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Abstract

Causal network inference can be a very powerful method to
distinguish direct and indirect relationships in observed data,
and when the right conditions are met one can even hope to
uncover the real causal ordering between the variables. How-
ever, this often proves difficult to do on real-world datasets
due to incomplete data, mixed-type variables (i.e. categorical,
ordinal as well as continuous observations), unobserved con-
founders etc... To this end we present the latest improvements
of the miic algorithm, an information-theoretic approach that
learns causal or non-causal graphical models on any type of
data, also taking into account the effects of unobserved latent
variables. The main talking point of this article is an efficient
optimal discretization scheme that simultaneously estimates
and assesses the significance of the (conditional) mutual in-
formation between any mixed variables. With this new (con-
ditional) independence test, the method is shown to outper-
form existing tools on mixed-type benchmarks, before being
applied to analyze the medical records of elderly patients with
cognitive disorders from La Pitié-Salpêtrière Hospital, Paris.
This article is an abridged version of (Cabeli et al. 2020).

Virtually all of science is concerned with understanding the
cause-effect relationships between events, whether they be
weather patterns or the human’s body response to treatment.
When possible, the gold standard for discovering causal re-
lationships is the case-control studies where the experimen-
talist can control all variables except for the studied inter-
vention. However, such randomized experiments can often
prove to be either too costly, unethical or simply impossi-
ble. Designed for these cases, causal inference methods have
steadily improved during the last decades benefiting from
more computing power and better data collection practices.
There are two main families of methods to formally define
causal effects, with similar capabilities but different formu-
lations : Rubin’s potential outcome framework and Pearl’s
graph-based do calculus.

Pearl’s graphs are a simple and powerful way to represent
causal links between many variables in a causal network,
a sub-class of Bayesian networks with the added require-
ment that the relationships be causal i.e. intervening on x
will change the probability of y in the graph x −→ y, but
the inverse is not true. This kind of representation makes
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visually clear if a given node is a confounder or a col-
lider and whether or not one should include it to com-
pute causal effect such as the Average Treatment Effect
(Pearl 2009; Pearl, Glymour, and Jewell 2016). Many al-
gorithms have been proposed to try to infer such networks
from observations, ranging from Bayesian score-based ap-
proaches (Heckerman, Meek, and Cooper 2006), constraint-
based approaches based on (conditional) independence tests
(Spirtes and Glymour 1991), graphical lasso (Meinshausen
and Bühlmann 2006), continuous optimization over matri-
ces (Zheng et al. 2018, 2020), independent component anal-
ysis (Shimizu et al. 2006) or even using random forests’
feature importance scores (Irrthum, Wehenkel, and Geurts
2010).Naturally, these methods rely on several assumptions
to retrieve the causal signal from pure observational data.
Most methods that output a causal graph rely on both the
Causal Faithfulness Assumption (i.e. the data distribution
holds no extra conditional independence that what is de-
scribed by its corresponding graph, it is faithful to the graph)
and the Causal Markov Assumption (an extension of the
Markov property of Bayesian graphs that takes into account
the causal hierarchy) (Glymour, Zhang, and Spirtes 2019).
Some methods will then add extra assumptions on either
the data distribution (continuous vs discrete, Gaussian vs
non-Gaussian), the relationships between variables (linear
vs non-linear) or the nature of residuals when regressing
a node on its parents. This is where constraint-based ap-
proaches shine and why they tend to be more usable on
real-world data, since except for the two base assumptions
already mentioned they are only limited by their conditional
independence test. When needed, they can be tailored for a
specific problem (i.e. Gaussian distributions and linear re-
lationships for normalized gene expressions (Spirtes et al.
2000)) or on the contrary they can aim to be as general as
possible with no assumption on either data distribution or
relationships (Azadkia and Chatterjee 2021).

Despite a large community effort, conditional indepen-
dence testing for the general case remains a difficult prob-
lem. Existing methods tend to be designed for specific cases
in which they can work well (Pfister et al. 2016; Shah and
Peters 2020) but we are still lacking a test that would en-
able truly general purpose constraint-based causal discov-
ery. This article focuses on the mixed case, for which we
want to take into account both discrete (ordinal or not) and



continuous variables (of any distribution) in a way that does
not favor one or the other. Few methods have been proposed
to deal with this type of data, and existing examples simply
rely on using different tests depending on the combination
of nodes being considered (Sedgewick et al. 2018; Tsagris
et al. 2018). Crucially, one would like the output of the al-
gorithm to be independent of the nature in which the data
comes, which is difficult to guarantee when one uses differ-
ent tests with different sensitivities and power. An ideal way
to measure dependence between variables of any type is the
(conditional) mutual information, as it is defined in both the
discrete and the continuous case. Regardless of data distri-
bution, mutual information has the desirable property that
I(X;Y ) = 0 ↔ X ⊥⊥ Y and I(X;Y |Z) = 0 ↔ X ⊥⊥
Y |Z. However, this quantity is difficult to estimate on finite
data, particularly in the regime that interests us at (condi-
tional) independence where estimators give a small but non-
null value (Kraskov, Stögbauer, and Grassberger 2004; Bel-
ghazi et al. 2018). One way that has been proposed to assess
the significance of near-null estimates of mutual information
is by running permutation tests, which was then adapted to
the conditional case (Runge 2017) but it can be slow and
impractical.

