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Abstract
This paper deals with preference representation and aggrega-
tion in the context of multiattribute utility theory. We con-
sider a set of alternatives having a combinatorial structure.
We assume that preferences are compactly represented by
graphical utility models derived from generalized additive de-
composable (GAI) utility functions. Such functions enable to
model interactions between attributes while preserving some
decomposability property. We address the problem of finding
a compromise solution from several GAI utilities represent-
ing different points of view on the alternatives. This scheme
can be applied both to multicriteria decision problems and to
collective decision making problems over combinatorial do-
mains. We propose a procedure using graphical models for
the fast determination of a Pareto-optimal solution achieving
a good compromise between the conflicting utilities. The pro-
cedure relies on a ranking algorithm enumerating solutions
according to the sum of all the GAI utilities until a boundary
condition is reached. Numerical experiments are provided to
highlight the practical efficiency of our procedure.

Introduction
The development of decision support systems and web rec-
ommender systems has stressed the need for models that can
handle users preferences and perform preference-based rec-
ommendation tasks. Thus, current works in preference mod-
eling and decision theory aim at developing compact prefer-
ence models achieving a good trade-off between two con-
flicting aspects: i) the need for models flexible enough to
describe sophisticated decision behaviors; and ii) the practi-
cal necessity of keeping the elicitation effort at a low level
as well as the need for fast procedures to solve preference-
based optimization problems. As an example, let us men-
tion interactive decision support systems on the web where
the preferred solution must be found among a combinatorial
set of possibilities. This kind of application motivates the
current interest for qualitative preference models and com-
pact representations like CP-nets (Boutilier et al. 2004a;
2004b) and mCP-nets (Rossi, Venable, and Walsh 2004),
their multiagent extension. Such models are deliberately
simple and flexible enough to be integrated efficiently in in-
teractive recommendation systems; agents preferences must

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
This work was supported by ANR grant ANR-05-BLAN-0384.

be captured using only a few questions so as to perform a
fast preference-based search over the possible items.

In other AI applications (e.g. configuration system, fair
allocation of resources, combinatorial auctions), more time
can be spent in the elicitation stage in order to get a finer
description of preferences. In such cases, compact util-
ity models can be used advantageously to handle prefer-
ences and improve discrimination between feasible solu-
tions (Boutilier, Bacchus, and Brafman 2001; Chevaleyre,
Endriss, and Lang 2007; Engel and Wellman 2007). More-
over, cardinal utility models allow us to escape from the
framework of Arrow’s impossibility theorem which consid-
erably restricts aggregation possibilities (Pini et al. 2005).

In the literature, different quantitative models based on
utilities have been developed to take into account different
preference structures. The most widely used model assumes
a special kind of independence among attributes called “mu-
tual preferential independence” which ensures that prefer-
ences are representable by an additive utility (Krantz et al.
1971). Such decomposability makes the elicitation process
very fast and simple. However, in practice, preferential
independence may fail to hold as it rules out any interac-
tion among attributes. Some generalizations have thus been
investigated. For instance, utility independence on every
attribute leads to a more sophisticated form called multi-
linear utilities (Bacchus and Grove 1995). The latter are
more general than additive utilities but they still cannot cope
with many interactions between attributes. To increase the
descriptive power of such models, GAI (generalized addi-
tive independence) decompositions have been introduced by
Fishburn in 1970, that allow more general interactions be-
tween attributes (Bacchus and Grove 1995) while preserving
some decomposability. Such a decomposition has been used
to endow CP-nets with utility functions (UCP-nets) both un-
der uncertainty (Boutilier, Bacchus, and Brafman 2001) and
under certainty (Brafman, Domshlak, and Kogan 2004).

In the same direction, general procedures have been de-
veloped to assess GAI utilities in decision under risk (Gon-
zales and Perny 2004; Braziunas and Boutilier 2005). These
are directed by the structure of a graphical model called a
GAI-network and consist in a sequence of questions involv-
ing simple lotteries that capture efficiently the basic features
of the agent’s attitude towards risk. Recently the elicitation
of GAI models has been investigated in the context of deci-



sion making under certainty. In 2005, Gonzales and Perny
proposed elicitation procedures relying on simple compar-
isons of outcomes (e.g. questions involve only a subset of
attributes or outcomes varying in only few attributes). They
also suggest efficient choice procedures to find GAI-optimal
elements in a product set, using classical propagation tech-
niques used in the Bayesian network literature.

