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Abstract

This paper deals with preference representation on combinatorial domains and preference-based
recommendation in the context of multicriteria or multiagent decision making. The alternatives
of the decision problem are seen as elements of a product set of attributes and preferences over
solutions are represented by generalized additive decomposable (GAI) utility functions modeling
individual preferences or criteria. Thanks to decomposability, utility vectors attached to solutions
can be compiled into a graphical structure closely related to junction trees, the so-called GAI
network. Using this structure, we present preference-based search algorithms for multicriteria or
multi-agents decision making. Although such models are often non-decomposable over attributes,
we actually show that GAI networks are still useful to determine the most preferred alternatives
provided preferences are compatible with Pareto dominance. We first present two algorithms for
the determination of Pareto-optimal elements. Then the second of these algorithms is adapted so
as to directly focus on the preferred solutions. We also provide results of numerical tests showing
the practical efficiency of our procedures in various contexts such as compromise search and fair
optimization in multicriteria or multiagent problems.

Key words: Graphical models, GAI decomposable utility, preference representation,
multiobjective optimization, multiagent decision making, compromise search, fairness.

1. Introduction

The complexity of decision problems in organizations, the importance of the issues raised and
the increasing need to explain or justify any decision has led decision makers to seek a scientific
support in the preparation of their decisions. For many years, rational decision making was un-
derstood as solving a single-objective optimization problem, the optimal decision being implicitly
defined as a feasible solution minimizing a cost function under some technical constraints. However,
the practice of decision making in organizations has shown the limits of such formulations. First,
there is some diversity and subjectivity in human preferences that requires distinguishing between
the objective description of the alternatives of a choice problem and their value as perceived by
individuals. In decision theory, alternatives are often seen as multiattribute items characterized by
a tuple in a product set of attributes domains, the preferences of each individual being encoded
by a utility function defined on the multiattribute space measuring the relative attractiveness of
each tuple. Hence the objectives of individuals take the form of multiattribute utility functions
to be maximized. Typically, in a multiagent decision problem, we have to deal with several such
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utility functions that must be optimized simultaneously. Since individual utilities are generally not
commensurate, constructing an overall utility function gathering all relevant aspects is not always
possible. Hence the problem does not reduce to a classical single-objective optimization task; we
have to solve a multiobjective problem.

Moreover, even when there is a single decision maker, several points of views may be considered
in the preference analysis, leading to the definition of several criteria. Rationality in decision making
is generally not only a matter of costs reduction. In practice, other significant aspects that are
not reducible to costs must be included in the analysis; the outcomes of alternatives must be
thought in a multidimensional space. This is the case in the elaboration of public policies where
different aspects such as ecology and environment, education, health, security, public acceptability
are considered in the evaluation process. This is also the case for individual decision of consumers.
For example, when choosing a new car for a family, an individual will look at the cost, but will
also consider several multiattribute utility functions concerning security in the car (brake system,
airbags...), velocity (speed, acceleration, ...), space (boot size...), environmental aspects (pollution)
and aesthetics (color, shape, brand...). All these observations have motivated the emergence of
multicriteria methodologies for preference modeling and human decision support [1, 2, 3, 4], an
entire stream of research that steadily developed for forty years.

As for human decision making, automated decision making in complex environment requires
optimization procedures involving multiple objectives. This is the case when computers are used for
planning actions of autonomous agents or for organizing the workflow in production chains. Various
other examples can be mentioned such as web search [5], e-commerce and resource allocation
problems. In many of them, however, a decision is actually characterized by a combination of local
decisions, thus providing the set of alternatives with a combinatorial structure. This explains the
growing interest for multiobjective combinatorial optimization. Besides the explicit introduction
of several possibly conflicting objectives in the evaluation process, the necessity of exploring large
size solution spaces is an additional source of complexity. This has motivated the development in
the AI community of preference representation languages aiming at simplifying preference handling
and decision making on combinatorial domains.

As far as utility functions are concerned, the works on compact representation aim at exploiting
preference independence among some attributes so as to decompose the utility of a tuple into a
sum of smaller utility factors. Different decomposition models of utilities have been developed to
model preferences. The most widely used assumes a special kind of independence among attributes
called “mutual preferential independence”. It ensures that preferences are representable by an
additively decomposable utility [6, 7]. Such decomposability makes both the elicitation process
and the query optimizations very fast and simple. However, in practice, preferential independence
may fail to hold as it rules out any interaction among attributes. Generalizations have thus been
proposed in the literature to significantly increase the descriptive power of additive utilities. Among
them, multilinear utilities [2] and GAI (generalized additive independence) decompositions [8, 9]
allow quite general interactions between attributes [7] while preserving some decomposability. The
latter has been used to endow CP-nets with utilities (UCP-nets) both under uncertainty [10] and
under certainty [11]. GAI decomposable utilities can be compiled into graphical structures closely
related to junction trees, the so-called GAI networks. They can be exploited to perform classical
optimization tasks (e.g. find a tuple with maximal utility) using a simple collect/distribute scheme
essentially similar to that used in the Bayes net community or to Variable Elimination algorithms
in CSP [12, 13, 14]. In order to extend the use of GAI nets to multiobjective optimization tasks, we
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investigate the potential of GAI models for representing and solving multiobjective optimization
problems.

As soon as multiple criteria or utility functions are considered in the evaluation of a solution,
the notion of optimality is not straightforward. Among the various optimality criteria, the concept
of Pareto optimality or efficiency is the most widely used. A solution is said to be Pareto-optimal
or efficient if it cannot be improved on one criterion without being depreciated on another one.
Pareto optimality is natural because it does not require any information about the relative im-
portance of criteria and can be used as a preliminary filter to circumscribe the set of reasonable
solutions in multiobjective problems. However, in combinatorial optimization problems, the com-
plete enumeration of Pareto-optimal solutions is often infeasible in practice[15, 16, 17]. For this
reason, in many real applications, people facing such complexity resort to artificial simplifications
of the problem, either by focusing on the most important criterion (as in route planning assistants),
or by performing a prior linear aggregation of the criteria to get a single objective version of the
problem, or by generating samples of good solutions using heuristics, which in any case does not
provide formal guarantees on the quality of the solutions.

In this paper, we assume that each objective is represented by a GAI decomposable utility
function defined on the multiattribute space describing items. In Section 2, after recalling basic
definitions related to GAI nets, we show how they make it possible to represent vector-valued utility
functions in a compact form, thus facilitating preference handling in multiobjective decision-making
problems. In Section 3, we present two exact algorithms exploiting the structure of the GAI net for
the determination of Pareto-optimal elements. In Section 4 we propose a refinement of the second
algorithm aiming at focusing the search on specific compromise solutions within the Pareto set. We
provide exact algorithms for preference-based search with various preference models. The potential
of this approach is illustrated in the context of fair multi-agents optimization or in the context of
compromise search in multicriteria optimization. Finally, in Section 5, we present numerical tests
showing the practical feasibility of the proposed approach on various instances of multiobjective
combinatorial problems.

2. Multidimensional GAI Nets

We assume that alternatives are characterized by n attributes x1, . . . , xn taking their values in
finite domains X1, . . . , Xn respectively. Hence alternatives can be seen as elements of the product
set of these domains X = X1 × · · · ×Xn. In the sequel, N = {1, . . . , n} will denote the set of all
the attributes’ indices. By abuse of notation, for any set Y ⊆ N, XY will refer to the Cartesian
product of the Xi, i ∈ Y, i.e., XY =

∏
i∈YXi, and xY will refer to the projection of x ∈ X on

XY, that is, the tuple formed by the xi, i ∈ Y. We also consider a binary relation % over X
(actually this is a weak order). Essentially, x % y means that x is at least as good as y. Symbol
� refers to the asymmetric part of % and ∼ to the symmetric one. Under mild hypotheses [18],
it can be shown that % is representable by a utility function, i.e., by a function u : X 7→ Z+ s.t.
x % y ⇔ u(x) ≥ u(y) for all x, y ∈ X . Actually, all the algorithms proposed in this paper also
work with real-valued utility functions. Our assumption that utilities are integer-valued is only
exploited in the proofs of complexity results. As preferences are specific to each individual, utilities
must be elicited for each agent, which is often impossible due to the combinatorial nature of X .
Moreover, in a recommendation system with multiple regular users, storing explicitly for each user
the utility of every element of X is prohibitive. Fortunately, agent’s preferences usually have an
underlying structure induced by independencies among attributes that substantially decreases the
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elicitation effort and the memory needed to store preferences. The simplest case [6] is obtained
when preferences over X = X1×· · ·×Xn are representable by an additive utility u(x) =

∑n
i=1 ui(xi)

for any x = (x1, . . . , xn) ∈ X . This model only requires to store ui(xi) for any xi ∈ Xi, i ∈ N,
and it can be effortlessly elicited. However, such a decomposition is not always convenient because
it inevitably rules out any interaction between attributes, which is far from being realistic. When
preferences are complex, more elaborate models are thus needed. Some generalizations of additive
utilities have thus been investigated. For instance utility independence on every Xi leads to a more
sophisticated form called a multilinear utility [7]. Such utilities are more general than additive
ones but still cannot cope with many kinds of interactions among attributes. To increase the
descriptive power of such models, GAI (generalized additive independence) decompositions have
been introduced by [19], that allow more general interactions between attributes [7, 9, 8, 20] while
still preserving some decomposability.

2.1. GAI models and GAI nets

GAI decomposition is a generalization of the additive decomposition in which subutilities ui
are allowed to be defined over overlapping factors. As such, they include additive and multilinear
decompositions as special cases. They can be more formally defined as follows:

Definition 1. Let C1, . . . ,Ck be subsets of N such that N =
⋃k
i=1 Ci. A utility u(·) representing

% over X is GAI-decomposable w.r.t. the XCi iff there exist functions ui : XCi 7→ Z+ such that:

u(x1, . . . , xn) =
k∑
i=1

ui(xCi), for all x = (x1, . . . , xn) ∈ X .

Example 1. Utility function u(a, b, c, d, e, f, g) = u1(a, b)+u2(b, c, d)+u3(c, e)+u4(b, d, f)+u5(b, g)
defined on A × B × C × D × E × F × G is a GAI-decomposable utility, with XC1 = A × B,
XC2 = B × C ×D, XC3 = C × E, XC4 = B ×D × F and XC5 = B ×G.

GAI decompositions can be represented by graphical structures we call GAI networks [9, 20]
which are essentially similar to junction graphs used in the Bayesian network literature [21, 22]:

Definition 2. Let u(x1, . . . , xn) =
∑k

i=1 ui(xCi) be a GAI utility function over X . A GAI network
representing u(·) is an undirected graph G = (C, E) satisfying the following three properties:

Property 1: C = {XC1 , . . . , XCk
}. Vertices XCi are called cliques. To each vertex XCi is

associated the corresponding subutility factor ui from the utility function u;

Property 2: (XCi , XCj ) ∈ E ⇒ Ci ∩ Cj 6= ∅. Edges (XCi , XCj ) are labeled by XSij , where
Sij = Ci ∩Cj. XSij is called a separator. Separator XSij thus corresponds to the attributes
that the two cliques XCi and XCj have in common;

Property 3: for all XCi , XCj such that Ci ∩Cj = Sij 6= ∅, there exists a path between XCi

and XCj in G such that for every clique XCh
in this path Sij ⊆ Ch (running intersection

property).
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In the rest of the paper, the XCi will always denote cliques of a GAI network and the XSij

will always denote the separator, i.e., the intersection, between cliques XCi and XCj . By abuse of
notation, XSii will refer to clique XCi itself. Cliques are usually drawn as ellipses and separators
as rectangles. For any GAI decomposition, by Definition 2, the cliques of the GAI network should
be the sets of attributes of the subutilities. The edges in the network represent the intersections
between subsets of attributes. As the intersections are commutative, the GAI network is an undi-
rected graph. Note that this contrasts with UCP-nets, where the relationships between vertices in
the network correspond to conditional dependencies, thus justifying the use of directed graphs for
UCP-nets. For any clique XCi , Adj(XCi) will refer the set of cliques adjacent to XCi .

In this paper, we shall only be interested in GAI trees. As we shall see, this is not restrictive as
general GAI networks can always be compiled into GAI trees. The set of edges of a GAI network
can be determined by any algorithm preserving the running intersection property (see the Bayesian
network literature on this matter [22]). Figure 1 shows one possible GAI network representing the
GAI utility of Example 1. Note that this network is not the unique representation of the utility
function.

AB B BCD
C

BD

CE

BDF B BG

Figure 1: A GAI tree

2.2. Handling multiple objectives

Consider now a finite set of objectives M = {1, . . . ,m} and assume that any solution x ∈ X
is characterized by a utility vector (u1(x), . . . , um(x)) ∈ Zm+ where ui : X → Z+ is the ith utility
function. This function measures the relative utility of alternatives with respect to the ith point of
view (criterion or agent) considered in the problem. Hence, the comparison of alternatives reduces
to that of their utility vectors, i.e., instead of comparing alternatives x and y through the numbers
assigned to them by utility u as in the preceding subsection, we now compare them through vectors
(u1(x), . . . , um(x)) and (u1(y), . . . , um(y)).

The ui are functions X → Z+. Hence, separately, they can be considered as single utility
functions. Assuming that each objective corresponds to a given agent, each ui corresponds to
the utility function representing the agent’s preferences and vectors (u1(x), . . . , um(x)) correspond
to the utility of the group of agents. Now, if a ui is the utility function of a given agent, by the
preceding subsection, it may be GAI decomposable. Thus, assume that all the ui are decomposable
according to the same GAI net given in Figure 1. Then, for any i ∈M ,

ui(a, b, c, d, e, f, g) = ui1(a, b) + ui2(b, c, d) + ui3(c, e) + ui4(b, d, f) + ui5(b, g).

Note that, even if the values of the uij differ from one agent to another, all these utilities can

be stored in the GAI net of Figure 1 as follows: store all functions ui1, i ∈ M , in clique AB,
store all functions ui2, i ∈ M , in clique BCD, and so on. Hence the GAI networks described in
Subsection 2.1 can be easily adapted to the multiobjective case. The key property that enables
this generalization to the multiobjective case is the fact that all the subutilities uij are defined on

attribute sets (here XCj ) included in at least one clique of the GAI net. For instance, the ui1 are
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defined on A× B and can thus be stored in any clique containing both attributes A and B (here
clique AB is the only possible choice).

Let us now consider the case where the agents have preferences that are not decomposable
according to the same GAI network. For simplicity, we will illustrate our point for the two
agent/objective case: m = 2. So suppose that u1 and u2 can be decomposed as follows:

u1(a, b, c, d, e, f, g) = u11(a, b) + u12(b, g) + u13(d, g) + u14(c, d, f) + u15(e),
u2(a, b, c, d, e, f, g) = u21(a, c) + u22(b) + u23(d, g) + u24(d, e, f) + u25(c, e).