In this article we describe the discretization scheme that
has been developed to take advantage of the significance
test for the mutual information introduced with the miic
algorithm (Affeldt and Isambert 2015; Affeldt, Verny, and
Isambert 2016), based on the stochastic complexity of dis-
crete data and proven to be asymptotically correct (Marx
and Vreeken 2019). Our method is tailored to work in the
constraint-based setting, i.e. univariate X and Y and a po-
tentially high dimension conditioning set Z, but makes no
assumption on the data distribution or the nature of the re-
lationships. We base our estimator on a Minimum Descrip-
tion Length (MDL)-optimal binning scheme for univariate
variables (Kontkanen and Myllymäki 2007b), adapted to the
joint case to give at the same time an estimation of the infor-
mation and a test of its significance. Before being plugged
into miic, our proposed discretization approach is shown to
both give a correct estimation of I(X;Y ) and I(X;Y |Z)
on any X , Y , Z, and perform favorably compared to state-
of-the-art mixed case non-parametric (conditional) indepen-
dence test. We then compare our performance on full-scale
causal inference benchmarks on synthetic dataset for both
the continuous and mixed case, once again showing that our
optimal discretization scheme is able to keep up or outper-
form competing methods. Finally, we use miic on medical
records from elderly patients presenting signs of mental dis-
orders in collaboration with La Pitié-Salpêtrière Hospital,
Paris.

Methods
Mutual information testing

While mutual information is usually defined as a dis-
crete summation over nominal variables, i.e., I(X;Y ) =∑

x,y px,y log (px,y/pxpy), its most general definition con-
sists in taking the supremum over all finite partitions, P and

Figure 1: Mutual information computation between con-
tinuous or mixed-type variables. Outline of mutual infor-
mation computation between continuous or mixed-type vari-
ables for a finite dataset of N samples. Mutual information
is estimated through an optimum partitioning of continu-
ous variable(s) (solid red line and arrow) after introducing a
complexity term to account for the finite size of the dataset.

Q, of variables, X and Y (Cover and Thomas 2012),

I(X;Y ) = sup
P,Q

I([X]P ; [Y ]Q) (1)

which can be applied to continuous or mixed-type variables.
Moreover, by continuing to refine some initial partitions

through the addition of further cut points for continuous
variable(s), one finds a monotonically increasing sequence
(Cover and Thomas 2012), I([X]P ; [Y ]Q), as depicted on
Fig. 1. In practice, however, Eq. 1 cannot be used to esti-
mate I(X;Y ) from an actual dataset with finite sample size,
as the refinement of partitions eventually assigns each of the
N different samples into N different bins. This leads to a
shift of convergence towards logN instead of the theoreti-
cal limit, I(X;Y ), which requires an infinite amount of data
(dotted line in Fig. 1).

In this paper, we propose to adapt Eq. 1 to account for the
finite number of samples in actual datasets,

I ′N (X;Y ) = sup
P,Q

I ′N ([X]P ; [Y ]Q) (2)

by introducing a finite size correction to mutual information,

I ′N ([X]P ; [Y ]Q) = IN ([X]P ; [Y ]Q)− k
′
P;Q(N)

1

N
(3)

where k′P;Q(N) corresponds to a complexity term intro-
duced in (Affeldt and Isambert 2015; Affeldt, Verny, and
Isambert 2016) to discriminate between variable depen-
dence (for I ′N ([X]P ; [Y ]Q) > 0) and variable independence
(for I ′N ([X]P ; [Y ]Q) 6 0) given a finite dataset of size N .
In the present context of finding an optimum discretization
for continuous variables, this complexity term introduces a
penalty which eventually outweights the information gain in
refining bin partitions further, when there is not enough data
to support such a refined model, as depicted on Fig. 1.

For discrete variables, typical complexity terms cor-
respond to the Bayesian Information Criterion (BIC),
kBIC
P;Q(N) = 1/2(rx − 1)(ry − 1) logN , where rx and ry



are the number of bins for X and Y , or the X- and Y -
Normalized Maximum Likelihood (NML) criteria (Roos
et al. 2008; Affeldt and Isambert 2015; Affeldt, Verny, and
Isambert 2016), defined as,

kX−NML
P;Q (N) =

ry∑
y

log Crxny
− log CrxN (4)

kY−NML
P;Q (N) =

rx∑
x

log Crynx
− log CryN (5)

where Crxny
is the parametric complexity associated with

the yth bin of variable Y containing ny samples, and simi-
larly for Crynx with the nx-size bin of variable X in Eq. 5.

