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Abstract. In this paper, we improve the Partitioned Sampling (PS)
scheme to better handle high-dimensional state spaces. PS can be ex-
plained in terms of conditional independences between random variables
of states and observations. These can be modeled by Dynamic Bayesian
Networks. We propose to exploit these networks to determine condi-
tionally independent subspaces of the state space. This allows us to si-
multaneously perform propagations and corrections over smaller spaces.
This results in reducing the number of necessary resampling steps and,
in addition, in focusing particles into high-likelihood areas. This new
methodology, called Simultaneous Partitioned Sampling, is successfully
tested and validated for articulated object tracking.

1 Introduction

Articulated object tracking is an important computer vision task for a wide va-
riety of applications including gesture recognition, human tracking and event
detection. However, tracking articulated structures with accuracy and within
a reasonable time is challenging due to the high dimensionality of the state
and observation spaces. In the optimal filtering context, the goal of tracking
is to estimate a state sequence {xt}t=1,...,T whose evolution is specified by a
dynamic equation xt = ft(xt−1,n

x
t ) given a set of observations. These obser-

vations {yt}t=1,...,T , are related to the states by yt = ht(xt,n
y
t ). Usually, ft

and ht are vector-valued and time-varying transition functions, and nx
t and

ny
t are Gaussian noise sequences, independent and identically distributed. All

these equations are usually considered in a probabilistic way and their com-
putation is decomposed in two main steps. First the prediction of the den-
sity function p(xt|y1:t−1) =

∫
xt−1

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 with p(xt|xt−1)

the prior density related to transition function ft, and then a filtering step
p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1) with p(yt|xt) the likelihood density related to
the measurement function ht.

When functions ft and ht are linear, or linearizable, and when distributions
are Gaussian or mixtures of Gaussians, the sequence {xt}t=1,...,T can be com-
puted analytically by Kalman, Extended Kalman or Unscented Kalman Fil-
ters [4]. Unfortunately, most vision tracking problems involve nonlinear func-
tions and non-Gaussian distributions. In such cases, tracking methods based on



particle filters [4, 6], also called Sequential Monte Carlo Methods (SMC), can
be applied under very weak hypotheses: their principle is not to compute the
parameters of the distributions, but to approximate these distributions by a set

of N weighted samples {x(i)
t , w

(i)
t }, also called particles, corresponding to hypo-

thetical state realizations. As optimal filtering approaches do, they consist of two
main steps: (i) a prediction of the object state in the scene (using previous obser-

vations), that consists in propagating the set of particles {x(i)
t , w

(i)
t } according to

a proposal function q(xt|x(i)
0:t−1,yt), followed by (ii) a correction of this predic-

tion (using a new available observation), that consists in weighting the particles

according to a likelihood function, so that w
(i)
t ∝ w

(i)
t−1p(yt|x

(i)
t )

p(x
(i)
t |x

(i)
t−1)

q(xt|x(i)
0:t−1,yt)

,

with
∑N
i=1 w

(i)
t = 1. Particles can then be resampled, so that those with highest

weights are duplicated, and those with lowest weights are suppressed. There exist
many models of particle filters, each one having its own advantages. For example,
the Condensation algorithm [9] has proved to be robust to clutter and occlusion
due to its multiple hypotheses. Unfortunately, the computational cost of particle
filters highly depends on the number of dimensions of the state space and, for
large state spaces, costs may be unrealistically high due to the large number of
particles needed to approximate the distributions and to the costs of computing

weights w
(i)
t . In this paper, we propose a new way to reduce the number of par-

ticles necessary to treat high-dimensional state spaces, by reducing the number
of resampling steps and the variance of the particle set. This paper is organized
as follows. Section 2 gives a short overview of the existing approaches that try to
solve this high-dimensionality problem. Section 3 recalls the Partitioned Sam-
pling approach and its limitations, then details our approach. Section 4 gives
comparative tracking results on challenging synthetic video sequences. Finally,
concluding remarks and perspectives are given in Section 5.

2 Reducing particle filter’s complexity: the problem of
high-dimentional state spaces

Dealing with high-dimensional state and observation spaces is a major concern
of the vision tracking research community, especially when using the particle
filter framework for articulated object tracking. There exist essentially two ways
to tackle high-dimensional problems: either reduce the dimension of the state
space/search space or exploit conditional independences naturally arising in the
state space to partition the latter into low-dimensional spaces where few particles
are needed.