In this paper, we address group decision making prob-
lems in similar contexts and we focus on the determination
of a good compromise solution between agents. As usual
in works on preferences, we assume that the alternatives to
be compared belong to a product set the size of which pre-
vents exhaustive enumeration. We assume that a GAI utility
has been elicited for each agent and we tackle the problem
of performing efficient choices for the group of agents. The
paper is organized as follows: In the next section, we discuss
individual and collective preference representation. After re-
calling some elements about GAI models we consider vari-
ous aggregation criteria to define the notion of compromise
between agents. Then, we present efficient algorithms to de-
termine the best compromise solution for the group of agents
and we provide results of numerical experiments performed
on multiagent aggregation problems.

GAI Utilities: From Individual Preference
Modeling to Collective Decision Making

Before describing GAI models, we shall introduce some no-
tations. Throughout the paper, % denotes an agent’s pref-
erence relation (a weak order) over some set X . x % y
means that x is at least as good as y. � refers to the asym-
metric part of % and ∼ to the symmetric one. In practice,
X is often described by a set of attributes. For simplicity,
we assume that X is the product set of their domains, al-
though extensions to general subsets are possible. In the rest
of the paper, uppercase letters (possibly subscripted) such as
A, B, X1 denote attributes as well as their domains. Unless
otherwise mentioned, lowercase letters denote values of the
attribute with the same uppercase letters: x, x1 (resp. xi, x1

i )
are thus values of X (resp. Xi). We shall now only consider
the representation of the preferences of a single agent, the
multiagent case being dealt with in a next subsection.

Individual Preference Modeling
Under mild hypotheses (Debreu 1964), it can be shown that
% is representable by a utility, i.e., by a function u : X 7→ R
s.t. x % y ⇔ u(x) ≥ u(y) for all x, y ∈ X . As preferences
are specific to each individual, utilities must be elicited for
each agent, which is impossible due to the combinatorial na-
ture ofX . Moreover, in a recommendation system with mul-
tiple regular users, storing explicitly for each user the utility
of every element of X is prohibitive. Fortunately, agent’s
preferences usually have an underlying structure induced by
independencies among attributes that substantially decreases
the elicitation effort and the memory needed to store prefer-
ences. The simplest case is obtained when preferences over
X = X1 × · · · × Xn are representable by an additive util-
ity u(x) =

∑n
i=1 ui(xi) for any x = (x1, . . . , xn) ∈ X .

This model only requires to store ui(xi) for any xi ∈ Xi,

i = 1, . . . , n. However, such decomposition in not al-
ways convenient because it rules out interactions between
attributes. When agents preferences are more complex, a
more elaborate model is needed as shown below:

Example 1 Consider a set X of menus x = (x1, x2, x3),
with main course x1 ∈ X1 = {meat(M), fish(F )}, drink
x2 ∈ X2 = {red wine (R), white wine(W )} and dessert
x3∈X3 = {cake(C), sorbet(S)}.
First case. Assume the agent’s preferences are well repre-
sented by an additive utility u characterized by the following
marginal utilities: u1(M) = 4; u1(F ) = 0; u2(R) = 2;
u2(W ) = 0; u3(C) = 1; u3(S) = 0. Then the utilities of
the 23 possible menus x(i) follow:

u(x(1)) = u(M, R, C) = 7; u(x(2)) = u(M, R, S) = 6;
u(x(3)) = u(M, W, C) = 5; u(x(4)) = u(M, W, S) = 4;
u(x(5)) = u(F, R, C) = 3; u(x(6)) = u(F, R, S) = 2;
u(x(7)) = u(F, W, C) = 1; u(x(8)) = u(F, W, S) = 0;

which yields the following ordering:
x(1) � x(2) � x(3) � x(5) � x(4) � x(6) � x(7) � x(8).