Parametric complexities Crn are defined by summing a
multinomial likelihood function over all possible partitions
of n data points into a maximum of r bins as,

Crn =

`k>0∑
`1+`2+···+`r=n

n!

`1!`2! · · · `r!

r∏
k=1

(
`k
n

)`k

(6)

which can in fact be computed recursively in linear-time
(Kontkanen and Myllymäki 2007a). For large n and r, in-
herent to large datasets with continuous or mixed-type vari-
ables, we found that Crn computation can be made numer-
ically stable by implementing the recursion on parametric
complexity ratios Dr

n = Crn/Cr−1n rather than parametric
complexities themselves as,

Dr
n = 1 +

n

(r − 2)Dr−1
n

(7)

log Crn =

r∑
k=2

logDk
n (8)

for r > 3, with C1n = 1 and C2n = D2
n, which can be

computed directly with the general formula, Eq. 6, for r = 2,

C2n =

n∑
h=0

(
n

h

)(
h

n

)h(
n− h
n

)n−h

(9)

or its Szpankowski approximation for large n (needed for
n > 1000 in practice) (Szpankowski 2011; Kontkanen et al.
2003; Kontkanen 2009),

C2n =

√
nπ

2

(
1 +

2

3

√
2

nπ
+

1

12n
+O

(
1

n3/2

))
(10)

'
√
nπ

2
exp

(√
8

9nπ
+

3π − 16

36nπ

)
(11)

For continuous variables, however, the variable categories
are not given a priori and need to be specified and thus en-
coded in the model complexity within the frame of the Min-
imum Description Length (MDL) principle (Kontkanen and
Myllymäki 2007b). In absence of priors for any specific par-
tition with r bins, the model index should be encoded with a

uniform distribution over all partitions with the same num-
ber of bins (Kontkanen and Myllymäki 2007b). As there are(
N−1
rx−1

)
ways to choose rx − 1 out of N − 1 possible cut

points, corresponding to a codelength of log
(
N−1
rx−1

)
for a

continuous variable X (and similarly for Y if it is continu-
ous), the model complexity associated with the partitioning
of continuous or mixed-type variables becomes,

k′P;Q(N) = kP;Q(N) + log

(
N − 1

rx − 1

)
+ log

(
N − 1

ry − 1

)
(12)

with log
(
N−1
r−1
)
= (r− 1)CN,r, where CN,r corresponds to

the encoding cost associated to each of the r − 1 cut points
with r = rx or ry .

While finding the supremum of I ′N ([X]P ; [Y ]Q) over all
possible partitions P and Q according to Eq. 2 seems in-
tractable, it can be computed rather efficiently in practice.

The approach is inspired by the computation of an MDL-
optimal histogram for a single continuous variable (Kon-
tkanen and Myllymäki 2007b), which can be done exactly
in O(N3) steps. As the approach cannot be generalized to
more than one variable, we implemented a local optimiza-
tion heuristics, which finds the optimum cut points for each
continuous variable, iteratively, keeping the partitions of the
other continuous variable(s) fixed. This enables to gain an
order of magnitude in the optimization running time at each
iteration, which scales as O(N2), as detailed below.

In practice for two variables, we start from an initial (or
optimized) X partition with rx bins of various sizes and an
estimate of the number of Y bins, r◦y . The sample-scaled mu-
tual information with finite size correction, i.e., nI ′n(X;Y ),
is then optimized iteratively for n = 1, · · · , N samples, over
all Y partitions, through the followingO(N2) dynamic pro-
gramming scheme, using Eq. 4 as parametric complexity,

nI ′n(X;Y ) = max
06j<n

[
jI ′j(X;Y ) +

rx∑
x

nxy log nxy − ny log ny

− log Crxny
− CN,r◦y

]
(13)

where the last added Y bin, including ny = n − j sam-
ples distributed over the rx bins ofX (with

∑rx
x nxy = ny),

comes with an independent mutual information contribu-
tion,

∑rx
x nxy log nxy − ny log ny , a parametric complex-

ity, log Crxny
, and encoding cost, CN,r◦y

. The initial condition
for j = 0 in (13) is set by convention to include all terms
invariant under Y -partitioning, i.e.,−

∑rx
x nx log(nx/N)+

log CrxN − (rx − 1)CN,rx + CN,r◦y
.

Then, adopting this optimized partition for Y , one can ap-
ply the same dynamic programming scheme for X using
Eq. 5 as parametric complexity and iterate the optimiza-
tion of X and Y partitions until a stable two-state limit
circle is reached. In practice, we set the initial partitioning
over X and Y by testing equal-freq discretizations with 2
to dN1/3e bins and choosing the one which gives the high-
est I ′N (X;Y ). We found that while the convergence speed of



the iterative dynamic programming is largely independent of
these initial conditions, this scheme does improve it slightly.
This leads after only a few iterations to a good estimate of
mutual information (averaged over limit circle) that is com-
parable to the existing state of the art, for both continuous
and mixed-type variables, as shown below.