Among those algorithms that follow the first way, some exploit tailored pro-
posal functions to better guide particles during the prediction step. For instance,
in [3], attractors corresponding to specific known state vectors are used to better
diffuse particles and then to explore more efficiently the state space. For articu-
lated body tracking, many model-driven approaches using prior knowledge [7] on
the movement of articulated parts derived from physical models, have been suc-
cessfully applied. In [8], the environment is assumed to influence the movement



of body parts and environmental constraints are thus integrated into the track-
ing scheme. Search into the state space may also be improved using optimization
techniques. In [18], a population-based metaheuristic is for instance exploited: a
path relinking scheme is used to resample particles so as to avoid missing modes
of the probability distribution to estimate. Deutscher et al. [5] also proposed the
Annealed Particle Filter that consists of adding to the resampling step simulated
annealing iterations to diffuse particles into high-likelihood areas. In [2] a new
optimization technique is also considered, which is more efficient than previous
classical gradient methods because it incorporates constraints.

The second family of approaches consists of reducing the number of necessary
particles by exploiting conditional independences in the state space to divide it
into small parts. For instance, in [16], graphical models are used to derive con-
ditional density propagation rules and to model interpart interactions between
articulated parts of the object. A belief inference is also used in [19], where the ar-
ticulated body is modeled by a Dynamical Bayesian Network in which inference
is computed using both Belief Propagation and Mean Field algorithms. In [1] a
body is modeled by a factor graph, and the marginal of each part of the body
is computed using Belief Propagations and a specific particle filter. Then, the
global estimation consists of recomputing all the weights by taking into account
the links between parts of the body. In [17] Bayesian Networks are exploited to
factor the representation of the state space, hence reducing the complexity of
the particle filter framework. Partitioned Sampling (PS) [11, 12] was proposed by
MacCormick and Isard in 2000 and is one of the most popular frameworks. The
key idea, that will be described in Section 3.1, is to divide the joint state space
xt into a partition of P elements, i.e. one element per object part, and for each
one, to apply the transition function and to perform a weighted resampling oper-
ation. PS was first applied in multiple object tracking. The order of treatment of
the objects was fixed over time, which made it fail when there were occlusions.
In Dynamic Partition Sampling [20], the posterior distribution is represented
by a mixture model, whose mixture components represent a specific order of
treatment of the objects. However, when the set of configurations is large, this
approach becomes intractable. The Ranked Partition Sampling [21] proposes to
simultaneously estimate the order of treatment of the objects and their distri-
butions. For the articulated object tracking purpose, PS suffers from numerous
resampling steps that increase noise as well as decrease the tracking accuracy
over time. We propose in this paper an adaptation of PS to efficiently deal with
an articulated object by exploiting independence between its parts to reduce
the number of resampling steps. We call this new methodology Simultaneous
Partitioned Sampling (SPS) and derive its modeling in the next section.

3 Proposed approach

3.1 Partitioned Sampling (PS)

Partitioned Sampling (PS) is a very effective Particle Filter that exploits some
decomposition of the system dynamics in order to reduce the number of par-



ticles needed to track objects when the state space dimensions are large. The
basic idea is to divide the state space into an appropriate set of partitions and
to apply sequentially a Particle Filter on each partition, followed by a specific
resampling ensuring that the sets of particles computed actually represent the
joint distributions of the whole state space.

This specific resampling is called a “Weighted Resampling”. Let g : X 7→ R
be a strictly positive continuous function on X called a weighting function. Given

a set of particles Pt = {x(i)
t , w

(i)
t }Ni=1 with weights w

(i)
t , weighted resampling pro-

duces a new set of particles P ′t = {x′(i)t , w′
(i)
t }Ni=1 representing the same distribu-

tion as Pt while located at the peaks of function g. To achieve this, let an “impor-

tance distribution” ρt be defined on {1, . . . , N} by ρt(i) = g(x
(i)
t )/

∑N
j=1 g(x

(j)
t )

for i = 1, . . . , N . Select independently indices k1, . . . , kN according to proba-

bility ρt. Finally, construct a set of particles P ′t = {x′(i)t , w′
(i)
t }Ni=1 defined by

x′
(i)
t = x

(ki)
t and w′

(i)
t = w

(ki)
t /ρt(ki). MacCormick [10] shows that P ′t represents

the same probability distribution as Pt while focusing on the peaks of g.
The basic idea underlying Partitioned Sampling is to exploit a “natural”