(1)

These decompositions correspond to the GAI networks of Figure 2. Note that none of these trees
can be used to store both u1 and u2, the left graph being unable to store u24(d, e, f), and the right
one being unable to store u11(a, b). We thus need to construct another GAI tree that can contain
both u1 and u2. To construct this new GAI network, we will first create another graph per ui,
called a Markov network. In this graph, each node corresponds to an attribute Xi, and two nodes
Xi, Xj are connected by an edge if and only if there exists a subutility uh : XCh

7→ Z+ such that
i, j ∈ Ch. In other words, the set of attributes over which uh is defined contains both Xi and Xj .
Hence, in the Markov network, to each subutility uh corresponds a clique (a complete subgraph).
Figure 3 displays the Markov networks of u1 and u2 as described in Equation (1).

u2’s GAI networku1’s GAI network

DG D DEF E CE C AC BAB B BG G DG D CDF E

Figure 2: The GAI trees representing u1 and u2

G2G1

A B G

D

FE

C

A B G

D

FE

C

Figure 3: The Markov networks G1 of u1 and G2 of u2

Now, create the union of both graphs, i.e., the Markov network containing an edge between two
nodes if and only if G1 and/or G2 contains the same edge. The union of G1 and G2 is represented
in Figure 4.a. Next, this graph is triangulated using any triangulation technique [23, 24, 25].
Finally, the triangulated graph is mapped into a GAI network: each maximal complete subgraph
corresponds to a clique of the GAI network. In the latter, edges are added by any algorithm
preserving the running intersection property [22]. In [26], Rose guarantees that whenever the
cliques of a GAI net correspond to the maximal complete subgraphs of a triangulated Markov
network, then the GAI net is a tree.

Hence, given a set u1, . . . , um of utilities, each one having its own GAI decomposition over
X , a global GAI tree can be constructed to store all these utilities. In the sequel, instead of
storing m utilities uij : XCj 7→ Z+, i ∈ {1, . . . ,m}, in each clique XCj , we chose an alternative
but equivalent representation: we just store one vector-valued utility uj : XCj 7→ Zm+ such that
uj(xCj ) = (u1j (xCj ), . . . , u

m
j (xCj )).
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CD

CDEF

BCDABC BC BD BDG

a) Markov network union b) triangulated network c) GAI network for (u1, u2)

A B G

D

FE

C

A B G

D

FE

C

Figure 4: The creation of the GAI net for (u1, u2)

3. Pareto search

3.1. Problem formulation

The set of all utility vectors attached to solutions in X is denoted by U. We recall now some
definitions related to dominance and optimality in multiobjective optimization.

Definition 3. The weak Pareto dominance relation is defined on utility vectors of Zm+ as:
u %P v ⇔ [∀i ∈M,ui ≥ vi].

Definition 4. The Pareto dominance relation �P is defined as the asymmetric part of %P :
u �P v ⇔ [u %P v and not(v %P u)].

Definition 5. Any utility vector u ∈ U is said to be non-dominated in U (or Pareto-optimal) if
@v ∈ U such that v �P u. The set of non-dominated vectors in U is denoted ND (U) and is referred
to as the “Pareto set”.

The problem of determining the Pareto set in X can be stated as follows:

Pareto-optimal elements (PO)

Input: a product set of finite domains X = X1 × · · · × Xn (n finite), m GAI utility functions
ui : X → Z+, i = 1, . . . ,m (m finite),

Goal: determine the entire set of non-dominated vectors in U, and for each utility vector u ∈
ND (U) a corresponding tuple xu ∈ X .

This problem is generally intractable on large size instances. Even when m = 2, it may happen
that the size of the Pareto set grows exponentially with the number of attributes, as shown by the
following example:

Example 2. Consider an instance of PO with two objectives (m = 2) on a set X =
∏n
j=1Xj,

where Xj = {0, 1}, j = 1, . . . , n. Assume that the objectives are additive utility functions defined,
for any Boolean vector x = (x1, . . . , xn) ∈ X , by ui(x) =

∑n
j=1 u

i
j(xj), i = 1, 2, where uij is a

marginal utility function defined on Xj by u1j (xj) = 2j−1xj and u2j (xj) = 2j−1(1 − xj). Then for

all x ∈ {0, 1}n, u1(x) =
∑n

j=1 2j−1xj and u2(x) =
∑n

j=1 2j−1(1−xj) and therefore u1(x)+u2(x) =∑n
j=1 2j−1 = 2n − 1. So there exists 2n different Boolean vectors in X , with distinct images in

the utility space, all being located on the same line characterized by equation u1 + u2 = 2n − 1.
This line is orthogonal to vector (1, 1) which proves that all these vectors are Pareto-optimal. Here
ND (U) = U.
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Although pathological, this example shows that the determination of the entire Pareto set
may induce prohibitive run times in practice on large size instances with two criteria or more.
Numerical tests presented in Section 5 will confirm this point. We establish now a complexity
result concerning problem PO (proofs are given in the appendix).

Proposition 1. As soon as |Xi| ≥ 2, i ∈ N, and m ≥ 2, deciding whether there exists a tuple in X
the utility vector of which weakly Pareto dominates a given utility vector u ∈ Zm+ is a NP-complete
decision problem (referred to as problem Pu in the sequel).

3.2. Multiobjective Optimization Algorithms

Despite the worst case complexity of problem PO, we may expect to solve real instances of
reasonable size in admissible times. To this end, we introduce below solution algorithms for PO
based on message propagation schemes within the GAI network. For clarity reasons, we first
present a variable elimination PO algorithm that processes all the vectors of a given clique before
removing it from the GAI network. In the next subsections, we will consider best-first variations
of this algorithm which will be more efficient for preference-based search.

3.2.1. A Variable Elimination Algorithm

The algorithm described below is a direct application of variable elimination to determine the
Pareto set. Its principle has already been used for CSP in [27]. The algorithm extensively relies
on the following proposition and its corollaries:

Proposition 2. Let (D,E) be a partition of N. Assume that utility u : X 7→ Zm+ is additively
decomposable as u = u1 + u2, with u1 : XD 7→ Zm+ and u2 : XE 7→ Zm+ (here, + unambiguously
refers to the pointwise addition over vectors). Then:

ND (U) ⊆ ND ({u1(xD), xD ∈ XD})�ND ({u2(xE), xE ∈ XE}) , (2)

where, for any sets V,W of vectors of Zm+ , V �W is defined as V �W = {v + w, v ∈ V, w ∈ W}.

In other words, undominated utility vectors of U can only result from the addition of one undom-
inated utility vector from subset XD and one undominated utility vector from subset XE. For
instance, if u : A×B 7→ Z+ is decomposable as u1(A) + u2(B) where u1 and u2 are defined as:

u1 =
a1 a2 a3

(3, 4) (4, 2) (2, 3)
u2 =

b1 b2 b3
(3, 5) (6, 3) (3, 3)

Then ND ({u1(ai)}) = {u1(a1) = (3, 4), u1(a2) = (4, 2)} and ND ({u2(bi)}) = {u2(b1) = (3, 5),
u2(b2) = (6, 3)} which, composed with operator �, produce the following set:

{u(a1, b1) = (6, 9), u(a1, b2) = (9, 7), u(a2, b1) = (7, 7), u(a2, b2) = (10, 5)}.

Therefore ND (U) = {u(a1, b1), u(a1, b2), u(a2, b2)}. Note that no Pareto element involves u1(a3)
or u2(b3), which are dominated in ND ({u1(ai)}) and ND ({u2(bi)}) respectively.

As a consequence, if u is additively decomposable, an efficient procedure to determine ND (U)
can be to first determine independently ND ({u(xD), xD ∈ XD}) and ND ({u(xE), xE ∈ XE}), then
sum-up all these vectors, and finally keep only the undominated resulting vectors.

8



Corollary 1. Let G be a GAI tree with only two cliques XC1 and XC2 and their separator XS12.
Let D1 = C1\S12 and D2 = C2\S12, i.e., the Di are the indices of the attributes that appear in
Ci but not in C3−i (or in other words, they appear only on one side of the separator). Then:

ND (U) ⊆
⋃
xS12

∈XS12
(ND ({u1(xD1 , xS12), xD1 ∈ XD1})�ND ({u2(xD2 , xS12), xD2 ∈ XD2})).

In other words, for each fixed value xS12 of XS12 , if a utility vector u1(yD1 , xS12) is Pareto domi-
nated by another vector u1(xD1 , xS12) defined for the same value of the separator, no combination
of u1(yD1 , xS12) with another vector u2(xD2 , xS12) can result in a vector of ND (U). Hence, to de-
termine ND (U), first determine the undominated vectors of type u1(xD1 , xS12) and u2(xD2 , xS12)
and sum them up for any fixed value xS12 , then keep only those that are undominated.

Corollary 2. Let G = (C, E) be any GAI network, with C = {XC1 , . . . , XCk
}, and let XSij be

any separator. Let {XCi1
, . . . , XCir

} and {XCir+1
, . . . , XCik

} be the sets of cliques on each side of

separator XSij and let D =
⋃r
t=1 Cit\Sij and E =

⋃k
t=r+1 Cit\Sij. Then:

ND (U) ⊆
⋃

xSij
∈XSij

(
ND

({
r∑
t=1

ut(xCit
), xD ∈ XD

})
�ND

({
k∑

t=r+1

ut(xCit
), xE ∈ XE

}))
.

In other words, to determine ND (U), it is sufficient to select any separator, then compute for each
fixed value xSij of this separator the undominated utility vectors on each side of the separator and
sum-up all these vectors. Finally gather all these vectors for all the values xSij and keep only the
undominated ones.

Corollary 2 can now be exploited recursively to compute the Pareto set over U: consider the
GAI network of Figure 5, in which subutility tables are displayed next to their corresponding
clique. The overall utility function u over A × B × C × D × E × F × G is thus decomposable
as: u1(A,B) + u2(C,D) + u3(A,C,E) + u4(C,E, F ) + u5(E,G). Using Corollary 2 with separator
A, we can conclude that vectors in ND (U) can only result from the sum of vectors u2, u3, . . . ,
to vectors u1(A,B) that are undominated for fixed values of A. Send the latter as message MA

on separator A (see Figure 6). Similarly, by Corollary 2 with separator C (resp. E), only vectors
u2(C,D) (resp. u5(E,G)) that are undominated for fixed values of C (resp. E) can lead to vectors
in ND (U). Send these vectors as message MC on separator C and message ME on separator E
respectively. Now, apply Corollary 2 with separator CE: vectors in ND (U) can only derive from
undominated vectors u1+u2+u3 for fixed values of CE. But we already know that vectors u1 (resp.
u2) that are dominated for fixed values of A (resp. C) cannot be part of a vector in ND (U). As a
consequence, the undominated vectors u1+u2+u3 for fixed values of CE can be determined by first
computing all the possible vectors u1 + u2 + u3 with vectors u1 and u2 restricted to MA and MC

respectively, and, then, keeping for each value of CE the undominated ones. In other words, we
should compute MCE(c, e) = ND

(⋃
a∈AMA(a)� {u2(a, c, e)}�MC(c)

)
for every c, e ∈ C × E.

This results in an overall separator’s message MCE = {MCE(c, e) : c, e ∈ C × E}. Now there
just remains to combine the vectors of MCE , ME and u4(C,E, F ) and keep the undominated

ones: these are the Pareto set ND (U) = ND
(⋃

c,e,f∈C×E×FMCE(c, e)� u4(c, e, f)�ME(e)
)

.

Indeed, this combination corresponds to the combination of all the possible vectors ui except
those that are known not to be part of ND (U). In the end, ND (U) = {u(a1b1c1d1e2f2g2) =
(15, 25);u(a1b2c1d1e2f2g2) = (22, 22);u(a1b2c1d2e2f2g2) = (24, 14);u(a2b2c1d1e2f2g2) = (16, 24)}.
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C

A

CD

AB

EG E

CE

u3
c1 c2

a1 a2 a1 a2
e1 (3, 3) (5, 3) (1, 2) (4, 4)
e2 (2, 4) (1, 4) (6, 2) (2, 5)

u5 g1 g2
e1 (1, 0) (1, 1)
e2 (1, 1) (2, 1)

CEFACE
u2 c1 c2
d1 (2, 9) (5, 2)
d2 (2, 2) (4, 9)
d3 (4, 1) (5, 3)

u1 a1 a2
b1 (1, 5) (2, 3)
b2 (8, 2) (3, 4)
b3 (7, 1) (6, 2)

u4
c1 c2

f1 f2 f1 f2
e1 (8, 1) (5, 6) (2, 1) (1, 5)
e2 (7, 0) (8, 6) (1, 1) (0, 5)

Figure 5: The subutility tables of our example

C

A

CD

AB

EG

CE

E

ME =
e1g2: (1, 1)
e2g2: (2, 1)

CEFACE

MC =

c1d1: (2, 9)
c1d2: (4, 1)
c2d2: (4, 9)
c2d3: (5, 3)

MA =

a1b1: (1, 5)
a1b2: (8, 2)
a2b2: (3, 4)
a2b3: (6, 2)

MCE =

a1b1c1d1e1: (6, 17) a2b2c1d1e1: (10, 16) a2b3c1d1e1: (13, 14)
a2b3c1d2e1: (15, 6) a1b1c1d1e2: (5, 18) a1b2c1d1e2: (12, 15)
a1b2c1d2e2: (14, 7) a2b2c1d1e2: (6, 17) a2b2c2d2e1: (11, 17)
a2b3c2d2e1: (14, 15) a2b3c2d3e1: (15, 9) a1b2c2d2e2: (18, 13)
a1b2c2d3e2: (19, 7) a2b2c2d2e2: (9, 18) a2b3c2d2e2: (12, 16)

Figure 6: The messages Mi

Note the gain resulting from the application of Corollary 2: for instance, for computing message
MCE , we needed only 40 additions (16 additions to compute MA �MC , out of which 4 vectors
were removed because they were dominated, and then 24 additions to combine the 12 remaining
vectors with u3) instead of 72 additions if we had computed u1 +u2 +u3 over A×B×C ×D×E.

Similarly, computing ND (U) = ND
(⋃

c,e,f∈C×E×FMCE(c, e)� u4(c, e, f)�ME(e)
)

required 8

additions to compute u4(c, e, f) �ME(e), and then 30 additions to compute the addition of the
result with messageMCE . Overall, we computed 78 additions instead of the 298 needed if we had
computed u over the whole Cartesian product X .

The procedure described above justifies a “collect” algorithm where a clique (here CEF ) collects
all the information from its neighbors (via messages Mi) to compute the Pareto set. To produce
these messages the neighbors also collect the necessary information from their other neighbors, and
so on. This results in function Pareto described below. However, to define this algorithm and the
next ones more conveniently, we will not work directly with subutility vectors as we did above but
rather with labels:

Definition 6. A label is a triple 〈v, xC, XSij 〉, where v is a vector of Zm+ , xC ∈ XC is an instan-
tiation of a set XC of attributes, and XSij is a separator of a GAI network.