This optimization scheme, Eq. 2, and its iterative dynamic
programming computation, Eq. 13, can also be adapted
to compute mutual information involving joined variables,
such as I ′N (X; {Ai}), with corresponding finite size correc-
tions and cut point encoding costs extended from Eqs. 3−12.
Similarly, the approach can compute conditional mutual in-
formation, such as I ′N (X;Y |{Ai}), involving continuous or
mixed-type variables. To this end, I ′N (X;Y |{Ai}) needs
to be defined, using the chain rule (Cover and Thomas
2012), as the difference between maximized mutual infor-
mation terms involving either {Y, {Ai}} and {Ai} (Eq. 14)
or {X, {Ai}} and {Ai} (Eq. 15) as joined variables,

I ′N (X;Y |{Ai}) = I ′N (X;Y, {Ai})− I ′N (X; {Ai})(14)
= I ′N (Y ;X, {Ai})− I ′N (Y ; {Ai})(15)

Thus, starting from an initial (or optimized) partition for
X , each term of Eq. 14 is optimized with respect to Y and
{Ai} partitions using Eq. 4 as parametric complexity ex-
tended to multivariate categories, ny,{ai} and n{ai}. Then,
in turn, each term of Eq. 15 is optimized with respect to X
and {Ai} partitions using Eq. 5 as parametric complexity ex-
tended to multivariate categories, nx,{ai} and n{ai}. Note, in
particular, that {Ai} partitions are optimized separately for
each of the four terms in Eqs. 14 & 15, before taking their
differences, as these optimized {Ai} partitions might be dif-
ferent in general.

Learning networks from continuous or mixed-type
data
The above information maximization scheme to estimate
(conditional) mutual information between continuous or
mixed-type variables can then be used to extend our recent
network learning algorithm MIIC (Verny et al. 2017) beyond
simple categorical datasets.

Outline of MIIC algorithm MIIC combines constraint-
based approach and information-theoretic framework to ro-
bustly learn a broad class of causal or non-causal networks
including possible latent variables (Verny et al. 2017; Sella
et al. 2017). MIIC proceeds in three steps:

i) Edge pruning. Starting from a fully connected net-
work, MIIC first removes dispensable edges by itera-
tively subtracting the most significant information con-
tributions from indirect paths between each pair of vari-
ables. Significant contributors are collected based on
the 3off2 score (Affeldt and Isambert 2015; Affeldt,
Verny, and Isambert 2016) maximizing conditional three-
point information while minimizing conditional two-
point (mutual) information, which reliably assesses con-
ditional independence, even in the presence of strongly

linked variables (Zhao et al. 2016). The residual (con-
ditional) mutual information including finite size correc-
tions, I ′N (X;Y |{Ai}) (i.e. after indirect effects of sig-
nificant contributors, {Ai}, have been subtracted from
I ′N (X;Y )), is related to the removal probability of
each edge, PXY = exp(−NI ′N (X;Y |{Ai})), where
NI ′N (X;Y |{Ai}) > 0 corresponds to the strength of the
retained edge, as visualized by its width in MIIC graphi-
cal models (Verny et al. 2017)

ii) Edge filtering (optional). The remaining edges can be fur-
ther filtered based on confidence ratio assessment (Verny
et al. 2017), CXY = PXY /〈P rand

XY 〉, where P rand
XY is the

average of the probability to remove the XY edge af-
ter randomly permutating the dataset for each variable.
Hence, the lower CXY , the higher the confidence on the
XY edge. In practice, filtering edges with CXY > 0.1 or
0.01 limits the false discovery rates with small datasets,
while maintaining satisfactory true positive rates (Verny
et al. 2017).

iii) Edge orientation. Retained edges are then oriented based
on the signature of causality in observational data given
by the sign of (conditional) three-point information (Af-
feldt and Isambert 2015; Affeldt, Verny, and Isambert
2016). The final network contains up to three types of
edges (Verny et al. 2017): undirected, directed, as well
as, bidirected edges, which originate from a latent vari-
able, L, unobserved in the dataset but predicted to be a
common cause of X and Y , i.e. X L99 (L) 99K Y . For
clarity, bidirected edges are represented with dashed lines
in MIIC networks.
The full source code is available as an R package pub-

lished on CRAN (package ”miic”) or at https://github.com/
miicTeam/miic R package. An online server is also avail-
able at https://miic.curie.fr.

Benchmarks
(Conditional) Mutual information estimation In order
to benchmark the accuracy of the mutual information esti-
mation given by our optimal discretization scheme, we used
various joint distributions for which we know the value of
I(X;Y ) analytically. We include three settings : mutual in-
formation in the bivariate gaussian case, mutual information
for 4 mixed cases directly taken from another estimator (Gao
et al. 2017), and the conditional mutual information with a
4-variables setup simulating ”V-structures”, conditional in-
dependences and neutral conditioning nodes. For each ex-
periment we compare the ”miic” estimation obtained with
optimal discretization I ′N (X;Y ) to the value returned by
state-of-the art estimators with varying parameter if neces-
sary, as well as the Mean Squared Error, and the estimators’
variances. The code to reproduce all of these experiments is
available at https://github.com/vcabeli/miicPLoS.