Second case. Assume that another agent’s ranking is:
x(1) � x(2) � x(7) � x(8) � x(3) � x(4) � x(5) � x(6).
This can be explained by: i) a high priority granted to
matching wine with main course (red wine for meat, white
one for fish); ii) at a lower level of priority, meat is preferred
to fish; and iii) cake is preferred to sorbet (ceteris paribus).

Although not irrational, such preferences are not rep-
resentable by an additive utility because x(1) � x(5) ⇒
u1(M) > u1(F ) whereas x(7) � x(3) ⇒ u1(F ) > u1(M).
However, this does not rule out less disaggregated forms of
additive decompositions such as: u(x) = u1,2(x1, x2) +
u3(x3). For example, u1,2(M,R) = 6, u1,2(F,W ) = 4,
u1,2(M,W ) = 2, u1,2(F,R) = 0, u3(C) = 1, u3(S) = 0
would represent %.
Third case. Assume that the ranking of a third agent is:
x(2) � x(1) � x(7) � x(8) � x(4) � x(3) � x(5) � x(6).
Her preference system is actually a refinement of the previ-
ous one. She prefers cake to sorbet when the main course is
fish but the opposite obtains when the main course is meat.

In this case, using similar arguments, it can be shown
that the previous decomposition does not fit anymore due
to the interaction between attributes X1 and X3. However
it is interesting to remark that preferences can still be rep-
resented by a decomposable utility of the form: u(x) =
u1,2(x1, x2) + u1,3(x1, x3), setting for instance:

u1,2(M ,R)=6;u1,2(F ,W )=4;u1,2(M ,W )=2;u1,2(F ,R)=0;
u1,2(M ,C)=0;u1,2(M ,S)=1; u1,2(F ,C)=1; u1,2(F ,S)=0.

Such a decomposition over overlapping factors is called a
GAI decomposition (Bacchus and Grove 1995). It includes
additive and multilinear decompositions as special cases, but
it is much more flexible since it does not make any assump-
tion on the kind of interactions between attributes. GAI de-
compositions can be defined more formally as follows:

Definition 1 (GAI decomposition) Let X =
∏n

i=1 Xi. Let
Z1, . . . , Zk be some subsets of N = {1, . . . , n} such that
N = ∪k

i=1Zi. For every i, let XZi =
∏

j∈Zi
Xj . Utility

u(·) representing % is GAI-decomposable w.r.t. the XZi’s iff



there exist functions ui : XZi 7→ R such that:
u(x) =

∑k
i=1 ui(xZi), for all x = (x1, . . . , xn) ∈ X ,

where xZi
denotes the tuple constituted by the xj’s, j ∈ Zi.

GAI decompositions can be represented by graphical
structures called GAI networks (Gonzales and Perny 2004)
which are essentially similar to the junction graphs used for
Bayesian networks (Jensen 1996; Cowell et al. 1999):
Definition 2 (GAI network) Let X =

∏n
i=1 Xi. Let

Z1, . . . , Zk be a covering of {1, . . . , n}. Assume that % is
representable by a GAI utility u(x) =

∑k
i=1 ui(xZi) for all

x ∈ X . Then a GAI net representing u(·) is an undirected
graph G = (V,E), satisfying the following properties:

1. V = {XZ1 , . . . , XZk
};

2. For every (XZi
, XZj

) ∈ E, Zi ∩ Zj 6= ∅. For every
XZi

, XZj
s.t. Zi ∩ Zj = Tij 6= ∅, there exists a path

in G linking XZi
and XZj

s.t. all of its nodes contain
all the indices of Tij (Running intersection property).

Nodes of V are called cliques. Every edge (XZi , XZj ) ∈ E
is labeled by XTij = XZi∩Zj and is called a separator.