Intuitively, a label 〈v, xC, XSij 〉 corresponds to subutility vector v, with the additional infor-
mation of the partial instantiation xC of the attributes that were involved in its construction and
the separator XSij on which the message containing v has been transmitted. Given a clique XCi
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the subutility of which is ui : XCi 7→ Zm+ , we define the set of labels corresponding to ui as
Labels (XCi) = {〈ui(xCi), xCi , XCi〉 : xCi ∈ XCi}. In addition, to handle labels easily, we define
for any set of labels V,W, any set of attributes XE and any instantiation xE ∈ XE, the following
operators:

• ND (V) denotes a set of labels of V the utility vectors of which are undominated (actually,
we keep in ND (V) only one label per undominated vector, that is, we are interested only in
one instantiation for each utility vector).

• V ⊗ W = {〈v + w, xC∪D, XE∪F〉 : 〈v, xC, XE〉 ∈ V and 〈w, xD, XF〉 ∈ W}, i.e., operator ⊗
aggregates additively labels of V andW the partial instantiations of which agree on attributes
XC∩D. This operator will be used extensively to combine appropriately the aforementioned
messages.

• V�XE
= {〈v, xD, XE〉 : 〈v, xD, XF〉 ∈ V}, i.e., V�XE

contains the same labels as V except
that their third component is substituted by XE. This will be used to “move” messages from
one separator to another one.

• V[xE] = {〈v, yD, XF〉 ∈ V : yE = xE}, i.e., V[xE] is the subset of labels of V that “agree”
with partial instantiation xE.

• V⇓XE
=
⋃
xE∈XE

ND (V[xE])�XE
, i.e., V⇓XE

contains the set of all the labels of V that are
undominated by any other label of V with the same partial instantiation xE. This operator
will be used to discard all the labels the combination of which cannot lead to undominated
solutions due to Corollary 2.

Given these operators, we can now express the basic message-passing algorithm we described above
for computing the Pareto set1:

Algorithm 1 A Variable Elimination algorithm for computing the Pareto set.

Function Pareto Collect (XCi , XCj )
01 message Mij ← Labels (XCi

)
02 for all cliques XCk

∈ Adj(XCi
)\{XCj

} do
03 call Pareto Collect(XCk

, XCi
)

04 Mij ←Mij ⊗Mki

05 done
06 Mij ←Mij⇓XSij

Function Pareto ()
01 Let root = XCp

be any clique
02 call Pareto Collect(XCp

, XCp
)

03 return ND (Mpp)

Proposition 3. Given a GAI tree G, Function Pareto() returns precisely the Pareto set.

Proposition 4 (Rollon & Larrosa (2006)). Pareto() requires space O(km ×
∏m
i=1Ki × dw

∗
)

and time O(km×
∏m
i=1K

2
i ×dw

∗+1), where k is the number of cliques in the GAI network, d is the
largest attribute’s domain size, w∗ is the network’s induced width (i.e., the number of variables in
the largest clique minus one) and Ki is a bound on utility ui.

1Recall that, by abuse of notation, XSii = XCi for all i = 1, . . . , k, so that 〈v, xC, XSii〉 corresponds to a label
transmitted to clique XCi .
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Note that function Pareto Collect, as described above, is generic and does not impose any
ordering on messages Mki’s combinations. In practice, the number of operations performed
during the for loop of lines 02–05 depends on how combinations are performed. A simple
yet very effective strategy consists in, first, computing all the Mki by calling the appropriate
Pareto Collect(XCk

, XCi) and, only then, perform the combinations. The latter can be com-
puted iteratively by always selecting the pair of messages that produces a message with the
smallest dimension. For instance, assume that we wish to compute M1i ⊗ M2i ⊗ M3i, with
messages M1i,M2i,M3i defined on A×B, A× C and C ×D respectively. Then first computing
M1 =M1i⊗M2i, and thenM1⊗M3i produces the same result as computingM2 =M1i⊗M3i,
and then M2 ⊗M2i but the former is faster than the latter since M1 is defined on A × B × C
whereas M2 is defined on A×B × C ×D.

3.2.2. A Best-first Pareto Search Algorithm

In Function Pareto() described previously, sending all the subutility vectors that are undom-
inated for fixed separator values in one single message Mij prevents applying prunings that can
significantly speed-up the algorithm. For this reason, we now propose an alternative algorithm that
sends the undominated subutility vectors (labels actually) one by one on the separators. When
such vector reaches the root clique, this vector produces new knowledge that can be used to prune
those vectors that have not reached the root yet and that we now know for sure cannot be part
of the solution. This algorithm is very similar in spirit to the variant of the MOA∗ algorithm by
Mandow and de la Cruz [28] that improves the standard MOA∗ algorithm [29, 30, 31]. It favors
the early detection of partial solutions that will lead to suboptimal solutions and can therefore
discard the corresponding labels hence limiting the combinatorial blowup. The main difference
between our approach and MOA∗ lies in the exploitation of an explicit junction tree structure
instead of an implicit state space graph. On one hand, our search algorithm requires satisfying
specific constraints imposed by the junction tree. Actually, whenever a label is moved from one
separator to the next one, it is combined with other labels stored into adjacent separators; to en-
sure that this combination is meaningful, the partial instantiations of these labels must necessarily
be compatible. Thus, our approach needs more information about how labels were generated than
MOA∗ usually does. On the other hand, as our best-first search algorithm is based on the tree
structure of the GAI network and proceeds from leaves toward the root clique, a given label can
never be generated more than once. Thus, unlike MOA∗, our algorithm does not need to keep
track of a list of closed labels and, actually, it never stores such a list. In a sense, this feature is
close to frontier search algorithms [32].

More precisely, the idea is to maintain two lists of labels: Lopen, which are the labels that have
not reached yet the root clique, and LPareto, which are essentially those labels that have reached
root and are still undominated. At the beginning of the algorithm, LPareto should be empty, and
Lopen should be basically filled with the labels of the leaves of the GAI network. A nonempty Lopen
set means that there still exist labels that can possibly be combined with other labels to produce
in the end undominated labels that should belong to LPareto. So, while Lopen is nonempty, select
one of its labels and make it move toward root (by combining it with other appropriate labels, see
below). When a label reaches root, it is of course discarded from Lopen and LPareto is updated.
When all the labels of interest have reached root, then Lopen becomes empty and the algorithm
has computed the Pareto set.

To illustrate how labels move toward the root, consider an arbitrary label 〈w, xD, XSij 〉 which
is currently located on Separator XSij (see Figure 7). Like in Function Pareto(), this label corre-
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sponds to the subutility of a partial instantiation of the attributes in the “A” area of the GAI net.
Moving it to Separator XSjl

should thus logically produce a label corresponding to the instantia-
tion of the attributes in the “B” area of the GAI net. Hence 〈w, xD, XSij 〉 should necessarily be
added to compatible labels located of Separators XSk1j

, . . . , XSkrj
as well as to compatible labels

stored in clique XCj (else some attributes in the “B” area would remain uninstantiated). Among
all such possible labels, those that were sent on separators XSk1j

, . . . , XSkrj
at earlier steps of the

algorithm seem to be good candidates. So let us consider the set of labels Mktj , t = 1, . . . , r, sent
on these separators at earlier steps. We propose to generate all the compatible combinations of
these messages, i.e., {〈w, xD, XSij 〉} ⊗Mk1j ⊗ · · · ⊗Mkrj ⊗ Labels (XCj ), and then to project the
resulting set of labels on Separator XSjl

(discarding of course all the dominated labels for fixed
values of XSjl

) or, in other words, to compute:

V =
(
{〈w, xD, XSij 〉} ⊗Mk1j ⊗ · · ·Mkrj ⊗ Labels (XCj )

)
⇓XSjl

(3)

The labels in V thus correspond to a set of labels appropriate for separator XSjl
. As such they

should be added to Lopen since Lopen represents the sets of labels that may potentially be part of
the Pareto solutions we look for. In addition, Label 〈w, xD, XSij 〉 can now be safely removed from
Lopen since it has been dealt with (i.e., it has been combined with other labels). The process just
described informally can now be described algorithmically by the following function:

Algorithm 2 The function for moving labels within the Junction tree.

Function move label (〈w, xD, XSij 〉)
01 Mij ←Mij ∪ {〈w, xD, XSij 〉}
02 V ← Labels (XCj

)⊗ {〈w, xD, XSij
〉}

03 if XCj
6= root then let XCl

be the clique ∈ Adj(XCj
) s.t. XCl

is on the path between XCj
and root

04 for all cliques XCk
∈ Adj(XCj

), XCk
6= XCi

and XCk
6= XCl

(if XCl
has been defined in line 02) do

05 V ← V ⊗Mkj

06 done
07 if XCj

6= root then V ← V⇓XSjl
else V ← ND (V)

08 return V

XSk1j
XCk1

XCj
XSjl

XCl

XCi
XSij

XCkr
XSkrj

root

Mk1j ?

A B

Mkrj

〈w, xD, XSij
〉

Figure 7: Making a label move toward root

Of course, Equation (3) produces a set of labels corresponding to instantiations of all the
attributes of the “B” area of Figure 7 if and only if all messages Mktj are nonempty. Hence we
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should enforce that whenever function move label is called, the Mktj are actually nonempty. A
simple way to achieve this is to initialize the Pareto search by function initial labels below
which fills each separator XSij with exactly one label per value xSij . The basic idea of the function
is to apply a collect scheme from root toward the leaves of the GAI tree and, each time a separator
is encountered, to fill it with one label per value. More precisely, for separators on the leaves of the
tree, we compute the set of undominated labels per value of the separator, say V⇓XSij

. As this set

may contain several labels per value xSij , we just keep one label per xSij (this produces a message
Mij) and put the other ones into Lopen to be processed later on. When we encounter a separator
XSjl

like in Figure 7, the collect scheme first fills separators XSij , XSk1j
, . . . , XSkrj

with messages
MSij ,MSk1j

, . . . ,MSkrj
respectively. Now, these messages can be combined to produce a message

that can be stored on XSjl
: V = (MSij ⊗MSk1j

⊗ . . . ⊗MSkrj
⊗ Labels (XCj ))⇓XSjl

. Again, V
may contain several messages per value xSjl

, hence we store only one of them into message Mjl

and put the other ones into Lopen to be processed later on. Of course, as the label chosen to be
stored intoMjl is processed immediately while the others (those added to Lopen) will be processed
later, the former should be selected as the one that currently seems best fitted to produce a Pareto
element when moved till the root. For this reason, we call this element a “most promising” label.
Different strategies do exist to define what a most promising label should be. In our experiments,
we defined it as being the label with the highest utility average (over the M objectives). When
optimistic heuristics were available, we used the highest average of the sum of the utility vector
and the heuristic vector. Of course, alternative characterizations could also have been used such
as, e.g., the highest lexicographic utility value (using a lexicographic order over the objectives).
Overall, the above algorithm leads to the following function initial labels:

Algorithm 3 The function initializing separator messages with one label per separator’s value.

Function initial labels (XCi , XCj )
01 V ← Labels (XCi)
02 for all cliques XCk

∈ Adj(XCi
)\{XCj

} do
03 call initial labels(XCk

, XCi
)

04 V ← V ⊗Mki

05 done
06 V ← V⇓XSij

07 Mij =
⋃

xSij
∈XSij

most promising label of V[xSij
]

08 Lopen ← Lopen ∪ (V\Mij)

XSkri

XSk1i

XCkr

XCk1

XCi
XSij

XCjMkri

Mk1i

Mij

root

Let us illustrate this algorithm on the GAI net of Figure 5: a call to initial labels(CEF , CEF)
would call initial labels(EG, CEF) and initial labels(ACE, CEF) on Line 03. The first call first
creates set V = {〈(1, 0), e1g1,EG〉, 〈(1, 1), e1g2,EG〉, 〈(1, 1), e2g1,EG〉, 〈(2, 1), e2g2,EG〉} on Line 01
and V is reduced to V = {〈(1, 1), e1g2,E〉, 〈(2, 1), e2g2,E〉} on Line 06. As V contains only one label
per separator’s value e1,e2, messageME =V as shown in Figure 8. Now initial labels(ACE, CEF)
calls initial labels(AB,ACE) and initial labels(CD,ACE). The first one will compute V =
{〈(1, 5), a1b1,A〉, 〈(8, 2), a1b2,A〉, 〈(3, 4), a2b2,A〉, 〈(6, 2), a2b3,A〉} on Line 06 (discarding both labels
〈(7, 1), a1b3,A〉 and 〈(2, 3), a2b1,A〉 because they are dominated by 〈(8, 2), a1b2,A〉 and 〈(3, 4), a2b2,A〉
respectively). Here, V contains more than one element per ai, so we need select only one element
per ai in V to create message MA. Say MA = {〈(1, 5), a1b1,A〉, 〈(3, 4), a2b2,A〉} (see Figure 8).
Note that, in this example, to reduce the number of iterations of the algorithm, the most promis-
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ing label is not always chosen as the one with the highest utility average. The other elements of
V, i.e., {〈(8, 2), a1b2,A〉, 〈(6, 2), a2b3,A〉} are thus added to Lopen to be processed later on. Simi-
larly, initial labels(CD,ACE) computes on Line 06 label set V = {〈(2, 9), c1d1, C〉, 〈(4, 1), c1d3, C〉,
〈(4, 9), c2d2, C〉,〈(5, 3), c2d3, C〉}. From V we extract messageMC = {〈(2, 9), c1d1, C〉,〈(4, 9), c2d2, C〉}
and labels 〈(4, 1), c1d3, C〉 and 〈(5, 3), c2d3, C〉 are added to Lopen to be processed later on. Now
initial labels(ACE, CEF) can compute label set [Labels (ACE)⊗MA⊗MC ]⇓CE

, which leads to:

V = {〈(6, 17), a1b1c1d1e1, CE〉, 〈(10, 16), a2b2c1d1e1, CE〉, 〈(5, 18), a1b1c1d1e2, CE〉,
〈(6, 17), a2b2c1d1e2, CE〉, 〈(11, 17), a2b2c2d2e1, CE〉, 〈(9, 18), a2b2c2d2e2, CE〉}

on Line 06. From this set, we extract message MCE by selecting one label per value (ci, ej):

MCE = {〈(10, 16), a2b2c1d1e1, CE〉, 〈(6, 17), a2b2c1d1e2, CE〉,
〈(11, 17), a2b2c2d2e1, CE〉, 〈(9, 18), a2b2c2d2e2, CE〉}

and add to Lopen labels 〈(6, 17), a1b1c1d1e1, CE〉 and 〈(5, 18), a1b1c1d1e2, CE〉 that were not selected
to be part ofMCE . Finally, initial labels(CEF , CEF) computes V = Labels (CEF)⊗MCE⊗ME ,
i.e.:

V = {〈(19, 18), a2b2c1d1e1f1g2, CEF〉, 〈(16, 23), a2b2c1d1e1f2g2, CEF〉,
〈(14, 19), a2b2c2d2e1f1g2, CEF〉, 〈(13, 23), a2b2c2d2e1f2g2, CEF〉,
〈(15, 18), a2b2c1d1e2f1g2, CEF〉, 〈(16, 24), a2b2c1d1e2f2g2, CEF〉,
〈(12, 20), a2b2c2d2e2f1g2, CEF〉, 〈(11, 24), a2b2c2d2e2f2g2, CEF〉}

and, as V contains only one label per triple (c, e, f), MCEF = V. Overall, the created messages
Mij are those of Figure 8 and Lopen is initialized to:

Lopen = {〈(8, 2), a1b2,A〉, 〈(6, 2), a2b3,A〉, 〈(4, 1), c1d3, C〉,
〈(5, 3), c2d3, C〉, 〈(6, 17), a1b1c1d1e1, CE〉, 〈(5, 18), a1b1c1d1e2, CE〉}.