decomposition of the system dynamics w.r.t. subspaces of the state space in order
to apply Particle Filtering only on those subspaces. This allows for a significant
reduction in the number of particles needed to track complex objects. More
precisely, assume that state space X can be partitioned as X = X 1 × · · · × XP ,
i.e., the system is viewed as being composed of P parts. For instance, a system
representing a hand could be decomposed as X hand = X palm×X thumb×X index×
Xmiddle × X ring × X little. In addition, assume that the dynamics of the whole
system follows this decomposition, i.e., that there exist functions f it : X 7→ X
satisfying that the projection of x′ over X 1×· · ·×X i−1 equals that of x whenever
x′ = f it (x) and such that:

ft(xt−1, n
x
t ) = fPt ◦ fP−1t ◦ · · · ◦ f2t ◦ f1t (xt−1), (1)

where ◦ is the usual function composition operator. By definition, each function
f it can propagate the particles over subspace X i × · · · × XP , i.e., it can only
modify the substates of the particles defined on X i × · · · × XP . However, in
practice, function f it usually just modifies the substate defined on X i.

One step of a “standard” Particle Filter would resample particles, propagate
them using proposal function ft and finally update the particle weights using
the observations at hand. Here, exploiting the features of weighted resampling,
Partitioned Sampling achieves the same result by substituting the ft propagation
by a sequence of applications of the f it followed by weighted resamplings, as
shown in Fig. 1. In this figure, operations “∗f it” refer to propagations of particles
using proposition function f it as defined above and operations “∼ git” refer to
weighted resamplings w.r.t. importance function git. Of course, to be effective, PS
needs git to be peaked with the same region as the posterior distribution restricted
to X i. As an example, assume that X = X 1 × X 2 and consider that the large
square on Fig. 2.a represents the whole of X . Then, the effect of propagating
particles according to f1t and resampling w.r.t. g1t corresponds to direct the
set of particles into the vertical shaded rectangle (where the peaks of g1t are



p(xt|xt−1,y1:t−1) ∼ ∗f1
t ∼ g1t

∼ g2t∗f2
t

∗fP
t ×p(yt|xt) p(xt|y1:t)

Fig. 1. Partitioned Sampling condensation diagram.

X 2

X 1

a) Partition Sampling b) Simultaneous Partition Sampling

X 3

X 2

Fig. 2. Interpretation of Partitioned Sampling ans Simultaneous Partition Sampling.

located). Further propagating these particles using f2t and resampling w.r.t. g2t
head them toward the small shaded rectangle that precisely corresponds to the
peaks of p(xt|y1:t).

This scheme can be significantly improved when the likelihood function de-
composes on subsets X i, i.e., when:

p(yt|xt) =

P∏
i=1

pi(yit|xit), (2)

where yit and xit are the projections of yt and xt on X i respectively. Such a
decomposition naturally arises when tracking articulated objects. In these cases,
PS condensation diagram can be substituted by that of Fig. 3. MacCormick and
Isard show that this new diagram produces mathematically correct results [12].

3.2 Our contribution: Simultaneous Partitioned Sampling (SPS)

In a sense, the hypotheses used by Partition Sampling can best be explained on
a dynamic Bayesian Network (DBN) representing the conditional independences

p(xt|xt−1,y1:t−1) ∗f1
t ×p1t ∼

∗f2
t ×p2t ∼

∗fP
t ×pPt p(xt|y1:t)

Fig. 3. Improved Partitioned Sampling condensation diagram.
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Fig. 4. A Dynamic Bayesian network.

between random variables of states and observations [13]. Assume for instance
that an object to be tracked is composed of 3 parts: a torso, a left arm and a right
arm. Let x1

t ,x
2
t ,x

3
t represent these parts respectively. Then, the probabilistic

dependences between these variables and their observations y1
t ,y

2
t ,y

3
t , can be

represented by the DBN of Fig. 4.

In this figure, Eq. (2) implicitly holds because, conditionally to states xit,
observations yit are independent of the other random variables. In addition, the
probabilistic dependences between substates x1

t ,x
2
t ,x

3
t suggest that the dynam-

ics of the system is decomposable on X 1 × X 2 × X 3. As a consequence, the
condensation diagram of Fig. 3 can be exploited to track the object.

Through the d-separation criterion [14], DBNs offer a strong framework for
analyzing probabilistic dependences among sets of random variables. By this cri-
terion, it can be remarked that, on Fig. 4, x3

t is independent of x2
t conditionally

to x1
t and x3

t−1. Similarly, x2
t can be shown to be independent of x3

t condition-
ally to x1

t and x2
t−1. As a consequence, propagations/corrections over subspaces

X 2 and X 3 can be performed simultaneously (since they are independent). This
suggests the condensation diagram of Fig. 5, which we call a Simultaneous Par-
titioned Sampling (SPS). It is easily seen that, as for PS, the set of particles
resulting from SPS represents probability distribution p(xt|y1:t).