(Conditional) Independence testing Next, we tested the
sensitivity and power of our estimator to detect (condi-
tional) independence. We reproduced the newly published
tests for mixed conditional independence test by (Boeken
and Mooij 2020) based around the ”Local Causal Discov-
ery” algorithm (Mooij, Magliacane, and Claassen 2016). In



the original article, independences tests are either frequen-
tist or bayesian, and are compared using different detection
thresholds to compute the ROC curves and AUCs. Our es-
timator I ′N (X;Y ) cannot be readily compared in this way
since it is unbounded and it behaves the opposite way of
these other tests (dependence implies a large positive value,
independence gives a null estimation). For any estimator one
can always get an ”empirical p-value” without knowing the
standard asymptotic distribution by running permutations on
the observed data. In our case however, it would not be effi-
cient as the optimal discretization for shuffled data without
information is one single bin, and I ′N (X;Y ) is strictly 0. In-
stead, to obtain a value between ]0, 1] that behaves the same
way as the other tests, we computed the following :

I ′pval(X;Y ) = 1− I ′N (X;Y )

min(I ′N (X;X), I ′N (Y ;Y ))
(16)

I ′pval(X;Y |Z) = 1− I ′N (X;Y |Z)
min(I ′N (X;X), I ′N (Y ;Y ))

(17)

Where min(I ′N (X;X), I ′N (Y ;Y )) can be thought of as
the maximum value I ′N (X;Y ) or I ′N (X;Y |Z) can have
in this setting. We can then compare I ′pval with different
marginals X , Y and Z, and compute ROC curves and the
area under them by setting different thresholds in ]0, 1].

For details of the different simulations used to benchmark
independence testing, we refer the reader to (Boeken and
Mooij 2020). The code for this part is available at https://
github.com/vcabeli/PTTests.

Network reconstruction benchmarks In order to test
MIIC with the new optimal discretization scheme, we simu-
lated observational data from known data-generating graphs
and compared how well different causal reconstruction
methods are able to recover the true DAGs from the obser-
vations. First, the underlying DAG models were randomly
drawn from the space of all possible DAGs (Melancon and
Philippe 2004), allowing for a maximum degree of 4 neigh-
bours. Datasets were generated following the causal order
of the generated DAG using non-linear structural equations
models (SEMs), as outlined in (Cabeli et al. 2020).

For the evaluation, the network reconstruction was treated
as a binary classification task and classical performance
measures, precision, recall and F-score, were used, based on
the numbers of true versus false positive (TP vs FP ) edges
and true versus false negative (TN vs FN ) edges.

In order to measure how well the orientations of the
edges match those of the true DAG, we also define the
orientation-dependent counts TP ′ = TP − TPmisorient

and FP ′ = FP + TPmisorient with TPmisorient corre-
sponding to all true positive edges of the skeleton with dif-
ferent orientation/non-orientation status as in the true Com-
plete Partially Directed Acyclic Graph (CPDAG). Here,
CPDAG refers to the equivalence class of the true DAG,
which is taken as the benchmark reference since differ-
ent DAGs might be equivalent from the data point of view
(i.e. if and only if they have the same skeleton and the
same v-structures). The CPDAG precision, recall and F-
score were then computed with the orientation-dependent
TP ′ and FP ′.

Methods which have a tunable parameter (such as the α
level for significance, typically controlling the false positive
rate) were tuned for each sample sizeN and network type to
produce the best F-score, and were then compared to MIIC
with default settings. See (Cabeli et al. 2020) for details on
parameter tuning.

Results
We will present three different types of benchmark before
showing the network obtained on real data from medical
records of La Pitié-Salpêtrière patients. First, we show that
our optimal discretization scheme gives a correct (condi-
tional) mutual information estimation between variables of
any type, comparable to state of the art estimators. Second,
we focus on the performance of miic’s discretization when
used as a (conditional) independence test in difficult settings
with mixed variables and nonlinear relationships. Finally,
we run full benchmarks on continuous as well as mixed
datasets to see how well our method is able to recover the
true data-generating CPDAG.

Pairwise and conditional mutual information
estimation
Before testing the accuracy of the estimation, we first make
qualitative observations on the optimal discretization re-
turned by our method. We note that number of bins increases
both with the number of samples and the magnitude of mu-
tual information, IN (X;Y ), Fig. S1. These tendencies have
intuitive explanations : first, more samples means that we
can assign smaller bins (width-wise) with more certainty;
and second, more information means that more bins are
needed to describe the interaction between the variables. We
also note that no single discretization of a variable X can be
optimal with regards to every joint distribution, Fig. S1(D-
F). See (Cabeli et al. 2020) for further discussion.