C

A

CD

AB

EG

CE

E

MA =
a1b1: (1, 5)
a2b2: (3, 4)

MC =
c1d1: (2, 9)
c2d2: (4, 9)

ME =
e1g2: (1, 1)
e2g2: (2, 1)

CEFACE

MCE =

a2b2c1d1e1: (10, 16)
a2b2c1d1e2: (6, 17)
a2b2c2d2e1: (11, 17)
a2b2c2d2e2: (9, 18) MCEF =

a2b2c1d1e1f1g2: (19, 18)
a2b2c1d1e1f2g2: (16, 23)
a2b2c2d2e1f1g2: (14, 19)
a2b2c2d2e1f2g2: (13, 23)
a2b2c1d1e2f1g2: (15, 18)
a2b2c1d1e2f2g2: (16, 24)
a2b2c2d2e2f1g2: (12, 20)
a2b2c2d2e2f2g2: (11, 24)

Figure 8: Messages computed by function initial labels

In addition to filling separators with a single label per separator’s value, which was its primary
purpose, function initial labels has an important feature:

Proposition 5. Let XCp be any clique. Call initial labels(XCp , XCp). Then, for any utility

vector u(x) =
∑k

j=1 uj(xCj ) ∈ ND (U), one and only one of the following two assertions holds:

1. there exists a label 〈u(x), x,XCp〉 in message Mpp;
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2. there exist some indices j1, . . . , jr such that Lopen contains a label 〈w, xD, XSj1l
〉 such that

w =
∑r

t=1 ujt(xCjt
), D =

⋃r
t=1 Cjt and XCj1

is, among XCj1
, . . . , XCjr

, the clique which is
nearest to root.

According to Proposition 5, after calling initial labels(XCp , XCp), for any u(x) ∈ ND (U),
either there exists a label corresponding to u(x) in Mpp, or there exists a label in Lopen corre-
sponding to u(x). The latter case can be interpreted as the fact that the propagation of the label
corresponding to u(x) toward root XCp has been temporarily stopped on a given separator because
this label did not seem, at that time, to be a most promising label to belong to ND (U). We should
thus subsequently use function move label to make it eventually reach root XCp . This justifies
algorithm Pareto∗ below, which we present for simplicity without pruning rules (those will be
given later on):

Algorithm 4 Basic best-first Pareto search.

Function Pareto∗ ()
01 let root XCp

be any clique
02 Lopen ← ∅ ; call initial labels(XCp

, XCp
)

03 LPareto ← ND (Mpp)
04 while Lopen 6= ∅ do
05 let 〈w, xD, XSij

〉 be the most promising label in Lopen

06 remove 〈w, xD, XSij
〉 from Lopen

07 V ← move label(〈w, xD, XSij
〉)

08 if XSij
= root XCp

then LPareto ← ND
(
LPareto ∪ V

)
else Lopen ← Lopen ∪ V

09 done
10 return LPareto

In our experiments, we defined the “most promising” label of Line 05 as being the nearest label
to the root clique and, to break ties, that with the highest utility average (over the M objectives).
Favoring labels that are nearest to the root clique is effective because it tends to quickly fill LPareto
with feasible labels that can be used subsequently to prune as early as possible the labels of Lopen.
When optimistic heuristics were available, we broke ties using the highest average of the sum of
their utility vectors and their heuristic vectors.

Proposition 6. Given a GAI tree G, Function Pareto∗() returns precisely the Pareto set.

Proposition 7. Pareto∗() requires space O(km ×
∏m
i=1Ki × dw

∗
) and time O(km ×

∏m
i=1K

2
i ×

dw
∗+1), where k is the number of cliques in the GAI network, d is the largest attribute’s domain

size, w∗ is the network’s induced width (i.e., the number of attributes in the largest clique minus
one) and Ki is a bound on utility ui.

For the moment, function Pareto∗ moves labels one by one toward the root but it applies no
pruning rule (except, of course, that given by Corollary 2) and, in the end, it sends precisely the
same messages Mij as those sent by function Pareto in Subsubsection 3.2.1. Hence we shall now
introduce an additional pruning rule to improve the efficiency of the algorithm.

3.2.3. Pruning rule

Consider the graph of Figure 9 and apply function Pareto∗. At some step of the algorithm,
select on Line 05 a label, say 〈w, aibj , A〉, from Lopen to be moved toward Separator CE. Assume
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that we know that there exists some vector v such that, for any completion (ck, dl, er, fs, gt) of the
attributes of the gray area, v %P u2(ck, dl)+u3(ai, ck, er)+u4(ck, er, fs)+u5(er, gt). If, in addition,
it turns out that LPareto contains at that time a label 〈u∗, x,XCp〉 such that u∗ %P v + w, then
label 〈w, aibj , A〉 can be safely discarded because it cannot be part of a solution of ND (U). Indeed,
if there exists a vector z ∈ U such that w′ + w %P z, with w′ the utility vector of an instantiation
(ck, dl, er, fs, gt) of the attributes of the gray area, then u∗ %P v + w %P w′ + w %P z and so u∗

also Pareto dominates z. As a consequence, vector w′ + w should not be added to ND (U).

EG E

CE

AB

CD C

A

CEFACE

〈w, aibj , A〉

〈u∗, x,XCp
〉

Figure 9: An optimistic heuristic-based pruning rule.

This suggests defining an optimistic heuristic that, given a label like 〈w, aibj , A〉, is able to
return a vector or a set of vectors like the v vector mentioned in the preceding paragraph. For
a vector set-valued optimistic heuristic see [29]. In this paper, for simplicity, we present a single-
vector valued heuristic easily computable using the collect algorithm illustrated in Figure 11: on
Separator E, send message HE containing, for each value ei of E, a utility vector constituted by
the max over each criterion of {u5(ei, g1), u5(ei, g2)}, that is,

HE = {〈(max{1, 1},max{0, 1}), e1,E〉, 〈(max{1, 2},max{1, 1}), e2,E〉}
= {〈(1, 1), e1,E〉, 〈(2, 1), e2,E〉}.
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c1 c2

a1 a2 a1 a2
e1 (3, 3) (5, 3) (1, 2) (4, 4)
e2 (2, 4) (1, 4) (6, 2) (2, 5)

u5 g1 g2
e1 (1, 0) (1, 1)
e2 (1, 1) (2, 1)

CEFACE
u2 c1 c2
d1 (2, 9) (5, 2)
d2 (2, 2) (4, 9)
d3 (4, 1) (5, 3)

u1 a1 a2
b1 (1, 5) (2, 3)
b2 (8, 2) (3, 4)
b3 (7, 1) (6, 2)

u4
c1 c2

f1 f2 f1 f2
e1 (8, 1) (5, 6) (2, 1) (1, 5)
e2 (7, 0) (8, 6) (1, 1) (0, 5)

Figure 10: The subutility tables of our example

Clearly, by construction, vectors in HE weakly Pareto dominate all possible vectors u5(er, gt),
r, t = 1, 2. As a consequence, the utility vectors in V = Labels (CEF) ⊗ HE Pareto dominate
Labels (CEF)⊗Labels (EG). Now we can apply the same process with V: construct a message HCE
containing, for each pair (ck, er), a vector constituted by the max over each criterion of V[ck, er].
Here again, by construction, vectors inHCE weakly Pareto dominate all possible vectors in V which,
in turn, weakly Pareto dominate all possible vectors in Labels (CEF)⊗Labels (EG). Apply the same
process for constructing message HC and, finally, to construct HA apply again this maximization
per criterion scheme onHC⊗Labels (ACE)⊗HCE . Clearly, by the process of construction, vectors in
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CEFACE

Figure 11: Computing the optimistic heuristic for label 〈w, aibj , A〉.

HA weakly Pareto dominate all subutility vectors u2(ck, dl)+u3(ai, ck, er)+u4(ck, er, fs)+u5(er, gt),
for any completion (ck, dl, er, fs, gt), which was precisely what we were looking for. This justifies
the following recursive algorithm:

Algorithm 5 Computation of the optimistic heuristic.

Function Heuristic Collect (XCi , XCj )
01 V ← Labels (XCi)
02 for all cliques XCr ∈ Adj(XCi)\XCj do
03 call Heuristic Collect(XCr

, XCi
)

04 V ← V ⊗Hir

05 done
06 Hji ←Max↓XSij

V

where, for any set of attributes XE and any set of labels V, Max↓XE
V is defined as:

Max↓XE
V = {〈(v1, ..., vm), xE, XSij 〉 : for all i, vi = max{wi : 〈(w1, ..., wm), yC, XD〉 ∈ V[xE]}}.

In other words, for each xE, vi is the max for criterion i of the utilities of the labels agreeing with
xE. Now it is clear that the following proposition holds:

Proposition 8. Call Heuristic Collect(XCi , XCj ). Then, for any xSij ∈ XSij , Hji[xSij ] weakly
Pareto dominates the sums of the subutilities obtained by instantiations of the attributes in cliques
Xr such that XCi is not on the path between Xr and root.

Note that, in Proposition 8, cliques Xr are precisely those located in the gray area of Figure 9.

Proposition 9. Heuristic Collect(XCi , XCj ) requires space O(km × dw
∗
) and time O(km ×

dw
∗+1), where k is the number of cliques in the GAI network, d is the largest attribute’s domain

size, w∗ is the network’s induced width (i.e., the number of attributes in the largest clique minus
one) and Ki is a bound on utility ui.

Importing this optimistic heuristic into function Pareto∗ essentially requires modifying its
Line 08 where Lopen and LPareto were updated: now each time LPareto is updated, we should try
to prune as well all the labels in Lopen which, when combined with their optimistic heuristic value,
are Pareto dominated by some element in LPareto. So let us define the corresponding dominance
operator: for any sets of labels V,W, where W are labels with complete instantiations,

NDH (V,W) = {〈v, xD, XSij 〉 ∈ V : there exists no 〈w, y,XCp〉 ∈ W : w %P v + h, where h
is the utility of Hij [xSij ] as returned by Heuristic Collect(XCi , XCj )}.
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Clearly, calling NDH

(
Lopen,LPareto

)
in function Pareto∗ will remove only the labels from Lopen

that, if moved until root, would produce labels weakly Pareto dominated by those of ND (U). As
a consequence, it is safe to discard such labels and doing it as early as possible reduces the run
time of the algorithm. This leads to the following Pareto search algorithm:

Algorithm 6 Efficient best-first Pareto search algorithm.

Function Pareto∗H ()
01 let root XCp be any clique
02 Lopen ← ∅ ; call initial labels(XCp

, XCp
)

03 for all Separators XSji
do call Heuristic Collect(XCi

, XCj
) done

04 LPareto ← ND (Mpp) ; Lopen ← NDH

(
Lopen,LPareto

)
05 while Lopen 6= ∅ do
06 let 〈w, xD, XSij

〉 be the most promising label in Lopen

07 remove 〈w, xD, XSij
〉 from Lopen

08 V ← move label(〈w, xD, XSij 〉)
09 if XSij

= root XCp
then LPareto ← ND

(
LPareto ∪ V

)
; Lopen ← NDH (Lopen,V)

10 else Lopen ← Lopen ∪NDH

(
V,LPareto

)
11 done
12 return LPareto

Proposition 10. Given a GAI tree G, Function Pareto∗H() returns precisely the Pareto set.

Proposition 11. Pareto∗H() requires space O(km×
∏m
i=1Ki× dw

∗
) and time O(km×

∏m
i=1K

2
i ×

dw
∗+1), where k is the number of cliques in the GAI network, d is the largest attribute’s domain

size, w∗ is the network’s induced width (i.e., the number of attributes in the largest clique minus
one) and Ki is a bound on utility ui.

Note that, for simplicity of exposition, we chose to call Heuristic Collect as many times as
there are different separators. This is not optimally efficient as many messages Hri computed by
this function are actually computed several times. However, using techniques similar to inference
in Bayesian networks [33], i.e., by using a collect/distribute algorithm, all these redundancies can
be removed and the overall computational burden to compute the heuristic for all the separators
is only twice the time required to complete one call to Heuristic Collect(XCi , XCj ).

Let us now see on the GAI network of Figure 10 how our new pruning rule can effectively
improve the run time to compute the Pareto set. First, we display in Figure 12 the values of the
optimistic heuristic computed on every separator.
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HE =
e1: (23, 23)
e2: (22, 24)

HCE =
c1e1: (9, 7) c2e1: (3, 6)
c1e2: (10, 7) c2e2: (3, 6)

HA =
a1: (16, 20)
a2: (18, 20)

HC =
c1: (20, 16)
c2: (17, 15)

Figure 12: The optimistic heuristic computed for every separator.
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MCE =

a2b2c1d1e1: (10, 16)
a2b2c1d1e2: (6, 17)
a2b2c2d2e1: (11, 17)
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a2b2c1d1e1f1g2: (19, 18)
a2b2c1d1e1f2g2: (16, 23)
a2b2c2d2e1f1g2: (14, 19)
a2b2c2d2e1f2g2: (13, 23)
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a1b1c2d2e2f1g2: (14, 18)
a1b1c2d2e2f2g2: (13, 22)

Figure 13: The content of messages Mij after the completion of initial labels(CEF ,CEF)

After the completion of initial labels(CEF , CEF), messagesMij are for instance those of Fig-
ure 13 (defining “the most promising” vectors appropriately) and the content of Lopen is described
below:

Lopen =

separator inst vect vect+H separator inst vect vect+H
A a1b2 (8, 2) (24, 22) CE a1b1c1d1e1 (6, 17) (15, 24)

A a2b3 (6, 2) (24, 22) CE a1b1c1d1e2 (5, 18) (15, 25)

C c1d3 (4, 1) (24, 17) CE a1b1c2d2e1 (6, 16) (9, 22)

C c2d3 (5, 3) (22, 18) CE a2b2c2d2e2 (9, 18) (12, 24)

Then LPareto is filled with the undominated labels of MCEF , i.e.:

LPareto = {〈(19, 18), a2b2c1d1e1f1g2, CEF〉, 〈(16, 24), a2b2c1d1e2f2g2, CEF〉}.