The major difference with PS is that, by resampling only after both x2
t and

x3
t have been processed, we can gain in accuracy. Actually, consider Fig. 2.b in

which the shaded rectangles explain how PS achieves concentrating iteratively
on the peaks of p(xt|y1:t). After processing subspace X 2, PS focuses on the light

p(xt|xt−1,y1:t−1) ∗f1
t ×p1t

∗f2
t ×p2t

∗f3
t ×p3t

∼

∼

p(xt|y1:t)

Fig. 5. Basic Simultaneous Partitioned Sampling condensation diagram.



gray rectangle. Therefore, this rectangle is determined only using observation y2
t .

If, for a given particle, substate x1
t was near the edge of a rectangle (i.e., not too

close to a peak), then one observation y2
t may be insufficient to discard this value

of x1
t whereas two observations y2

t and y3
t may well be sufficient. In other words,

taking into account multiple independent observations can focus the particles on
smaller peaked regions of the state space. For instance, on Fig. 2.b, it may well
be the case that, instead of ending up with particles located in the dark shaded
area, SPS focus them on the smaller dashed rectangle.

Of course, to be effective, SPS needs that propagations/corrections on all
the subspaces processed simultaneously be “good” in the sense that they end up
with high weights. A naive approach to SPS would not guarantee this property.
For instance, on the example of Fig. 4, a particle may be close to the true state
of the left arm and far from that of the right arm. In such a case, the overall
weight of the particle would be low. If numerous particles had this feature, SPS
would perform poorly. Fortunately, the conditional independences exploited by
SPS also enable a substate swapping operation that improves significantly the
concentration of the particles in the high likelihood areas. The idea is that if

two particles, say (x
1,(i)
t ,x

2,(i)
t ,x

3,(i)
t ) and (x

1,(j)
t ,x

2,(j)
t ,x

3,(j)
t ), have the same

substate on X 1, i.e., x
1,(i)
t = x

1,(j)
t , then we can swap their substates on X 2

or X 3 (thus creating new particles (x
1,(i)
t ,x

2,(j)
t ,x

3,(i)
t ) and (x

1,(j)
t ,x

2,(i)
t ,x

3,(j)
t ))

without altering the probability distribution represented by the set of particles.
This feature is actually guaranteed by the d-separation criterion. Consequently,
if one particle is close to the true state of the left arm and far from that of the
right arm while another is close to the true state of the right arm and far from
that of the left arm, provided they have the same value on X 1, we can substitute
them by a new particle close to the true states of both arms and a new particle
far from those true states. Of course, after swapping, resampling will essentially
take the best particle into account. By having the best values on both X 2 and
X 3, this particle allows SPS to concentrate on smaller high-peaked regions than
PS. This leads to the new condensation diagram of Fig. 6, where 
2,3 represents
substate swapping on X 2 and X 3.

Of course, this scheme can be easily generalized. Assume that X =
∏P
i=1 X i.

Partition set {X i}Pi=1 into subsets Yj = {X i}i∈Ij such that ∪Ij = {1, . . . , P}
and such that each pair X i1 ,X i2 belonging to the same set Yj are independent
conditionally to subspaces X i ∈ Yj′ with j′ < j. Then, for each j, the simulta-
neous propagation/correction/swapping/resampling scheme described above can

p(xt|xt−1,y1:t−1) ∗f1
t ×p1t

∗f2
t ×p2t

∗f3
t ×p3t

∼


2,3 ∼ p(xt|y1:t)

Fig. 6. Complete Simultaneous Partitioned Sampling condensation diagram.



be applied on the sets of Yj (note however that, to guarantee that probability
distributions remain unchanged, swapping some substate xit ∈ Yj actually re-
quires swapping accordingly all the substates xst that are not d-separated from
xit conditionally to {xrt ∈ Yk : k < j}). In the next section, we highlight the ad-
vantages of SPS by comparing it to PS on challenging synthetic video sequences.

4 Experimental results

We have chosen to test our method and to compare it with PS on synthetical
video sequences because we wanted to highlight its interest in terms of dimen-
sionality reduction and tracking accuracy without having to take into account
specific properties of images (noise, etc.). Moreover, it is possible to simulate
specific motions and then to test and compare with accuracy our method with
PS. We have generated our own synthetic video sequence, each one containing
300 frames, showing a P -part articulated object (P = {3, 5, 7, 9, 11}) translating
and distorting over time, see examples of frames in Fig. 7. The goal, here, is then
to observe the capacity of PS and SPS to deal with articulated objects composed
of a varying number of parts and subject to weak or strong motions.