Cliques are drawn as ellipses and separators as rectan-
gles. In this paper, we shall only be interested in GAI trees,
i.e., in singly-connected GAI nets. Actually, this is not re-
strictive as any GAI network can be compiled into a GAI
tree (Gonzales and Perny 2004). For any GAI decompo-
sition, by Definition 2, the cliques of the GAI net should
be the sets of variables of the subutilities. For instance,
if u(a, b, c, d, e, f, g) = u1(a, b) + u2(c, e) + u3(b, c, d) +
u4(b, d, f)+u5(b, g) then, as shown in Fig.1, the cliques are:
AB, CE, BCD, BDF , BG. By property 2 of Definition 2
the set of edges of a GAI network can be determined by any
algorithm preserving the running intersection property (see
the Bayesian network literature (Cowell et al. 1999)).

BCD
C CE

BDF B BG
BAB

BD

Figure 1: A GAI tree

Collective Decision Making
We consider now a collective decision problem involving a
set A = {1, . . . ,m} of agents. We assume that, for each
agent i ∈ A, a GAI utility ui : X → R, has been elicited
on X . For any feasible solution x and any agent i ∈ A, the
utility index ui(x) measures the satisfaction of agent i with
solution x. The utility vector (u1(x), . . . , um(x)) repre-
sents the agents’ satisfaction profile. Pareto and strict Pareto
dominance relations are respectively defined by: x >P y
⇔ [∀i ∈ A, ui(x) ≥ ui(y) and ∃k ∈ A, uk(x) > uk(y)],
and x mP y ⇔ [∀i ∈ A, ui(x) > ui(y)].

A solution x ∈ X such that y >P x for no y ∈ X
is said to be Pareto optimal. Clearly, admissible solutions
to the collective choice problem must be sought within the
set of Pareto-optimal solutions. With such solutions in-
deed, there is no way of increasing the satisfaction of an
agent without decreasing that of other agents. A milder
optimality notion is given by weak Pareto optimality that

concerns any solution x ∈ X such that y mP x for no
y ∈ X . In order to explore the possible compromise solu-
tions in the Pareto set, a classical approach in multiobjective
optimization is to generate compromise solutions by mini-
mizing the following scalarizing function (Wierzbicki 1986;
Steuer and Choo 1983):

fw(x) =‖ w(ū− u(x)) ‖∞= maxi∈A{wi|ūi − ui(x)|}
where ū = (ū1, . . . , ūm) represents an ideal utility pro-
file and w is a positive weighting vector. The choice of
the Tchebycheff norm focuses on the worst component and
therefore guarantees that only feasible solutions close to ref-
erence point ū on every component will receive a good score.
This promotes well-balanced solutions. Functions fw(x)
fulfill two important properties (see (Wierzbicki 1986)):
Property 1: If ∀i ∈ A, wi > 0 then all solutions x min-
imizing fw(x) over the set X are weakly Pareto-optimal.
Moreover at least one of them is Pareto-optimal.
Property 2. If ∀i ∈ A, ūi > supx∈X ui(x), then for any
Pareto-optimal solution x, there exists a weighting vector w
such that x is the unique solution minimizing fw(x) over X .

Property 1 shows that minimizing fw(x) yields at least one
Pareto-optimal solution. Property 2 shows that any Pareto-
optimal solution can be obtained with the appropriate choice
of parameters w. This second property is very important. It
prevents excluding a priori good compromise solutions. Yet,
it is not satisfied by usual linear aggregators:
Example 1 Consider a problem with 3 agents and assume
that X = {x, y, z, t} with u1(x) = 0, u2(x) = u3(x) =
100, u2(y) = 0, u1(y) = u3(y) = 100, u3(z) = 0, u1(z) =
u2(z) = 100, u1(t) = u2(t) = u3(t) = 65. All solutions
except t are unacceptable for at least one agent. Thus t is the
only possible compromise solution and it is Pareto-optimal;
yet it cannot be obtained by maximizing a linear combina-
tion of individual utilities (with positive coefficients). �

This explains why fw(x), as a scalarizing function, is pre-
ferred to a weighted sum in multiobjective optimization on
non-convex sets (Wierzbicki 1986; Steuer and Choo 1983).