Now, the last instruction of Line 04 reduces set Lopen: all the labels which, combined with the
optimistic heuristic, are dominated by elements in LPareto are discarded.

Lopen =

separator inst vect vect+H separator inst vect vect+H
A a1b2 (8, 2) (24, 22)
A a2b3 (6, 2) (24, 22) CE a1b1c1d1e2 (5, 18) (15, 25)
C c1d3 (4, 1) (24, 17)
C c2d3 (5, 3) (22, 18)

Next we enter the while loop of Lines 05–11. Let us assume that the most promising element
is the label located on Separator CE. Then we move this label up to the root, thus producing
V = {〈(14, 19), a1b1c1d1e2f1g2, CEF〉, 〈(15, 25), a1b1c1d1e2f2g2, CEF〉}. The second element is thus
added to LPareto on Line 09, which becomes:

LPareto = {〈(19, 18), a2b2c1d1e1f1g2, CEF〉, 〈(16, 24), a2b2c1d1e2f2g2, CEF〉,
〈(15, 25), a1b1c1d1e2f2g2, CEF〉}.

and Lopen remains unchanged. In addition, label 〈(5, 18), a1b1c1d1e2, CE〉 is added to separator
CE, thus resulting in message MCE as described in Figure 14. Assume the next label selected
on Line 06 is 〈(8, 2), a1b2, A〉. Then this label is moved to separator CE. We thus compute
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V = {〈(8, 2), a1b2, A〉} ⊗ Labels (ACE) ⊗MC , where MC is precisely the message described in
Figure 13, and the resulting label set V is equal to:

V = {〈(13, 14), a1b2c1d1e1,ACE〉, 〈(12, 15), a1b2c1d1e2,ACE〉,
〈(13, 13), a1b2c2d2e1,ACE〉, 〈(18, 13), a1b2c2d2e2,ACE〉}.

Of course, V⇓CE = V and this set is appended to Lopen:

Lopen =

separator inst vect vect+H separator inst vect vect+H
CE a1b2c1d1e1 (13, 14) (22, 21)

A a2b3 (6, 2) (24, 22) CE a1b2c1d1e2 (12, 15) (22, 22)
C c1d3 (4, 1) (24, 17) CE a1b2c2d2e1 (13, 13) (16, 19)
C c2d3 (5, 3) (22, 18) CE a1b2c2d2e2 (18, 13) (21, 19)
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a2b2c1d1e2: (6, 17)
a2b2c2d2e1: (11, 17)
a1b1c2d2e2: (11, 16)
a1b1c1d1e2: (5, 18)

MA =
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Figure 14: The content of messages Mij after moving label 〈(8, 2), a1b2, A〉.

In addition, label 〈(8, 2), a1b2, A〉 is added to message MA, and the contents of the messages are
now those described in Figure 14. Note that LPareto is unaffected.

And we execute again the while loop of Lines 05–11. Let 〈(12, 15), a1b2c1d1e2, CE〉 be the
next label selected on Line 06. Moving this label to clique CEF produces a label set V =
{〈(21, 16), a1b2c1d1e2f1g2, CEF〉, 〈(22, 22), a1b2c1d1e2f2g2, CEF〉}. Only the second element is thus
added to LPareto on Line 09, which becomes:

LPareto = {〈(16, 24), a2b2c1d1e2f2g2, CEF〉, 〈(15, 25), a1b1c1d1e2f2g2, CEF〉,
〈(22, 22), a1b2c1d1e2f2g2, CEF〉}.

Note that label 〈(19, 18), a2b2c1d1e1f1g2, CEF〉, which previously belonged to LPareto has been
discarded from this set since it is dominated by 〈(22, 22), a1b2c1d1e2f2g2, CEF〉. In addition, Lopen
is updated as follows (discarding elements with our new pruning rule):

Lopen =
separator inst vect vect+H separator inst vect vect+H

A a2b3 (6, 2) (24, 22) C c1d3 (4, 1) (24, 17)

Now, we enter the while loop again and select 〈(6, 2), a2b3,A〉 to be moved. However, no element
of set V = {〈(6, 2), a2b3,A〉}⊗Labels (ACE)⊗MC is added to Lopen because NDH

(
V,LPareto

)
= ∅.

Finally, there remains only label 〈(4, 1), c1d3, C〉 to be moved. This creates a set V with 8 elements,
out of which only 2 are kept due to our pruning rule:
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Lopen =
separator inst vect vect+H separator inst vect vect+H

CE a1b2c1d3e1 (15, 6) (24, 13) CE a1b2c1d3e2 (17, 4) (24, 14)

Moving 〈(17, 4), a1b2c1d3e2, CE〉 toward root will produce a new Pareto element of utility value
(24, 14). As a consequence Lopen becomes empty since label 〈(15, 6), a1b2c1d3e1, CE〉, when com-
bined with its optimistic heuristic, is dominated by this new Pareto element. Therefore, Lopen
being empty, the execution of the algorithm is completed. The Pareto set thus computed is:

LPareto = {〈(16, 24), a2b2c1d1e2f2g2, CEF〉, 〈(15, 25), a1b1c1d1e2f2g2, CEF〉,
〈(22, 22), a1b2c1d1e2f2g2, CEF〉, 〈(24, 14), a1b2c1d2e2f2g2, CEF〉}.

As we can see, the pruning rule is quite effective as it discards many labels that would have been
combined without this rule: on overall, there were actually only 38 labels combinations instead of
78 for function Pareto.

4. Preference-based Search

As mentioned above, in a multiagent or multicriteria problem, comparing feasible solutions in
X amounts to comparing their respective utility profile. The basic preference model to compare
solutions is Pareto dominance.

The results obtained in Section 3 show that the exact determination of the Pareto set requires,
for some instances, prohibitive computation times (see, e.g., Proposition 1). Fortunately, determin-
ing the entire set of Pareto-optimal elements is not always necessary. For example, in multiagent
problems, the value of a solution is often measured by a social welfare function assessing the overall
utility of solutions for the society of agents. For example one can be interested in maximizing the
sum of individual utilities (utilitarianism), or in maximizing the satisfaction of the least satisfied
agent (egalitarianism) or any compromise between the two attitudes.

One major issue in multiagent decision making processes seeking approval of all agents is
fairness of decision procedures. This normative principle generally refers to the idea of favoring
solutions that fairly share happiness or utility among agents. More formally, when comparing
two utility vectors u and v (one component per agent), claiming that “u is more fair than v”
usually conveys the vague notion that the components of u are “less spread out” or “more nearly
equal” than are the components of v. This intuitive notion leaves room for different definitions
of fairness and various models have been proposed by mathematicians who developed a formal
theory of majorization [34] and by economists who provided axiomatic foundations of inequality
measures (for a synthesis see [35, 36]). All these models provide the solution space with a transitive
preference structure refining Pareto dominance, which is either a partial weak-order (e.g. Lorenz
dominance) or a complete weak-order (e.g. Ordered Weighted Averages). We will see now that
the general algorithm Pareto∗H presented in Subsubsection 3.2.3 to determine the Pareto set can
be further specialized to focus the search on fair compromise solutions.

The need for refining Pareto dominance is also present in single-agent multicriteria decision
making problems. In such problems, the most preferred solutions are usually those achieving a
good compromise between the various conflicting objectives involved in the decision model. We
are generally not interested in generating extreme solutions favoring a particular criterion to the
detriment of the others. The standard way of generating compromise solutions within the Pareto
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set is to optimize a “scalarizing function” measuring the overall quality of solutions by aggregation
of criteria or, more generally, to define an overall preference model refining Pareto dominance and
narrowing the initial optimality concept. When preference information is not sufficient to formulate
a stable overall preference model, iterative compromise search can still be used to explore the Pareto
set. One starts with a neutral initial preference model used to generate a well-balanced compromise
solution within the Pareto set and the model progressively evolves with feedbacks from the decision
maker during the exploration to better meet its desiderata. Such an interactive process is used in
multiobjective programming on continuous domains to scan the Pareto set which is infinite, see
e.g. [37, 1]. The same approach is worth investigating in combinatorial problems when complete
enumeration of the Pareto set is not feasible. This will be discussed in Subsection 4.4.

The common problem in all these situations is to determine the most-preferred solutions with
respect to a given preference model % refining Pareto Dominance. Hence, the rest of this section
is dedicated to this general problem. We propose a refinement of Pareto∗H that exploits the
GAI structure of utility functions to determine the most preferred solutions without resorting
to complete enumeration of the Pareto set. For the sake of illustration, we will consider here
3 different models: on the one hand Lorenz-dominance and Ordered Weighted Averages for fair
optimization in multiagent decision making problems, on the other hand Tchebycheff distances for
compromise search in multicriteria decision making problems. We will report numerical tests and
provide computation times obtained for these models in Section 5.

4.1. Lorenz-dominance

Lorenz-dominance is a refinement of Pareto-dominance used in fair optimization problems when
utility functions u1, ..., um represent the preferences of m agents. In addition to the initial objective
aiming at maximizing individual utilities, fairness refers to the idea of favoring Pareto-optimal
solutions having a well-balanced utility profile. For this reason, in fair optimization problems, we
are interested in working with a preference relation % satisfying the two following axioms:

P-Monotonicity. For all u, v ∈ Zm+ , u %P v ⇒ u % v and u �P v ⇒ u � v,

where � is the strict preference relation defined as the asymmetric part of %. P-monotonicity is a
natural unanimity principle enforcing consistency with P-dominance.

Transfer Principle. Let u ∈ Zm+ be such that ui > uj for some i, j. Then for all ε such that
0 < ε < ui−uj , u−εei+εej � u where ei (resp. ej) is the vector whose ith (resp. jth) component
equals 1, all others being null.

This axiom captures the idea of fairness as follows: if ui > uj for some utility vector u ∈ Zm+ ,
slightly increasing component uj to the detriment of ui while preserving the sum of individual
utilities would produce a better distribution of utilities and consequently improve the fairness of
the solution. For example vector u = (11, 10, 11) should be preferred to v = (12, 9, 11) because
there exists a transfer of size ε = 1 to pass from v to u. Note that using a similar transfer of
size greater than 12− 9 = 3 would increase inequality. This explains why the transfers must have
a size ε < ui − uj . Such transfers are said to be admissible in the sequel. They are known as
Pigou-Dalton transfers in Social Choice Theory, where they are used to reduce inequality in the
income distribution over a population (see [36] for a survey).

Note that the transfer principle enables to discriminate between some pair of vectors having
the same sum of utilities, but it does not apply in the comparison of utility vectors having different
sums. This is the reason why Transfer Principle must be combined with P-monotonicity. For
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example, to compare w = (11, 11, 11) and z = (12, 9, 10) we can use vectors u and v introduced
above and observe that w � u (P-Monotonicity), u � v (Transfer Principle explained above) and
v � z (P-Monotonicity). Hence w � z by transitivity. In order to better characterize those vectors
that can be compared using such combinations of P-monotonicity and Transfer Principle, we recall
now the definition of Lorenz vectors and related concepts (for more details see e.g. [34]):

Definition 7. For all u ∈ Zm+ , the Generalized Lorenz Vector associated to u is the vector:

L(u) = (u(1), u(1) + u(2), . . . , u(1) + u(2) + . . .+ u(m))

where u(1) ≤ u(2) ≤ . . . ≤ u(m) represent the components of u = (u1, . . . , um) sorted by increasing
order. The jth component of L(u) is Lj(u) =

∑j
i=1 u

(i).

Definition 8. The Generalized Lorenz (weak) dominance relation on Zm+ is defined for all u, v ∈
Zm+ , by u %L v ⇐⇒ L(u) %P L(v) and its strict part (called L-dominance hereafter) is defined by
u �L v ⇐⇒ L(u) �P L(v).

The notion of L-dominance was initially introduced to compare vectors with the same average
cost. The generalized version of L-dominance considered here is a classical extension allowing
vectors with different averages to be compared. Within a set U ⊂ Zm+ , any utility vector u is
said to be L-dominated when v �L u for some v in U , and L-non-dominated when there is no v
in U such that v �L u. The set on L-non-dominated vectors in U is denoted NDL. In order to
establish the link between Generalized Lorenz dominance and preferences satisfying combination
of P-Monotonicity and Transfer Principle we recall a result of Chong [38]:

Theorem 1. For any pair of distinct vectors u, v ∈ Zm+ , if u �P v, or if u obtains from v by
a Pigou-Dalton transfer, then u �L v. Conversely, if u �L v, then there exists a sequence of
admissible transfers and/or Pareto-improvements to transform v into u.

For example we have: L(w) = (11, 22, 33) �P (9, 19, 31) = L(z) which directly proves the existence
of a sequence of Pareto improvements and/or admissible transfers passing from z to w. This
theorem establishes L-dominance as the minimal transitive relation (with respect to set inclusion)
satisfying simultaneously P-Monotonicity and Transfer Principle. Hence, the subset of L-non-
dominated elements defines the best candidates to optimality in fair optimization problems. This
explains our interest in solving the following problem:

Lorenz-optimal elements (LO)

Input: a product set of finite domains X = X1 × · · · × Xn (n finite), m GAI utility functions
ui : X → Z+, i = 1, . . . ,m (m finite),

Goal: determine the entire set of L-non-dominated vectors in U, and for each utility vector
u ∈ NDL(U) a corresponding tuple xu ∈ X .

Unfortunately, although the set of L-non-dominated elements is a subset of the Pareto set, it
can still be sufficiently large to prevent any efficient enumeration as shown by the following result:

Proposition 12. Problem LO is intractable, even when m = 2; it requires a number of operations
which grows, in worst case, exponentially with the number of attributes.
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Proposition 13. As soon as |Xi| ≥ 2 and m ≥ 2, deciding whether there exists a tuple in X
the utility of which weakly L-dominates a given utility vector u in Zn+ is a NP-complete decision
problem (referred to as problem Lu in the sequel).

Despite the apparent negative results of Propositions 12 and 13, we will see in Section 5 that,
in practice, the average size of NDL is small as compared to that of ND. This suggests that there
might exist algorithms, efficient on average, to determine the set of L-non-dominated elements.
The following subsection is dedicated to such an algorithm.

