes them difficult to track. Moreover, S2 Throwcatch contains
self-occlusions (hands and torso, left and right hands, left and right legs).

The searching order for PSAPF, HPSO, and HAPSOPF is: torso, head, left
thigh, right thigh, left upper arm, right upper arm, left leg, right leg, left forearm,

Table 1: Tracking errors in pixels (average over 30 runs) and standard deviations for
synthetic video sequences, N is the number of particles used per filter.

Na = 4, K = 3 Na = 5, La = 4 Na = 6, La = 3 Na = 7, La = 4
N 50 200 50 200 50 200 50 200

HAPSOPF
without noise 110(2) 106(1) 214(5) 195(2) 243(11) 211(9) 312(7) 271(4)
noise 204(39) 143(10) 227(56) 175(30) 322(67) 295(60) 553(194) 516(180)

PSAPF
without noise 120(2) 114(1) 238(6) 208(4) 251(7) 218(3) 319(8) 278(4)
noise 309(109) 221(94) 281(78) 219(48) 432(86) 388(75) 1008(232) 914(213)

HPSO
without noise 125(5) 119(2) 252(9) 227(5) 254(11) 213(6) 382(5) 315(3)
noise 277(78) 194(65) 245(42) 201(26) 345(27) 295(10) 922(334) 731(259)

APSOPF
without noise 184(3) 169(2) 260(12) 241(10) 265(15) 257(12) 471(30) 439(21)
noise 254(16) 227(8) 308(33) 291(25) 490(68) 474(47) 817(223) 785(169)

APF
without noise 128(3) 109(2) 246(11) 221(9) 270(13) 236(11) 487(35) 412(24)
noise 272(9) 258(5) 322(29) 309(18) 440(51) 429(40) 613(174) 592(156)



(a) (b)

Fig. 2: Comparison tests for convergence and computation time when track-
ing the object Na = 4, La = 3: (a) convergence and (b) computation times (HPSO
and our approach give same curves) in seconds.

right forearm. For a fair comparison, we fixed the number of evaluations of the
weighting function at each frame for all the algorithms to 2000, and tuned pa-
rameters {N,M} for each method so that they achieve the best performance while
satisfying the above constraint: {400, 5} for APF, {40, 5} for PSAPF, {200, 10}
for APSOPF and {20, 10} for HPSO and HAPSOPF.

Quantitative tracking results. We used the evaluation measure proposed
in [15], which is based on Euclidean distances between 15 virtual markers on the
human body. Table 2 provides tracking errors and computation times. As can
be observed, our approach has the same computation time as HPSO but reduces
the estimation error and it outperforms the other approaches on both criteria.

Fig. 3 provides qualitative tracking results. Our approach always outper-
forms PSAPF and HPSO in cases of self-occlusions (frames 275, 523) or quick
movements (frames 160, 387), showing its robustness. Because our approach in-
corporates the annealing into each searching stage of the hierarchical search, the
problem of noisy observations is effectively alleviated. This makes our approach
more robust to self-occlusions. The sampling covariance also helps to improve
the searching effectiveness by shifting the particle swarm toward more promising
regions.

Table 2: Tracking errors for full body in pixels (average over 30 runs).

HAPSOPF PSAPF HPSO APSOPF APF

Error Time Error Time Error Time Error Time Error Time

S1 Gesture 95(6) 287 99(11) 293 101(9) 287 102(4) 1348 105(2) 1412

S2 Throwcatch 212(10) 557 227(19) 579 232(12) 557 235(7) 2070 240(5) 2184



Fig. 3: Tracking results for frames 123,160,275,387,488,523: HPSO (first row), PSAPF
(second row), HAPSOPF (third row). The tracking results for the other approaches as
well as those for the sequence S1 Gesture are not presented due to space constraint.

5 Conclusions and Future work

In this paper, we have introduced a new algorithm for articulated object tracking
based on particle swarm optimization and hierarchical search. We addressed the
problem of articulated object tracking in high dimensional spaces by employ-
ing a hierarchical search to improve search efficiency. Furthermore, the problem
of noisy observation has been alleviated by incorporating the annealing factor
terms into the velocity updating equation of PSO. Our experiments on syn-
thetic and real video sequences demonstrate the efficiency and effectiveness of
our approach compared to other common approaches, both in terms of tracking
accuracy and computation time. Our future work will focus on evaluating the
proposed approach in multi-view environments.
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