Note that compromise search in a collective decision mak-
ing problem can be seen as an interactive process. Standard
techniques are known to set w so as to target on the center of
the Pareto set and get a well-balanced compromise solution
(Steuer and Choo 1983). Then parameter w might evolve
during the interactive search to explore more specific areas
of interest. To save space, we concentrate now on the main
technical problem to solve at any step of the exploration:
how to determine efficiently the optimal compromise solu-
tion within the product set X .

Algorithms
The Ranking Approach for Compromise Search
Determining the optimal compromise solution among agents
using function fw introduced in the previous section is not
straightforward because we face two difficulties: the combi-
natorial nature of X and the non-decomposability of func-
tion fw (obviously it is not a GAI function). Even in sim-
ple cases where ui(x) can be computed in polynomial time



for every x ∈ X and every i ∈ A, the problem of finding
the solution minimizing fw(x) over X is NP-hard as soon
as there are n ≥ 3 attributes and m ≥ 2 agents, each one
having a GAI utility function including at least one factor
of size greater than or equal to 3. This can be proved us-
ing a reduction from 3-SAT. Indeed, consider an instance of
3-SAT with n variables and m clauses. To each variable,
we associate a Boolean attribute Xi and to any clause Cj

over variables we associate an agent with Boolean function
uj . For instance Cj = x ∨ y ∨ ¬z will be represented by
function uj(x, y, z) = 1 − (1 − x)(1 − y)z. Then we set
ūi = 1 for all i ∈ A. Hence, the optimal value of fw over
X = X1 × · · · ×Xn with functions u1, . . . , um is 0 if and
only if the initial 3-SAT problem is feasible.

We now introduce an original method to determine the
fw-optimal tuple in X . It is based on a 3-step procedure:
Step 1: scalarization. We consider the overall utility func-
tion uw(x) = 1/m

∑m
i=1 wiu

i(x). Such a function pro-
vides a lower approximation of fw(x): considering U =
1/m

∑m
i=1 wiūi, it is clear that U − uw(x) ≤ fw(x) for all

x ∈ X (the average is lower than the maximum). Note that
uw(x) is much easier to optimize than fw(x) since, as the
weighted sum of GAI functions, it is also a GAI function
that can be compiled into a GAI-net structure.
Step 2: ranking. we enumerate the solutions of X by de-
creasing utility uw(x). Here, an efficient ranking algorithm
exploiting the GAI structure of uw to speed-up enumeration
is needed. This point will be the core of the next subsection.
Step 3: stopping condition. The ranking is stopped as soon
as we reach a solution xk such that uw(xk) ≤ U − fw(x∗)
where x∗ minimizes fw among the already detected solu-
tions. This cut is justified by the following result:
Proposition 1 Let x1, ..., xk be the ordered sequence of k-
best solutions generated during Step 2 with function uw, if
uw(xk) ≤ U − fw(x∗) with x∗ = Argmini=1,...,kfw(xi)
then x∗ is optimal for fw, i.e. fw(x∗) = minx∈X fw(x).
Proof. For any i > k, by construction, fw(xi) ≥ U −
uw(xi) ≥ U − uw(xk). Since U − uw(xk) ≥ fw(x∗), by
hypothesis, we get fw(xi) ≥ fw(x∗), which shows that no
solution found after step k in the ranking can improve the
current best solution x∗. �

Ranking Using a GAI Function
Let u be a GAI-decomposable utility w.r.t. some XZi

’s. The
procedure we present in this subsection for ranking elements
w.r.t. u heavily relies on another one designed to answer
choice queries, that is, to find the preferred tuple over X .
To avoid exhaustive pairwise comparisons which would be
too prohibitive due to the combinatorial nature of X , both
procedures take advantage of the structure of the GAI net
to decompose the query problem into a sequence of local
optimizations, hence keeping the computational cost of the
overall ranking task at a very admissible level. We briefly
present the choice algorithm and, then, derive the general
ranking procedure. The former corresponds to solving:

max
x∈X

u(x1, . . . , xn) = max
x∈X

∑
i

ui(xZi). (1)

The optimum can be found efficiently by exploiting that:
1. max over X1, . . . , Xn of u(X1, . . . , Xn), can be decom-

posed as maxX1 . . .maxXn u(X1, . . . , Xn), and the or-
der in which the max’s are performed is unimportant;

2. if u(X1, . . . , Xn) can be decomposed as f() + g() where
f() does not depend on Xi, then maxXi [f() + g()] =
f() + maxXi g();

3. in a GAI-net, the running intersection ensures that a vari-
able contained in an outer clique C (i.e. a clique with
at most one neighbor) but not contained in C’s neighbor
does not appear in the rest of the net.