4.2. A focused Search Algorithm for L-non-dominated elements

We introduce now a modification of Pareto∗H search algorithm introduced in Subsubsection 3.2.3
to determine L-non-dominated elements in X . Since these elements are necessarily Pareto-optimal
we might first determine Pareto-optimal elements and then, by pairwise comparisons, determine
the L-non-dominated elements. This procedure would not be efficient due to the size of the Pareto
set. Instead, we prefer using a nice feature of Pareto∗H that computes Pareto optimal solutions one
by one, thus leaving room for pruning rules based on L-dominance. Using such rule, we are going
to specialize Pareto∗H to focus directly on Lorenz-optimal solutions. However this cannot be done
naively as shown in the following example:

Example 3. Consider a GAI network with three Boolean attributes A,B,C and two cliques AB
and BC. Assume that there are two Pareto-optimal solutions on clique AB: (1, 1) and (0, 1)
with utility uAB(1, 1) = (2, 2) and uAB(0, 1) = (3, 1). We have L(2, 2) = (2, 4) and L(3, 1) =
(1, 4). Hence we might be tempted to eliminate vector (3, 1) which is L-dominated by (2, 2) on
AB and to send message (0, 1) with utility (2, 2) to the other clique BC. However this would be
a mistake. Assume indeed that the only compatible Pareto-optimal vector on clique BC is (1, 0)
with uBC(1, 0) = (1, 3) we would output solution (1, 1, 0) with utility (2, 2) + (1, 3) = (3, 5) with
L(3, 5) = (3, 8) whereas there exists a better solution: (0, 1, 0) with utility (3, 1) + (1, 3) = (4, 4)
with L(4, 4) = (4, 8).

This example shows that we cannot simply substitute Pareto dominance by L-dominance every-
where in a Pareto search algorithm to get an admissible algorithm for determining L-non-dominated
elements. Lorenz dominance cannot be used to compare two labels located on a given separator and
having the same partial instantiation over this separator (as was suggested for Pareto dominance
by Corollary 2). It can only be used to prune labels by comparison with other labels corresponding
to complete tuples already evaluated. We explain now the exact management of labels for the
determination of L-non-dominated elements.

For determining Lorenz non-dominated elements, we will define the counterparts of labels’
functions ND and NDH for the Lorenz dominance (instead of the Pareto dominance). More
formally, let L denote the set of all labels. We define a function NDL : L 7→ L which, for any set
of labels V, returns a set NDL (V) ⊆ V containing one label per set of labels of V having the same
Generalized Lorenz non-dominated vector, i.e., for any V = 〈v, xD, XE〉 ∈ NDL (V), there exists
no V ′ = 〈w, yF, XG〉 ∈ V such that w �L v. In addition, we define NDL

H : L × L 7→ L which, for
any pair of label sets (V,W), returns a set NDL

H (V,W) ⊆ V containing one label per set of labels
of V having the same Generalized Lorenz vector heuristically undominated by any Generalized
Lorenz vector of a label in W. In other words, for any V = 〈v, xD, XE〉 ∈ NDL

H (V,W), there
exists no V ′ = 〈w, yF, XG〉 ∈ W such that w �L v + h, where 〈h, xH, XE〉 is the only label that
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agrees with xD in HE (as defined in function Heuristic Collect). Using, NDL and NDL
H , we can

now provide the counterpart of Function Pareto∗H for the Lorenz dominance. Function Lorenz∗H
is identical to Pareto∗H except on Lines 04, 09 and 10 where Lorenz dominance is used to discard
complete instantiated labels that are dominated. Note in particular that function move label

remains unchanged and still uses Pareto dominance and Corollary 2 to prune labels.

Algorithm 7 Efficient best-first Lorenz search algorithm.

Function Lorenz∗H ()
01 let root XCp

be any clique
02 Lopen ← ∅ ; call initial labels(XCp

, XCp
)

03 for all Separators XSji do call Heuristic Collect(XCi , XCj ) done
04 LLorenz ← NDL (Mpp) ; Lopen ← NDL

H

(
Lopen,LLorenz

)
05 while Lopen 6= ∅ do
06 let 〈w, xD, XSij

〉 be the most promising label in Lopen

07 remove 〈w, xD, XSij
〉 from Lopen

08 V ← move label(〈w, xD, XSij
〉)

09 if XSij
= root XCp

then LLorenz ← NDL
(
LLorenz ∪ V

)
; Lopen ← NDL

H (Lopen,V)
10 else Lopen ← Lopen ∪NDL

H

(
V,LLorenz

)
11 done
12 return LLorenz

The pruning rules using function NDL of Lines 04, 09 and 10 can be illustrated on a simple
example: assume that we wish to add on Line 10 label 〈w = (8, 3), aibj , A〉 into Lopen. In addition,
assume that there exists in LLorenz a label 〈u∗ = (10, 20), x,XCp〉 as shown in Figure 9. Finally,
assume that, for all the instantiations of the attributes of the gray area of Figure 9 compatible with
ai and bj , the corresponding utility vectors are Pareto dominated by v = (4, 4). Then operator
ND, as used in the preceding section, cannot be exploited to prune w because u∗ = (10, 20) 6%P
w + v = (12, 7). However, Lorenz dominance operator NDL can be used to prune w because
L(u∗) = (10, 30) %P L(v+w) = (7, 19). This explains why, in practice, Function Lorenz∗H is much
faster than function Pareto∗H. It is important to note that pruning a vector w using L-dominance
can only be achieved through a comparison with a vector u∗ corresponding to a complete assignment
of the attributes. As shown in Example 3, we cannot extend this pruning rule to utility vectors
u∗ corresponding to only partial assignments of the attributes. As a consequence, in Algorithm 7,
functions initial labels and move label must be the same as in Algorithm 4, i.e., they must use
Pareto dominance, not Lorenz dominance. As in Pareto∗H, there are different possible strategies
to define what the most promising label should be. In our experiments, we simply defined it as
nearest label to the root clique and, to break ties, that with the highest sum over the M objectives
of the Lorenz vector of the sum of its utility vector and its heuristic vector.

Proposition 14. Given a GAI tree G, Function Lorenz∗H() returns the Lorenz-optimal set.

Proposition 15. Lorenz∗H() requires space O(km×
∏m
i=1Ki×dw

∗
) and time O(km logm×

∏m
i=1K

2
i ×

dw
∗+1), where k is the number of cliques in the GAI network, d is the largest attribute’s domain

size, w∗ is the network’s induced width (i.e., the number of attributes in the largest clique minus
one) and Ki is a bound on utility ui.

4.3. Ordered Weighted Averages

Although L-dominance is a refinement of Pareto dominance used to capture an idea of fairness
in comparisons, it is still a partial relation and as such, not always sufficient to discriminate between
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multiple feasible solutions, as shown by Proposition 12. This is the reason why several inequality
measures have been proposed in the literature to refine Lorenz dominance. Among them, preference
weak-orders induced by Ordered Weighted Averages (OWA) [39] appear as natural extensions of
L-dominance. As shown in [40], under reasonable axioms such as compatibility with L-dominance,
completeness of preferences, continuity and comonotonic independence, the only possible model is
an ordered weighted average used with decreasing weights. This result is consistent with those of
Ogryczack [41] that justify the use of OWA operators in equitable optimization. OWA operators
are formally defined as follows:

Definition 9. The family of Ordered Weighted Averages (OWA) is a class of aggregators that
assign weights to ranks and that perform a linear combination of scores, once they have been
ranked. More formally, for any utility vector u ∈ Zm+ , the OWA is defined by:

OWA(u) =

m∑
i=1

wiu
(i) =

m∑
i=1

(wi − wi+1)Li(u)

where w1 > w2 > · · · > wm > wm+1 = 0 and u(1) ≤ u(2) ≤ · · · ≤ u(m) represent the components of
u = (u1, . . . , um) sorted by increasing order.

Note that the most important weights are attached to least satisfied agents, consistently with the
intuitive idea of egalitarianism. Note also that OWA(u) can be expressed as a linear combination
of Lorenz components Li(u), and the coefficients involved in the combination are strictly positive
(the weights wi strictly decrease as i increases). In this case, the OWA function obviously provides
a weak-order refining L-dominance. Unfortunately, the determination of an OWA-optimal solution
in X is NP-hard:

Proposition 16. As soon as |Xi| ≥ 2 and m ≥ 2, the problem Pα consisting of deciding whether
there exists an element x ∈ X of utility vector u(x) such that OWA(u(x)) ≥ α, for a fixed positive
integer α, is a NP-complete decision problem.

The procedure used for Lorenz can easily be adapted to compute optimal OWA elements within
X . For computing the best element according to OWA, we just need to redefine two functions
NDOWA and NDOWA

H , as we did for Lorenz. We thus define a function NDOWA : L 7→ L which, for
any set of labels V, returns a set NDOWA (V) ⊆ V containing one label per set of labels of V having
the same OWA, i.e., for any V = 〈v, xD, XE〉 ∈ NDOWA (V), there exists no V ′ = 〈w, yF, XG〉 ∈ V
such that w �OWA v, i.e., such that OWA(w) > OWA(v). In addition, we define NDOWA

H : L×L 7→ L
which, for any pair of label sets (V,W), returns a set NDOWA

H (V,W) ⊆ V containing one label per
set of labels of V having the same OWA non-dominated by the OWA of any label’s vector of W.
In other words, for any V = 〈v, xD, XE〉 ∈ NDOWA

H (V,W), there exists no V ′ = 〈w, yF, XG〉 ∈ W
such that w �OWA v + h, where 〈h, xH, XE〉 is the only label that agrees with xD in HE (as
defined in function Heuristic Collect). Now, replace in function Lorenz∗H the NDL and NDL

H

by NDOWA and NDOWA
H respectively and the resulting algorithm determines the optimal element

w.r.t. OWA. The notion of a most promising label must be updated as well. We simply defined it
as the nearest label to the root clique with the highest OWA value of the sum of its utility vector
and its heuristic vector. The pruning rule with NDOWA

H is illustrated in Figure 15: for any label
〈w, aibj , A〉, let h(w) be a vector that Pareto-dominates all the utility vectors corresponding to the
instantiations of the attributes in the gray area; if OWA(u∗) ≥ OWA(w + h(w)), then w can be
safely discarded because it cannot be part of a solution of NDOWA (U).
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Figure 15: Pruning rule for OWA: prune w whenever OWA(u∗) ≥ OWA(w + h(w)).

4.4. Weighted Tchebycheff Distances

The previous procedures were proposed in the context of fair multi-agents decision-making.
We can easily adapt such procedures to single-agent but multicriteria decision problems. In this
case, GAI utility functions u1, . . . , um represent criteria defined from different subsets of attributes
referring to different viewpoints about the solutions (e.g., security, velocity, space, aesthetics for a
car, as already mentioned in the introduction). In this context, the notion of fairness is replaced
by the notion of well-balanced compromise solution. In order to explore the possible compromise
solutions in the Pareto set, a classical approach in multicriteria optimization is to generate Pareto-
optimal solutions by minimizing the following scalarizing function (Wierzbicki 1986; Steuer and
Choo 1983):

fw(x) = ‖w(ū− u(x))‖∞ = max
i∈M
{wi|ūi − ui(x)|}

where ū = (ū1, . . . , ūm) represents an ideal utility profile and w is a positive weighting vector. The
choice of the Tchebycheff norm focuses on the worst component and therefore guarantees that only
feasible solutions close to reference utility vector ū on every component will receive a good score.
This promotes well-balanced solutions. Function fw fulfills two important properties [42]:

Property 1. If ∀i ∈M,wi > 0 then all solutions x minimizing fw over the set X are weakly Pareto-
optimal (i.e. no feasible solution can perform better on all criteria simultaneously). Moreover at
least one of them is Pareto-optimal.

Property 2. If ∀i ∈ M, ūi > supx∈X u
i(x), then for any Pareto-optimal solution x ∈ X , there

exists a weighting vector w such that x is the unique solution minimizing fw over X .

Property 1 shows that minimizing fw yields at least one Pareto-optimal solution. Property 2
shows that any Pareto-optimal solution can be obtained with the appropriate choice of parameter
w. This second property is very important. It prevents excluding a priori good compromise
solutions. Yet, it is not satisfied by usual linear aggregators:

Example 4. Consider a problem with 3 criteria and assume that X = {x, y, z, t} with u1(x) =
0, u2(x) = u3(x) = 100, u2(y) = 0, u1(y) = u3(y) = 100, u3(z) = 0, u1(z) = u2(z) = 100, u1(t) =
u2(t) = u3(t) = 65. All solutions except t are very bad with respect to at least one criterion. Thus
t is the only reasonable compromise solution and it is Pareto-optimal; yet it cannot be obtained by
maximizing a linear combination of individual utilities (with positive coefficients) because it does
not belong to the boundary of the convex hull of feasible utility vectors.

Figure 16 represents a feasible area and different Pareto-optimal compromise solutions that can
be obtained by minimizing a weighted Tchebycheff distance, for different weights. Among them,
only the filled points can be obtained by maximization of a linear combination of criteria.
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Figure 16: Compromise solutions minimizing weighted Tchebycheff norms

The above Example and Figure explain why fw, as a scalarizing function, is preferred to a
weighted sum in multiobjective optimization on non-convex sets [42, 37]. This remark is important
because the optimization of a weighted sum of criteria would have been an easier problem. Indeed,
a weighted sum of GAI decomposable functions is still GAI decomposable. Hence optimizing a
weighted sum of criteria amounts to finding the optimal tuple in a GAI network. As mentioned
in [20] this problem can be solved with standard non-serial dynamic programming [12] as for the
computation of the most plausible explanation (MPE) in Bayesian Networks [13]. On the contrary,
weighted Tchebycheff distances, as introduced above, are not GAI decomposable. In [43] we show
that finding a solution x in X that minimizes the Tchebycheff criterion is a NP-hard problem
and we propose a solution procedure. It relies on a ranking algorithm enumerating solutions
according to the weighted sum of criteria until a boundary condition is reached that guarantees
that the optimal solution is found. We propose here an alternative approach based on our Pareto∗H
procedure. We first fix the components of the ideal point as ūi = supx∈X u

i(x) + 1, i = 1, . . . ,m,
each value supx∈X u

i(x) being obtained by a monocriterion optimization using the GAI net. Then
we implement a focused search procedure as for OWA, just by replacing OWA by the Tchebycheff
criterion. This approach has been implemented and tested on random instances using a weighting
vector w fixed so as to generate well-balanced compromise solutions within the Pareto set (see
[1, 44]). The experiments are presented in Section 5. Note that this approach easily generalizes to
any aggregation function, provided it is monotone with respect to Pareto-dominance.