We compared our estimation of I ′N (X;Y )
by optimal discretization to the state of the art
Kraskov–Stögbauer–Grassberger (KSG) estimator
(Kraskov, Stögbauer, and Grassberger 2004) for con-
tinuous distributions, specifically bivariate Gaussian
distributions with more or less covariance Fig. 2. Like other
information estimators based on kNN statistics, the KSG
approach has a tunable parameter k which will typically
scale with the sample size N , and has to be chosen de-
pending on the objective : the original authors recommend
k = 2 to 4 for the best estimation, and up to N/2 if one
is more interested in independence testing. We found that
our optimal discretization with the NML complexity does
indeed give a correct estimation of IN (X;Y ) for all sample
sizes and correlation strengths.

Our approach also natively deals with categorical and
mixed (i.e. part categorical and part continuous) variables,
as the master definition of the mutual information, Eq. 1, can
be applied to variables of any type. Recent efforts were made
to extend the KSG estimator to such cases (Ross 2014; Gao
et al. 2017; Zeng, Xia, and Tong 2018) which are frequently
encountered in real-life data. We compared the mixed-type
information estimates of our method to other existing meth-



Figure 2: Mutual information estimation benchmarks on
bivariate gaussian distributions. 100 bivariate normal dis-
tributions were sampled for varying sample sizes, increas-
ing from top to bottom, and correlation coefficients ρ rang-
ing from 0.01 to 0.9. The mutual information was estimated
with the proposed optimum discretization scheme and the
KSG estimator with different parameters k (left). The mean
squared error (MSE, middle) was calculated thanks to the
analytical result of the mutual information of the bivariate
Gaussian : I(X;Y ) = − log(1− ρ2)/2. The standard devi-
ation of each estimator over the 100 replications was also
plotted against the correlation coefficient (right). Code is
available at https://github.com/vcabeli/miic PLoS

ods for varying sample sizes and found its performance to
be similar or superior, Fig. S2.

Similarly, our approach gives a robust estimation of the
conditional mutual information, given a set of separating
variables, {Zi}, Fig. S3. The experiment shows that our es-
timator works in all conditioning regimes : first, spurious de-
pendency can be induced between independent X and Y by
conditioning over a common descendent Z, as in the case of
a “v-structure”, X → Z ← Y , Fig. S3 (Pearl 2009). Con-
ditional independence, i.e. I ′N (X;Y |Z) = 0, can also be
obtained as in the case of a single common ancestor Z of X
and Y , i.e.,X ← Z → Y , with concomitant changes in opti-
mumX and Y partitionings from multiple to single bins un-
der conditioning over a continuous or categorical variableZ.
Finally, our approach also gives a correct estimation whenX
and Y share more information that the indirect flow that goes
through the conditioning set Z, in which case I ′N (X;Y |Z)
is the residual information once taking into account Z.

Optimum discretization as an independence test
between continuous or mixed-type variables
Most importantly, our optimum discretization scheme also
acts as an independence test by allowing for single bin par-
titions whenever no multiple-bin partitioning can glean in-
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Figure 3: Conditional independence tests on mixed vari-
ables. Mean Area Under the Curve of ROC curves from 200
rounds of simulation at each sample size n for the LCD triple
(Boeken and Mooij 2020). The triple is scored according to
a combination of three p-values for three independence tests
: C 6⊥⊥ X , X 6⊥⊥ Y and C ⊥⊥ Y |X , and is given a true ’pos-
itive’ label if the data is simulated according to the relation-
ship C → X → Y , ’negative’ otherwise. Code and detailed
outputs are available at https://github.com/vcabeli/PTTests

formation that is greater than its associated complexity cost.
In such cases, our estimator implies variable independence,
i.e. IN (X;Y ) = 0 ↔ X ⊥⊥ Y , with drastically reduced
sampling error and variance, Fig. 2, as compared to other
direct estimators such as KSG which always give noisy in-
formation estimates even for vanishing mutual information
between nearly independent variables and need additional
hypothesis testing to be used as independence test (Kraskov,
Stögbauer, and Grassberger 2004; Runge 2018).

When converted to a p-value-like value with Eq. 17, we
can also compare our estimator over the full range of signif-
icance levels and between different marginal distributions,
and compute ROC curves along with their Area Under the
Curve (AUC), Fig. 3. In difficult settings with non-linear re-
lationships and possibly discrete variables, we found that our
approach is similar or superior to all of the standard meth-
ods tested, such as the generalized covariance measure (gcm,
(Shah and Peters 2020)), the partial correlation test (pp-
cor, implemented in (Kim 2015)), the Spearman correlation
test (spcor, promoted by (Harris and Drton 2013)) and Ran-
domised Conditional Correlation Test (rcot, (Strobl, Zhang,
and Visweswaran 2019)). We found that it is also superior
to methods specifically designed for the mixed case such as
the mixed mutual information estimation by (Scutari, Scu-
tari, and MMPC 2017) (mi mixed), the likelihood ratio test
by (Sedgewick et al. 2018) (lr mixed) and the recent Pólya
tree-based Bayesian nonparametric test (Boeken and Mooij
2020) (polyatree).