Properties 2 and 3 suggest computing the max recursively
by first maximizing over the variables contained only in the
outer cliques as only one factor is involved in these com-
putations, then adding the result to the factor of their adja-
cent clique, remove these outer cliques and iterate until all
cliques have been removed. This leads to the algorithm be-
low, where F = ∅ the first time we call Collect (F just
avoids infinite loops due to line 03 of the algorithm).
Function Collect(clique Ci, F )
01 for all Cj in {cliques adjacent to Ci}\F in the GAI-net do
02 let Sij = Ci ∩ Cj be the separator between Ci and Cj

03 let u∗j be defined on Sij by Collect(Cj , {Ci})
04 substitute ui(xCi) by ui(xCi) + u∗j (xSij ) for all xCi ’s
05 done
06 if F 6= ∅ then
07 let Cj be the only clique ∈ F and let Sij = Ci ∩ Cj

08 let M∗
i (xSij ) = Argmax{ui(yCi) : ySij = xSij} and let

u∗i (xSij ) = ui(M
∗
i (xSij )) for all xSij in

Q
Xk∈Sij

Xk

09 store matrix M∗
i in separator Sij and return u∗i

10 endif
This function recursively reduces Eq. (1) by removing one

by one all the subutilities (extracting their max). Thus, call-
ing function Collect on any clique returns the value of the
utility of the most preferred element. For instance, on the ex-
ample of Figure 1, applying Collect(BCD, ∅) results in
the message propagations described in Figure 2, where:
u∗1(B) = maxA u1(A, B), M1(B) = ArgmaxAu1(A, B)
u∗2(C) = maxE u2(C, E), M2(C) = ArgmaxEu2(C, E)
u∗5(B) = maxG u5(B, G), M5(B) = ArgmaxGu5(B, G)
u′4(B, D, F ) = u4(B, D, F ) + u∗5(B)
u∗4(B,D)=maxF u′4(B,D,F ),M4(B,D)=ArgmaxF u′4(B,D,F )

BCD
CE

BDF B BG
BAB

BD

C
u∗1(B)

u∗2(C)

u∗4(B, D) u∗5(B)

Figure 2: The Collect phase

At the end of the collect, maxBCD u∗3(B,C,D) =
u3(B,C,D) + u∗1(B) + u∗2(C) + u4(B,D) corresponds to
the maximum value of the utility. Let (b̂, ĉ, d̂) be a solu-
tion to maxBCD u∗3(B,C,D). Then (b̂, ĉ, d̂) is obviously a
projection on B × C × D of a most preferred element of
X . But the corresponding utility is u3(b̂, ĉ, d̂) + u∗1(b̂) +
u∗2(ĉ)+u4(b̂, d̂) which, in turn, is obtained at M1(b̂), M2(ĉ)
and M4(b̂, d̂). Finally, M4(b̂, d̂) corresponds to utility value



u4(b̂, ĉ, d̂) + u∗5(b̂), obtained at M5(b̂). Consequently, the
optimal tuple can be obtained by propagating recursively the
attributes instantiations (the Mi’s) from clique BCD toward
the outer cliques, as shown on Figure 3. This leads to the
following algorithm, where F is the last clique that called
Instantiate and xF is an instantiation of F ’s attributes:
Function Instantiate(Ci, F, xF )
01 if F = ∅ then
02 let x∗Ci