5. Numerical tests

In order to evaluate the performance of our algorithms, we performed experiments on a 2GB PC
equipped with a 3.6GHz Pentium 4 running the aGrUM2 graphical model library. For the first set of
experiments, we showed that our algorithms perform well on network structures found in practice.
We thus used classical benchmarks available on http://carlit.toulouse.inra.fr/cflibtars.
As our algorithms return exact —not approximate— solutions, we limited the experiments on
networks with induced width w∗ ≤ 15. In the repository, benchmarks are mono-objective problems,

2See http://agrum.lip6.fr
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hence we mapped them into multiobjective ones. To this end, for each objective we generated a
utility decomposable according to the GAI network of the mono-objective problem. More precisely,
for each utility ui of the mono-objective problem, we computed its minimal and maximal values u∗
and u∗, and we generated for each objective j a corresponding utility uji by drawing random values
between u∗ and u∗. In the end, the multiobjective GAI network had thus the same structure as the
mono-objective one. For biobjective problems, we evaluated the run times of Pareto∗H, Lorenz∗H
and OWA (performances for Tchebycheff distance are similar to OWA). The results are displayed
in Table 1. In this table, n refers to the number of attributes, w∗ to the induced width of the GAI
network (as computed by our triangulation algorithm), columns #L and #Par show the number
of Lorenz-optimal and Pareto-optimal elements respectively. All the other columns report average
run times in seconds over 100 experiments.

File n w∗ Par∗H Lor∗H OWA #L #Par File n w∗ Par∗H Lor∗H OWA #L #Par

GEOM30a 4 30 6 0.315 0.317 0.286 6 16 kbtree5 2 4 5 10 1 62 5 4.335 3.863 3.196 3 46
GEOM40 2 40 5 0.019 0.008 0.007 2 18 kbtree5 2 4 5 30 1 62 5 5.109 4.607 4.203 3 47
dubois30 90 3 0.054 0.046 0.041 1 38 kbtree5 2 4 5 50 1 62 5 3.530 3.136 2.783 5 42
dubois50 150 3 0.152 0.121 0.106 4 66 kbtree5 2 4 5 70 1 62 5 3.026 2.717 2.393 3 42
dubois100 300 3 0.751 0.637 0.568 1 115 kbtree5 2 4 5 90 1 62 5 3.692 3.322 3.072 4 49
pret150 25 150 8 1.032 0.998 0.823 1 55 cnf2.40.100.730621 40 11 0.746 0.730 0.672 3 16
pret150 40 150 8 0.750 0.705 0.597 6 56 cnf2.40.100.730623 40 12 1.630 1.622 1.433 5 10
pret150 75 150 9 2.048 1.842 1.644 2 57 cnf2.80.100.735545 80 6 0.050 0.044 0.038 1 16
hailfinder 56 4 29.302 28.553 27.808 34 169 cnf2.80.100.735549 80 6 0.038 0.034 0.030 2 17
insurance 27 8 28.279 28.271 28.151 1 58 alarm 37 4 0.172 0.150 0.128 23 92

Table 1: Performance of our algorithms on biobjective problems derived from classical benchmarks.

As could be expected, Lorenz∗H and OWA usually outperform Pareto∗H, essentially because
the number of Lorenz undominated elements is much smaller than that of Pareto undominated
ones. Note however that most of the attributes of these instances are Boolean, which is seldom the
case in decision problems. Significant exceptions are problems hailfinder and insurance, which are
actually Bayesian networks with attributes of domain sizes up to 11. For such problems, we can
see that run times are much higher than for the other experiments.

To test the behavior of our algorithms in a more decision-theoretic framework, we performed
a second round of experiments using the same network structures as in Table 1 but now with all
attributes of domain size 4. For each instance, we filled the utility tables with numbers drawn
randomly between 0 and 20. The run times for biobjective problems are summarized in Table 2
(“–” indicate when the program failed due to a lack of memory space available). Note that, in such
context, the Pareto sets and the run times are much bigger than those of Table 1.

Finally, for the last set of experiments, we studied how the algorithms behaved in the presence of
multiple conflicting criteria (actually, we chose 5 criteria/objectives). The experiments of Tables 1
and 2 are not appropriate for this purpose because such problems are much harder to solve than
biobjective ones and run times are too prohibitive. Hence, we randomly generated GAI networks
with all cliques of size 3 and separators of size 2, and all attributes of domain size 4. For each
clique, we generated 5 different utility tables (one for each objective) with numbers drawn randomly
between 0 and 20. The run times of the algorithms (in seconds) are displayed in Table 3 (“–
” indicate instances where the program failed due to a 2400 seconds timeout). Column Tcheb
shows the times for Tchebycheff optimization (for a fixed set of weights). Note that Pareto∗H
significantly outperforms Pareto (column “Par”). Note also the efficiency of Lorenz∗H, OWA and
Tcheb compared with Pareto∗H and Pareto. This shows that preference-based optimization can
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File n w∗ Par∗H Lor∗H OWA #L #Par File n w∗ Par∗H Lor∗H OWA #L #Par

GEOM30a 4 30 6 1.001 1.037 0.936 4 65 kbtree5 2 4 5 10 1 62 5 11.955 10.188 9.471 8 269
GEOM40 2 40 5 0.394 0.423 0.352 4 64 kbtree5 2 4 5 30 1 62 5 11.781 10.274 7.575 5 199
dubois30 90 3 11.616 10.911 9.904 4 310 kbtree5 2 4 5 50 1 62 5 9.099 7.516 7.035 8 304
dubois50 150 3 54.627 51.974 48.046 15 530 kbtree5 2 4 5 70 1 62 5 12.299 10.502 9.492 8 243
dubois100 300 3 1047.16 949.368 905.818 10 1451 kbtree5 2 4 5 90 1 62 5 9.955 8.169 7.074 3 254
pret150 25 150 8 – – – – – cnf2.40.100.730621 40 11 – – – – –
pret150 40 150 8 – – – – – cnf2.40.100.730623 40 12 – – – – –
pret150 75 150 9 – – – – – cnf2.80.100.735545 80 6 – – – – –
hailfinder 56 4 25.888 23.067 21.095 5 178 cnf2.80.100.735549 80 6 – – – – –
insurance 27 8 – – – – – alarm 37 4 2.734 2.643 2.416 7 103

Table 2: Performance on biobjective problems when all attributes’ domain sizes are 4.

be performed even when the Pareto set cannot be computed.

n Par Par∗H Lor∗H OWA #L #Par Tcheb

10 1.519 0.451 0.237 0.196 7 2957 0.203
11 8.199 3.927 0.398 0.301 21 7134 0.326
12 31.512 11.995 7.506 7.143 5 8891 7.258
13 55.833 23.389 7.903 7.322 9 11484 7.473
14 162.425 44.526 6.055 5.022 22 16928 5.231
15 427.137 104.028 76.941 73.707 9 22676 74.419
16 2050.512 105.577 60.467 56.931 5 33334 58.092
19 — 1620.304 392.702 359.253 11 42655 367.835
20 — — 512.344 484.233 13 45245 497.613

Table 3: Run times for random problems with 5 criteria.

Conclusion

We have shown that GAI networks can be used efficiently to handle preferences in decision prob-
lems involving multiple objectives, provided the objectives can be modeled by GAI decomposable
utility functions. In particular, it is possible to store m different GAI functions into a single GAI
network endowed with local vector-valued utility tables. Then we have proposed a heuristic search
procedure exploiting the GAI structure to compute all Pareto-optimal elements. This procedure
bears some similarity with labels propagation algorithms such as multiobjective MOA∗ [29] used
in state space graphs, but it works on a junction tree and must satisfy compatibility constraints
induced by separators. The procedure we propose also bears some similarity with multiobjective
approaches to constraint satisfaction problems [45, 46, 47] with some specificities linked to i) the
use of heuristic information and ii) the management of labels candidate to expansion (they can
belong to different cliques, we do not require to treat all Pareto-optimal labels of a given clique
before propagation). These specificities make it possible to modify the initial procedure so as to de-
termine the preferred solutions for any preference model compatible with Pareto-dominance. This
is not the case of ranking approaches proposed in [20] that only apply to concave utility functions.

We have provided various examples where our approach appears to be useful, first with Lorenz-
dominance and OWA models for fair multiagent decision-making, and then with weighted Tcheby-
cheff distances for multicriteria problems. Note that related approaches have been used successfully
to perform fair optimization or compromise search in multiobjective shortest path problems [40, 44].

31



This paper shows that such focused search algorithms specializing Pareto search can also be im-
ported into Graphical Models to solve a wide range of multiobjective combinatorial optimization
problems involving sophisticated preferences. Knowing that the size of the Pareto set can be huge
in combinatorial domains, a useful complementary study might be to design near admissible al-
gorithms to approximate the Pareto-set with performance guarantees. Several recent works on
multiobjective combinatorial problems have shown the power of approximations in solving large
size instances [5, 48, 49]. It is likely that such ideas could be imported with benefit in the world of
graphical multiobjective utility models. A first step in this direction is proposed in [50].

6. Appendix: Proofs

Proof of Proposition 1: We establish the proof for m = 2 (biobjective case). The result obviously
extends to problems involving more than two objectives. The decision problem Pu associated to
PO is clearly in NP. To establish NP-completeness, we reduce the decision version of the Knapsack
problem, known as NP-complete [51], to our problem. This problem denoted KP can be stated as
follows:

Instance: a utility vector (v1, . . . , vn) ∈ Zn+ and a weight vector (w1, . . . , wn) ∈ Zn+ and two positive
integers V and W .
Question: does there exist x ∈ {0, 1}n such that

∑n
j=1 vjxj ≥ V and

∑n
j=1wjxj ≤W .

Given an instance of KP, we construct in polynomial time an instance of Pu with u = (V,
∑n

j=1wj−
W ) as follows: we consider n Boolean attributes: Xj = {0, 1}, j = 1, . . . , n, such that, for all
xj ∈ Xj , u

1(xj) = vjxj and u2(xj) = wj(1 − xj). Thus, to any vector x ∈ {0, 1}n we associate a
utility vector defined by (u1(x), u2(x)) = (

∑n
j=1 vjxj ,

∑n
j=1wj(1− xj)). We know that the answer

to KP is YES if and only if
∑n

j=1 vjxj ≥ V and
∑n

j=1wjxj ≤ W . By construction of the utility

functions, these two inequalities are equivalent to u1(x) ≥ V and u2(x) ≥
∑n

j=1wj −W , meaning
that the answer to Pu is YES. This shows that Pu is at least as hard as KP. �

Proof of Proposition 2: Assume that u1(xD) �P u1(yD), then, by definition, for any xE ∈ XE,
u1(xD) + u2(xE) �P u1(xD) + u2(xE). Hence, no vector in ND (U) can result from the addition of
a vector u2(xE) to u1(yD). For the same reason, no vector in ND (U) can result from the addition
of a vector u1(xD) to a dominated vector u2(xE). As U = {u(xD), xD ∈ XD}� {u(xE), xE ∈ XE}
since D ∩E = ∅ and D ∪E = N, the result obtains. �

Proof of Corollary 1: By the running intersection property (Property 3 of Definition 2), D1∩D2 =
∅. Hence U =

⋃
xS12

∈XS12
({u1(xD1 , xS12), xD1 ∈ XD1}� {u2(xD2 , xS12), xD2 ∈ XD2}). Now, when

the values of the attributes XS12 are fixed to, say, xS12 , u1(xD1 , xS12) and u2(xD2 , xS12) become
subutilities defined over XD1 and XD2 respectively. As D1 ∩D2 = ∅, in this case, u1 + u2 is an
additive utility and the application of Proposition 2 completes the proof. �

Proof of Corollary 2: The utility function u defined by the GAI network can be decomposed as
u = u1 + u2, with u1 : XD × XSij 7→ Zm+ and u2 : XE × XSij 7→ Zm+ defined as u1(xD, xSij ) =∑r

t=1 ut(xCit
) and u2(xE, xSij ) =

∑k
t=r+1 ut(xCit

). Now we are in the conditions of application of
Corollary 1 and, thus, the result obtains. �
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Proof of Proposition 3: Function Pareto() is completed in a finite number of steps else function
Pareto Collect would call itself an infinite number of times. But, by induction, it is easily seen
that when Pareto Collect(XCk

, XCi) is called on Line 03, clique XCi is “between” XCk
and root,

so that, as G is a tree, there can be only a finite number of calls of Pareto Collect.
Now, let us prove by induction that Pareto() returns ND (U). Consider first the leaves XCi

of the GAI tree: Pareto Collect(XCi , XCj ) transforms ui into label set Mij and projects it on
XSij , that is, it computesMij⇓XSij

. By Corollary 2 applied on Separator XSij , only the subutility

vectors of ui that are undominated for fixed values xSij of XSij need be taken into account for
computing ND (U). This corresponds precisely to label set Mij⇓XSij

. By induction hypothesis,

assume that all the label sets Mki of Line 04 correspond to the undominated vectors described in
Corollary 2 for fixed values of XSki

. To apply Corollary 2 on separator XSij , we should compute, for

each value xSij ∈ XSij , VxSij
= ND

({∑r
t=1 ut(xCit

), xD ∈ XD

})
, where the Cit , t = 1, . . . , r are

XCi and all the cliques having XCi on their path toward root, and where D =
⋃r
t=1 Ct\Sij . The

loop for of Line 02–05 does not compute exactly
{∑r

t=1 ut(xCit
), xD ∈ XD

}
but rather a subset

WxSij
where the discarded elements are those that are known to be dominated (by Corollary 2).

Hence ND(VxSij
) = ND(WxSij

). So, each call to Pareto Collect returns a set of labels that are

undominated for each value of separator XSij .
Finally, for each clique XCi , the loop of lines 02–05 parses all the neighbors of XCi except that

which leads to root, hence the whole of the GAI net has been parsed when function Pareto() is
completed. As a consequence, the labels inMpp computed by Pareto() correspond to utility values
u of complete instantiations. Moreover, by the recursive applications of Corollary 2, we know that
ND (U) ⊆Mpp. As the final step returns ND (Mpp), function Pareto() returns u’s Pareto set. �

Proof of Proposition 4: See the proof of Theorem 3 of [27]. �

Proof of Proposition 5: Consider a call to initial labels(XCi , XCj ) where XCi is a leaf of the
GAI tree. Then on Line 06, V = (Labels (XCi))⇓XSij

. By applying Corollary 2 with Separator

XSij , we know that it cannot be the case that a label of Labels (XCi)\V be part of a Pareto
element of ND (U). On Lines 07 and 08, V is partitioned into message Mij and W = V\Mij ,
the latter being added to Lopen. As a consequence, for any utility vector u(x) ∈ ND (U), either
〈ui(xCi), xCi , XSij 〉 belongs toW ⊆ Lopen and Property 2 of the proposition holds (with r = 1 and
j1 = i), or 〈ui(xCi), xCi , XSij 〉 ∈ Mij .