The intrinsic robustness of the present optimum dis-
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Figure 4: CPDAG benchmark resuls Reconstruction of benchmark networks for mixed-type, non-linear, non-Gaussian
datasets. CPDAG F-scores obtained for benchmark random networks with 100 nodes and average degree 3 reconstructed
from N=100–5,000 samples. F-scores obtained with our parameter-free information-theoretic approach MIIC (magenta) are
compared to the best results obtained with alternative mixed-type data methods, CausalMGM (Sedgewick et al. 2018) (blue)
and MXM (Tsagris et al. 2018) (green), by optimizing CausalMGM regularization parameters (λ) and MXM significance
parameter (α), for each sample size N .

cretization scheme in inferring (conditional) independence
and dependency is a central feature of MIIC as a causal net-
work inference algorithm.

Causal network inference benchmarks
We then tested the mixed-type data extension of MIIC net-
work reconstruction method on benchmark mixed-type data.
The performance at reconstructing directed networks are
shown as recall, precision and F-score in Fig. S4 for fully
continuous networks compared to state of the art meth-
ods for non-linear relationships, and in Fig. 4 for mixed
networks with varying proportion of continuous variables
over discrete variables and compared to the recent alter-
native methods, CausalMGM(Sedgewick et al. 2018) and
MXM(Tsagris et al. 2018), also designed to analyze mixed-
type data.

We note that for continuous networks, MIIC performs
better than competing methods even after careful parame-
ter optimization. In particular, introducing interaction terms
when a node has several parents means that the Causal
Additive Model (Bühlmann, Peters, and Ernest 2014) does
not perform as well as it should, given that the simulated
datasets were generated using additive models. The well-
studied kernel-based Helbert-Schmidt Independence Crite-
rion (Gretton et al. 2005; Gretton, Spirtes, and Tillman 2009)
also seems to perform well, but its complexity scales badly
with sample size N . Being based on the mutual informa-
tion, our method is sensitive to all types of (in)dependencies
present in the data, hence its better performance on recover-
ing CPDAGs.

MIIC also seems to outperform competing mixed meth-
ods, and in particular has the same performance on mostly
discrete versus mostly continuous datasets, which suggests
better adaptability and stability against the various forms in
which the data may be collected.

Application to medical records of eldery patients
with cognitive disorders
We applied this information maximization analysis for
mixed-type data to reconstruct a clinical network from the
medical records of 1,628 eldery patients consulting for cog-
nitive disorders at La Pitié-Salpêtrière hospital, Paris. The
dataset contains 107 variables of different types (namely, 19
continuous and 88 categorical variables) and heterogeneous
nature (i.e., variables related to previous medical history, co-
morbidities and comedications, scores from cognitive tests,
clinical, biological or radiological examinations, diagnostics
and treatments). Beyond the different types and heteroge-
neous nature of the recorded data, nodes of the clinical net-
work, Fig. 5, can be partitioned into groups associated to
specific dementia disorders and patient clinical context, in-
cluding comorbidities (diabetes, hypertension, etc) and re-
lated comedications. See (Cabeli et al. 2020) for additional
information on each variable and further discussion.

Discussion
We report in this paper a novel optimal discretization
method to simultaneously compute and assess the signifi-
cance of mutual information, as well as conditional mul-
tivariate information, between any combination of contin-
uous or mixed-type variables. The approach is used to re-
construct graphical models from mixed-type datasets by un-
covering direct, indirect and possibly causal relationships in
complex heterogenous data. The method is shown to out-
perform state-of-the-art approaches on benchmark mixed-
type datasets, before being applied to analyze the medical
records of eldery patients with cognitive disorders from La
Pitié-Salpêtrière Hospital, Paris.

From a methodological perspective, this information-
maximizing discretization approach facilitates the interpre-
tation of either the (in)dependencies between continuous or
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Figure 5: Network reconstructed from medical records of 1,628 eldelry patients with cognitive disorders. Square (resp. cir-
cle) nodes correspond to discrete (resp. continuous) variables. Red (resp. blue) edges correspond to correlation (resp. anti-
correlation) between variables. Dotted edges reflect latent variables, see Discussion and (Cabeli et al. 2020) for additional
information.

mixed-type variables. First, obtaining optimal discretization
helps explain the dependencies in terms of the most infor-
mative categories of continuous variables. Second, and most
importantly, optimal discretization also acts as an indepen-
dence test by allowing for single bin partitions whenever
multiple-bin partitioning provides less information than its
associated complexity cost.

From the perspective of clinical applications, the method
is able to globally uncover interdependences within complex
heterogeneous data from medical records without specific
hypothesis nor prior knowledge on any clinically relevant
information. The reconstructed clinical network from cog-
nitive disorder patients (Fig. 5) recovers well known as well
as novel direct and indirect relations between medically rel-
evant variables.