= Argmax{ui(xCi) : xCi ∈
Q

Xk∈Ci
Xk}

03 else
04 let Cj be the only clique ∈ F and let x∗Cj

= xF

05 let Sij = Ci ∩ Cj and Dij = Ci\Cj

06 let x∗Ci
= Argmax{ui(x

∗
Sij

, yDij )}
07 endif
08 let {Ci1 , . . . , Cik} = {cliques adjacent to Ci}\F
09 foreach j varying from 1 to k do
10 let xij = Instantiate (Cij , {Ci}, x∗Ci

)
11 let yij = tuple xij without the values of the attributes in Sij

12 return tuple (x∗Ci
, yi1 , . . . , yik )

BCD
CE

BDF B BG
BAB

BD

C

b̂, d̂ b̂

b̂
ĉ

Figure 3: The Instantiation phase

Function Optimal choice(GAI-net)
01 Let C0 be any clique in the GAI-net
02 call Collect(C0, ∅) and let x∗ = Instantiate(C0, ∅, ∅)
03 return the optimal choice x∗

As for ranking, consider the example of Fig. 2. Assume
that Optimal choice returned x∗ = (â, b̂, ĉ, d̂, ê, f̂ , ĝ).
Then, the next best tuple, say x2, differs from x∗ by at least
one attribute, i.e. there exists a clique Ci such that the pro-
jection of x2 on Ci differs from that of x∗. As we do not
know on which Ci the difference occurs, we can test all the
possibilities and partition the feasible space into:
Set 1: (B, C, D) 6= (b̂, ĉ, d̂)

Set 2: (B, C, D) = (b̂, ĉ, d̂) and (B, D, F ) 6= (b̂, d̂, f̂)

Set 3: (B, C, D, F ) = (b̂, ĉ, d̂, f̂) and (B, G) 6= (b̂, ĝ)

Set 4: (B, C, D, F, G) = (b̂, ĉ, d̂, f̂ , ĝ) and (C, E) 6= (ĉ, ê)

Set 5: (B, C, D, E, F, G)=(b̂, ĉ, d̂, ê, f̂ , ĝ) and (A,B) 6=(â, b̂)
The construction of the above sets follows the decompo-

sition advocated in (Nilsson 1998): the cliques in which the
attributes are constrained to be different from those of x∗ are
enumerated in the order in which the cliques are called by
function Collect within the call to Optimal choice.
Sets 1 to 5 above thus correspond to a collect phase encoun-
tering successively cliques (B,C,D), (B,D,F ), (B,G),
(C,E) and (A,B). Finding the best element in a given Set
is essentially similar to finding the optimal choice except
that lines 02 and 06 in function Instantiate need be
modified to avoid some instantiations (like (b̂, ĉ, d̂)).

Assume now that the second best tuple, say x2 = (a2, b2,

ĉ, d2, ê, f̂ , g2), is the optimal choice of Set 1. Then the next
tuple, x3, is the best tuple that is different from both x∗

and x2. It can be retrieved using the same process. As x2

is in Set 1, we should substitute Set 1 by the sets below to

exclude x2 and, then, iterate the same process:
Set 1.1: (B, C, D) 6∈ {(b̂, ĉ, d̂), (b2, ĉ, d2)}
Set 1.2: (B, C, D) = (b2, ĉ, d2) and (B, D, F ) 6= (b2, d2, f̂)

Set 1.3: (B, C, D, F ) = (b2, ĉ, d2, f̂) and (B, G) 6= (b2, g2)

Set 1.4: (B, C, D, F, G) = (b2, ĉ, d2, f̂ , g2) and (C, E) 6= (ĉ, ê)

Set 1.5: (B, C, D, E, F, G)=(b2,ĉ,d2,ê,f̂,g2) and (A,B) 6=(a2,b2)

This justifies the following algorithm:
Function k-best(GAI-net, k)
01 let x∗ be the tuple resulting from Optimal choice
02 let S = {Sets i} as described above and let kbest = ∅
03 for each Set i, let opt(Set i) be the optimal choice in Set i
04 for i = 2 to k do
05 let Set j be an arbitrary element of

{Set j ∈ S : opt(Set j) ≥ opt(Set p), Set p ∈ S}
06 let xi, the ith best element, be opt(Set j)
07 add xi to kbest and remove Set j from S
08 substitute Set j in S by sets 6⊇ {xi} as described above
10 return kbest

Numerical Tests
To evaluate our approach in practice, we have performed ex-
periments on various instances of multiattribute multiagent
search problems, using a Java program running on a 2.1GHz
PC. We have recorded computation times and the number
of solutions generated before returning the optimal compro-
mise solution according to a weighted Tchebycheff norm.