Fig. 7. Some frames of synthetic sequences: an articulated object with 7 and 9 parts.

The tracked articulated object is modeled by a set of P rectangles. The state
space contains parameters describing each rectangle, and is defined by xt =
{x1

t ,x
2
t , . . . ,x

P
t }, with xpt = {xpt , y

p
t , θ

p
t }, where (xpt , y

p
t ) denotes the center of the

pth rectangle, and θpt is its orientation. A particle x
(i)
t = {x1,(i)

t ,x
2,(i)
t , . . . ,x

P,(i)
t }

is then a possible configuration of an articulated object. In the first frame, par-
ticles are uniformly generated around the object. During the prediction step,
particles are propagated following a random walk whose variance has been man-
ually chosen. The weights of the particles are then computed using the current
observation (i.e. the current frame). A classical approach consists in integrating
the color distributions given by histograms into particle filtering [15], by measur-
ing the similarity between the distribution of pixels in the region of the estimated
parts of the articulated object and of the corresponding reference region. This
similarity is determined by computing the Bhattacharyya distance d between the
histograms of the target and the reference regions. Finally, the particle’s weights

are given by w
(i)
t = w

(i)
t−1p(yt|x

(i)
t ) ∝ w

(i)
t−1e

−λd2 , with λ = 50 in our tests. For
both approaches, the articulated object global joint distribution is estimated by
starting from its center part. PS then propagates and corrects particles part after
part to derive a global estimation of the object. SPS considers the left and right



parts as totally independent, and thus propagates and corrects simultaneously in
these parts. PS and SPS are compared in terms of tracking accuracy. For that,
we measure the tracking error as the distance between the ground truth and
the estimated articulated object at each instant. This distance is given by the
sum of the Euclidean distances between the corners of the estimated rectangles
and their corresponding corners of the ground truth shape. We also measure the
variance of the particle set.

In the first test, we compare the convergence of PS and SPS. For that, we
use synthetic sequences showing the same articulated object. We compute the
tracking errors by averaging over 50 different runs, and repeat these 50 runs for
different numbers N of particles. Tracking errors of articulated objects composed
of 7 and 9 parts are shown in Figure 8.(a-b). As we can see on this figure, SPS
always outperforms PS, even when N becomes very high. One can also notice
that with a very small number of particles (N = 2), SPS shows more robustness.
In fact SPS is more stable during periods in the sequence where the motion
is stronger, when PS totally looses the object to track. Figure 9 confirms the
stability of the proposed approach: the variance of the particle set is lower with
SPS. This proves that the particles are more concentrated around high likelihood
values than with PS. This is mainly due to the fact that PS does perform twice
more resampling steps than SPS, introducing more noise.

To test the stability of our approach, we have generated video sequences
in which the motion at the beginning of the sequence is strong. Comparative
results of tracking errors of PS and SPS are reported in Figure 10, for different
articulated object (i.e. containing 3, 5, 7, 9 and 11 parts). Here again we see the
SPS is less disturbed by this strong motion that PS. Moreover, Table 1 shows
that the efficiency of SPS over PS is not achieved at the expense of response
times (SPS is usually not more than 4% slower than PS).

We have also compared the efficiency of PS and SPS in cases of very strong
and erratic movements of parts of the articulated object throughout the se-
quence. Comparative tracking results for a 5-part articulated object are given in
Figure 11. We can see two examples of frames of this sequence and the defor-
mation that undergoes the articulated object. Tracking errors are considerably
decreased with SPS, as is the variance.

5 Conclusion

We have presented a new methodology, the Simultaneous Partitioned Sampling,
that uses independence properties to simultaneous propagate and correct parti-
cles in conditionally independent subspaces. As a result, the particle set is more
concentrated into high-likelihood areas. Thus, the estimation of the probabil-
ity density of the tracked object is more accurate. Empirical tests have shown
that SPS outperforms PS, especially in cases where the object motion is strong
and when the dimension of the state space increases (i.e., the number of parts
is large). There still remains to validate this approach on real video sequences.
There is still room for improving SPS, especially its swapping method. Cur-
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Fig. 8. Convergence study (50 runs): comparison between PS and SPS, from left to
right, top to bottom: N = 2, N = 5, N = 10, N = 20, N = 30 and N = 40 for an
articulated composed of (a) 7 parts, (b) 9 parts.

rently, we are working on linear programming-based techniques to determine
the optimal swappings.
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particles for an articulated composed of, from left to right, 7 and 9 parts.
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