Now let XCi be a clique that is not a leaf. Let XCj2
, . . . , XCjr

denote the set of all the cliques
that have XCi on their path toward clique XCp . Clearly, initial labels(XCi , XCj ) recursively
calls on Line 03 initial labels(XCjt

, XCht
) for t = 2, . . . , r, where XCht

denotes the clique
adjacent to XCjt

which is on the path between XCjt
and root. Assume by induction hypothesis

that, for any vector u(x) ∈ ND (U), one of the two following cases obtains:

i) there exists a clique XCjt
, t ∈ {2, . . . , r}, such that initial labels(XCjt

, XCht
) created

a new label in Lopen satisfying Property 2 of Proposition 5,

ii) there exists a label 〈w, yD, XSjtht
〉 ∈ Mjtht such that yD = xD, i.e., a label that, when

combined appropriately, will produce 〈u(x), x,XCp〉.

Let us prove that, then, this will also hold for the set of cliques XCi , XCj2
, . . . , XCjr

. Let u(x) be
any element of ND (U). If there exists a clique XCjt

, t ∈ {2, . . . , r}, such that i) holds, then the
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result is obvious. Hence assume that, for all t ∈ {2, . . . , r}, ii) holds. In particular, it holds for
the neighbors of clique XCi , which means that, on Line 04, each label set Mki contains a label
corresponding to a partial instantiation of x. So, at the end of the for loop of lines 02–05, V neces-
sarily contains a label 〈w, xD, XCi〉 such that w = ui(xCi) +

∑r
t=2 ujt(xCjt

) and D = Ci
⋃r
t=2 Cjt

because the labels corresponding to partial instantiations of x can be combined together. If label
〈w, xD, XCi〉 were discarded on Line 06, this would mean that it is dominated by another label
for fixed value xSij of Separator XSij . But this is impossible because, by Corollary 2, this would
imply that u(x) is necessarily dominated and, thus, that u(x) 6∈ ND (U). Consequently, either
label 〈w, xD, XCi〉 is inserted into message Mij on Line 07 or it is inserted into Lopen on Line 08.

The application of this induction up to clique XCp completes the proof. �

Proof of Proposition 6: First, Pareto∗() executes a finite number of steps: clearly the call to
initial labels(XCp , XCp) ends in a finite number of steps since G is a tree. In addition, the
number of elements it inserts into Lopen is finite since the size of each message Mij is the domain
size of XSij . Each time we go through the while loop of Lines 04–09, an element is removed from
Lopen on Line 06, hence, if function Pareto∗() did run infinitely, this would mean that an infinite
number of new elements would be added to Lopen on Line 08. Now this is impossible because these
elements, i.e., set V, are those which result from a move of a given label. But then, by function
move label, these new labels are the only ones yet that combine 〈w, xD, XSij 〉 with other labels
that are located on neighbors of clique XCj . In other words, these new labels correspond to new
partial instantiations of the attributes. As the number of possible partial instantiations is finite,
Pareto∗() terminates in a finite number of steps.

Note that a given label can never belong both to Lopen and to a message Mtl. This property
clearly holds before the while loop because function initial labels never inserts twice the same
label on its lines 07 and 08. In the while loop of Pareto∗, label 〈w, xD, XSij 〉 is removed from
Lopen before being added to Mij by function move label. Finally, label set V created on Line 07
of Pareto∗ contains only new labels, as mentioned in the preceding paragraph. So we can add
them to Lopen: they do not belong to any message Mtl yet.

Let us now prove that, at each step, one and only one of the assertions of Proposition 5 holds
(whereMpp is substituted by LPareto). Clearly, before the while loop, this holds. Let 〈w, xD, XSij 〉
be the label chosen on Line 05. For all vectors u(x) ∈ ND (U) such that there exists an agreeing label
〈v, yE, XSj1l

〉 as defined in assertion 2 of Proposition 5, with j1 6= i, then after executing Lines 06–
08, this label will still exist in Lopen since the only line that removes labels from Lopen is Line 06
and the label removed cannot be 〈v, yE, XSj1l

〉 since j1 6= i. But, then, there cannot exist a label

in LPareto corresponding to u(x) because this label would correspond to a complete instantiation x
and, thus, 〈v, yE, XSj1l

〉 would have been combined with other labels (which is not the case since it
belongs to Lopen). Let now u(x) ∈ ND (U) be a vector such that there exists only one agreeing label
in Lopen and this label is precisely that which is chosen on Line 05, that is, 〈w, xD, XSij 〉. For such
label, using the notations of Figure 7, move label(〈w, xD, XSij 〉) first computes on Lines 01–06
the label set V = {Labels (XCj ) ⊗ 〈w, xD, XSij 〉 ⊗ Mk1j ⊗ · · · ⊗ Mkrj} and, then, projects this
set on Line 07. It is easy to prove by induction that each message Mktj , t = 1, . . . , r, contains a
label agreeing with u(x) else 〈w, xD, XSij 〉 would not be the only label agreeing with u(x) in Lopen.
Hence V necessarily contains a label agreeing with u(x). As u(x) ∈ ND (U), this label cannot be
discarded on Line 07 of move label. So the set V on Line 07 of Pareto∗ contains a label agreeing
with u(x) and, on the next line, it is either inserted into LPareto or Lopen, so that one and only one
of the assertions of Proposition 5 holds again. Finally, consider a vector u(x) ∈ ND (U) the label
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L of which belongs to LPareto. Then label set V mentioned above cannot contain another label
L′ that agrees with u(x) because this one would correspond to the same partial instantiation as
L. But then, label L′ would already have been combined with other labels to produce L, which is
impossible since L′ is a new label. Hence the property also holds in this case.

Now, to complete the proof, we know by the preceding paragraph that for each u(x) ∈ ND (U),
either there exists a label 〈u(x), x,XCp〉 ∈ LPareto or there exists a label in Lopen that agrees with
u(x). When function Pareto∗ returns, Lopen is empty, so LPareto contains the Pareto set and, by
Line 08, it is precisely equal to ND (U). �

Proof of Proposition 7: Vectors on separators and within Lopen are precisely those sent on the
separators by function Pareto. Hence the space complexity of Pareto∗ is identical to that of
Pareto. As for the time complexity, the combinations of sets of labels and their projections differ
from Pareto only in the order in which they are done. In addition, labels selected on Line 05 can
be determined in O(1). Hence Pareto∗ time complexity of is equal to that of Pareto. �

Proof of Proposition 8: Proof by induction. On the leaves, by construction, labels Hir[xSir ] obvi-
ously Pareto dominate the ur(xSir). Now, the for loop of lines 02–05 computes V = Labels (XCi)⊗
Hir1 ⊗ · · · ⊗ Hirp , where {XC1 , . . . , XCp} = Adj(XCi)\XCj . Assume as induction hypothesis that
each Hirt weakly Pareto dominates the sum of the subutilities of the cliques XCs such that XCrt

is on their path toward XCi . Then, clearly, V weakly Pareto dominates the sum of the subutilities
of XCi and of the cliques XCs such that XCi is on their path toward XCj . Now, by definition of
Max↓XSij

, the same property holds for Hji as defined on Line 06. �

Proof of Proposition 9: In a “usual” scalar collect algorithm, the space and time complexities are
known to be O(k × dw∗) and time O(k × dw∗+1) respectively. Here, the only difference is that we
do not manipulate scalars but vectors of size m. Hence the overall complexities. �

Proof of Proposition 10: The only difference between Pareto∗H and Pareto∗ is that the former
prunes Lopen using operator NDH on Lines 04, 09 and 10. But, by Proposition 8, the only labels
that can be pruned are those that can only produce at the root Pareto dominated labels. Hence,
discarding such labels cannot remove any element from ND (U). As Pareto∗ was proved to return
the Pareto set, Pareto∗H must return it as well. �

Proof of Proposition 11: There are fewer undominated vectors than K =
∏m
i=1Ki. As a conse-

quence, there are fewer possible labels on Lopen and on separators than kKdw
∗

because there are
at most k separators and each separator’s size is lower than dw

∗+1 and, for each separator’s value,
there are fewer than K undominated vectors. Hence the space complexity.

As for the time complexity, if we do not take into account the prunings, we perform the same
operations as Pareto∗() except that we actually do them on fewer labels. So, the only difference
lies in the additional domination tests. When the label moved on line 08 reaches the root, LPareto
is updated on Line 09, which means that we compare all pairs (x, y) where x ∈ LPareto and y ∈ V.
Thus, along the whole execution of the function, we cannot perform more than K2 tests for each
value of the root clique, hence a complexity of O(mK2dw

∗+1). On Line 09, Lopen is updated as
well. Note that the labels in Lopen are those that will be stored later on separators, hence the size
of Lopen never exceeds kKdw

∗
. In addition, labels of Lopen are always compared on line 09 with

new labels, that is, labels that were not yet part of LPareto. As a consequence, on overall, the time
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complexity of all these tests is kK2dw
∗+1. Finally, when Lopen is updated on Line 10, note that

the elements in V are some of those sent by Pareto∗ on Separator XSij . As a consequence, during

the whole execution of the algorithm, fewer than kKdw
∗

elements are stored successively in V. As
there are fewer elements than K in LPareto, the time complexity obtains. �

Proof of Proposition 12: We consider instances of LO with two objectives (m = 2) on a set X =∏n
j=1Xj , where Xj = {0, 1}, j = 1, . . . , n. Assume that the objectives are additive utility functions

defined, for any Boolean vector x = (x1, . . . , xn) ∈ X , by ui(x) =
∑n

j=1 u
i
j(xj), i = 1, 2, where uij

is a marginal utility function defined on Xj by:

u1j (xj) = 2j−1xj and u2j (xj) = 2j(1− xj) + (2n − 1)/n, j = 1 . . . n.

Then for all x ∈ {0, 1}n, u1(x) =
∑n

j=1 2j−1xj and u2(x) = 2
∑n

j=1 2j−1(1− xj) + 2n − 1. Let

z =
∑n

j=1 2j−1xj we get: u1(x) = z and u2(x) = 2(2n − 1)− 2z + 2n − 1 = 3(2n − 1)− 2z. Hence
there exist 2n different Boolean vectors in X , with distinct images in the utility space of the form
{(z, 3(2n−1)−2z), z ∈ {0, . . . , 2n−1}}. Note that the second component is always greater than or
equal to the first one for z ∈ {0, . . . , 2n−1}. Consequently, the corresponding set of Lorenz vectors
can be written as {(z, 3(2n − 1)− z), z ∈ {0, . . . , 2n − 1}}. All these Lorenz vectors have their two
components adding to 3(2n − 1). Consequently, they are all located on a same line orthogonal to
vector (1, 1) which proves that all these vectors are Pareto-optimal. Hence all initial utility vectors
are Lorenz-optimal which proves that NDL(U) = U. Clearly, in such instances, the size of the
set of L-non-dominated elements grows exponentially with the number of attributes, even if the
number of criteria is fixed to 2. �

Proof of Proposition 13: The problem is clearly in NP. To establish NP-completeness, we reduce
the partition problem, known as NP-complete [51], to our problem. The partition problem is stated
as follows: Instance: finite set A = {a1, . . . , am} of items and a weight s(ai) ∈ N for each ai ∈ A.
Question: is it possible to partition A into two sets of objects of equal weights?
Let u = (β, β) with β =

∑
ai∈A s(ai)/2. We construct in polynomial time an instance of Lu with

m = 2 criteria and n Boolean attributes: Xj = {0, 1}, j = 1, . . . , n, such that, for all xj ∈ Xj ,
u1(xj) = s(aj)xj and u2(xj) = s(aj)(1 − xj). Thus, to any partition of A of type (B,A \ B),
B ⊆ A, we associate a Boolean vector xB ∈ X with n = |A| components (xBi = 1 if and only if
i ∈ B). By construction, the image of xB in the utility space is vector (

∑
a∈B s(a),

∑
a∈A\B s(a)).

Hence, the answer to Lu is YES if and only if the answer to the partition problem is YES. Indeed,
if there is a solution to the partition problem, then there exists a partition with utility (β, β) and
the corresponding Boolean vector in X is a solution of Lu. Moreover, if the answer to the partition
problem is NO, then any partition of A into two subsets is unfair and the corresponding Boolean
vector has a utility of type (β − j, β + j), where j is a positive integer no greater than β. Since
L(β − j, β + j) = (β − j, 2β) and L(u) = (β, 2β) we have u �L (β − j, β + j) and the answer to Lu
is NO. �

Proof of Proposition 14: The only differences between Lorenz∗H and Pareto∗H lie on Lines 04, 09
and 10 where Pareto dominance is substituted by Lorenz dominance. Clearly, replacing instructions
LPareto ← ND (Mpp) and LPareto ← ND

(
LPareto ∪ V

)
by LPareto ← NDL (Mpp) and LPareto ←

NDL
(
LPareto ∪ V

)
respectively cannot discard any element that is not Lorenz dominated. Had we

only modified these two instructions, since Lorenz dominance is a refinement of Pareto dominance,
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function Lorenz∗H would thus return the set of Lorenz-optimal elements. As for the heuristic, NDL
H

can be used anywhere in the algorithm as it prunes labels that we know for sure cannot be part of
the solution. Hence Lorenz∗H as described above returns the set of Lorenz-optimal labels. �

Proof of Proposition 15: The space complexity is the same as Pareto∗H() as we store the same
elements in Lopen and in the separators. The time complexity is that of Pareto∗H()× logm because,
when we perform dominance tests, in addition to parsing vectors of size m, we also need to sort
them, hence a complexity of O(m logm) instead of O(m). �

Proof of Proposition 16: The proof is similar to the one of Proposition 13. The problem is clearly
in NP. To establish NP-completeness, we reduce the partition problem, known as NP-complete
[51], to our problem. Let α = (w1 +w2)β with β =

∑
ai∈A s(ai)/2. From any instance of partition

(as introduced in the proof of Proposition 13) we construct in polynomial time an instance of Pα
with m = 2 criteria and n Boolean attributes: Xk = {0, 1}, k = 1, . . . , n, such that, for all xk ∈ Xk,
u1(xk) = s(ak)xk and u2(xk) = s(ak)(1−xk). Thus, to any partition of A of type (B,A\B), B ⊆ A,
we associate a Boolean vector xB ∈ X with n = |A| components (xBi = 1 if and only if i ∈ B). By
construction, the image of xB in the utility space is vector (

∑
ai∈B s(ai),

∑
ai∈A\B s(ai)). Hence,

the answer to Pα is YES if and only if the answer to the partition problem is YES. Indeed, if
there is a solution to the partition problem, then there exists a partition with utility (β, β) and the
corresponding Boolean vector in X gets the value OWA(β, β) = w1β + w2β = α. Moreover, if the
answer to the partition problem is NO, then any partition of A into two subsets is unfair and the
corresponding Boolean vector has a utility of type (β − k, β + k), where k is a positive integer not
greater than β. Then we have OWA(β − k, β + k) = w1(β − k) +w2(β + k) = α− k(w1 −w2) < α
since w1 > w2. Hence the answer to Pα is NO. �
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