Test Data
To run the experiments, we generated synthetic data for
GAI-decomposable preferences. All GAI decompositions
involved 20 attributes, with 10 subutilities ui(xZi) involving
a number of attributes chosen randomly between 2 and 4. It
does not seem realistic to consider higher-order interactions
as far as human preference modeling is concerned (such
complex interaction might actually be very difficult to as-
sess in practice). Each ui’s domain variables were randomly
selected from the set of all attributes. For variables that were
not selected in any subutility, we created unary subutilities.
Next, we created m different utilities for the structure previ-
ously generated, representing the preferences of m agents.
We performed the tests for m ∈ {2, 5, 7}. For each subutil-
ity uj

i of an agent j, we first generated its maximum value
max(uj

i ), in the interval [0, 1]. Then we uniformly generated
the utility values for all configurations of uj

i in the interval
[0,max(uj

i )]. This gave us m different GAI-decomposable
utilities with the same structure. We generated test data for
variables of domain sizes 2, 5 and 10, resp. giving problems
with 220, 520 and 1020 total possible configurations. This
means that we have subutility terms with tables containing
up to 10000 elements (4 variables with domain size 10).

Results
The observed results are summarized in Table 1. As can be
seen, average times range from 0.02 to 44.65 seconds. It can
be seen that the attributes domain sizes and the number of
agents are decisive to the efficiency of the proposed algo-
rithm. For groups of 3 and 5 agents, the average times were
below 1 second, indicating that the algorithm can be used to



Table 1: Average results (t: time in seconds–values in parentheses are the sample standard deviation; #gen: number of
generated solutions) over 30 runs, for 3, 5 and 7 agents

Domain m = 3 m = 5 m = 7
size t(s) #gen t(s) #gen t(s) #gen

2 0.02 (0.02) 155 0.04 (0.03) 1447 0.21 (0.16) 8327
5 0.04 (0.03) 397 0.63 (0.58) 23552 10.03 (9.77) 342216
10 0.15 (0.06) 672 1.28 (1.24) 43961 44.65 (43.53) 1507528

give instant responses to small groups, even when the solu-
tion space is big (note that for 20 attributes of domain size
5 to 20 attributes of domain size 10, the number of possible
configurations is multiplied by over 106). For m = 7 per-
formance in response time is about 45 seconds which begins
to be critical for online recommendations. However, it is not
so frequent to engage a large group into a collective decision
making session using sophisticated preference models.

We also ran experiments where each agent had a differ-
ent GAI decomposable preference structure. In these cases,
to generate the aggregated GAI network we triangulated the
Markov graph induced by the subutilities of all the agents.
The more the discrepancy between the agents structures,
the larger the cliques, and the less efficient our algorithm.
Whenever the GAI network structures were very different, it
turned out to be impossible to conduct the ranking procedure
due to the too large amount of memory required to fill the
cliques. However, there are many practical situations where
interacting attributes are almost identical for all agents, the
difference between individual utilities being mainly due to
discrepancies in utility values.

Conclusion
In this paper we have shown how GAI-nets could be used
not only to efficiently perform individual recommendations
(choice and ranking) on combinatorial sets, but also to solve
collective recommendation queries in multiagent decision
problems. Our procedure allows the determination of var-
ious types of compromise solutions and remains very effi-
cient provided the number of agents is not too large. It might
be used in many real-world situations like preference-based
design of a collective holidays-trip, or for content-based
movie recommendations for a group, and fair allocation in
combinatorial auctions problems. Finally, further sophisti-
cations of our approach are possible. For instance, the rank-
ing algorithm can be improved using a dynamic selection
of the clique passed in argument to the collect/instantiation
phases (depending on the tuples ranked so far).
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