In addition, we found that this reconstructed clinical net-
work captures also some facets of the neurologist’s reason-
ing behind the diagnoses of distinct dementias. In partic-
ular, diagnosis nodes can be interpreted as “explanatory”
variables associated to a number of “explaining-away ef-
fects” (Pearl 2009) in the form of “v-structures”, i.e., D1 →
S/E ← D2, whenever alternative diagnoses, D1 or D2, can

independently explain a given syndrome, S, or the result of
a specific examination, E. Examples discussed in more de-
tails in (Cabeli et al. 2020) are PARK DEM → PARK Sd
← LEWY, VASC DEM → Fazekas ← MIXED FORMS
and VASC DEM → Ischemic Stroke ← MIXED FORMS.
In addition, anticorrelations between different diagnostic
nodes reflect the alternative choices of diagnosis by the
neurologist, either in the form of “differential diagnoses”
through a reasoning by elimination, in particular, to diagnose
Alzheimer’s disease, i.e., VASC DEMaALZHEIMER, or
in the form of a latent variable, visualized as bidirected
dotted edges and corresponding to alternative diagnoses by
the neurologist, i.e., ALZHEIMERL99diagnosis99KBIPO,
or, ALZHEIMERL99diagnosis99KMIXED FORMS. La-
tent variables may also represent the clinician’s de-
cisions between alternative treatments, e.g., APDL99
clinician decision 99KVKA or a nonrecorded or implicit
information in the patient personal or medical history, e.g.,
active smokerL99ever smoked99Kquit smoking, Fig. 5.

The main strengths of our clinical network reconstruction
method are three-fold. First, it performs an unbiased check
on the database content (expected, yet missing direct links



in the reconstructed network hint to likely problems in the
database e.g., erroneous or missing data). Second, it does not
need any expert-informed hypothesis and provides, without
prior knowledge in the field, graphical models complement-
ing analyses by experts. Finally, it can discover novel unex-
pected direct interdependencies between clinically relevant
information, such as the direct connection between Fazekas
and Scheltens scales, Fig. 5, which may provide some physi-
ological insights and suggest new research directions for fur-
ther investigation.

Hence, beyond the challenge of learning clinical networks
from mixed-type data, our method offers a user-friendly
global visualisation tool of complex, heterogeneous clinical
data which could help other practitioners visualize and ana-
lyze direct, indirect and possibly causal effects from patient
medical records.
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Supplementary information

E F

Figure S1: Interaction-dependent optimum discretiza-
tion. A - D The proposed information-maximizing dis-
cretization scheme is illustrated for a joint distribution de-
fined as a Gumbel bivariate copula with parameter θ = 5 and
univariate marginal-distribution functions chosen as Gaus-
sian mixtures with three equiprobable peaks and respective
means and variances, µX = {0, 4, 6}, σX = {1, 2, 0.7}
and µY = {−3, 6, 9}, σY = {2, 0.5, 0.5}. Information-
maximizing partitions are displayed for different sample
sizesN with corresponding mutual information estimates. E
- F Optimum bivariate partitions obtained from N = 1, 000
samples of two different joint distributions P (X,Y ) sharing
the same sampling of X taken from a uniform distribution
on [0, 0.3], but with different dependencies for Y . (E) Y is
defined as log(X) + ε1, and (F) Y is defined as X5 + ε2,
where ε1 and ε2 are Gaussian noise terms chosen so that
the mutual informations of both examples are comparable,
I(X;Y ) ' 0.75.

Figure S2: Mutual information estimation of mixed vari-
ables. Experiment set-ups and analytical values for the mu-
tual information were taken fom (Gao et al. 2017) and 50
runs were performed for each sample size N . Our pro-
posed approach is compared to a naive equal-frequency dis-
cretization with N1/3 bins, a kernel and a noisy KSG es-
timator as implemented in JIDT (Lizier 2014), as well as
the recent KSG extensions for estimating the mutual in-
formmation between a categorical and a continuous vari-
able (mixed KSG Ross (Ross 2014)), and between mixed-
type variables (mixed KSG Gao (Gao et al. 2017)). For all
nearest-neighbour based approaches, the number of nearest
neighbours was set to k = 5. From left to right, top to
bottom, the simulations are devised after experiment I, ex-
periment II, experiment IV with p = 0 and experiment IV
with p = 0.15, from (Gao et al. 2017). Code is available at
https://github.com/vcabeli/miic PLoS



Figure S3: Conditional mutual information estima-
tion for multivariate Gaussian distributions. Four-
dimensional normal distributions P (X,Y, Z1, Z2) were
sampled for N = 100 to 5, 000 samples 100 times for
each correlation coefficient ρ = ρXY , chosen between 0.05
and 0.95. The other pairwise correlation coefficients were
fixed as ρXZ1

= ρXZ2
= ρY Z1

= ρY Z2
= λ = 0.7

and ρZ1Z2
= 0.9. The conditional mutual information

I(X;Y |Z1, Z2) was then estimated using the proposed op-
timum partitioning scheme as well as with kNN condi-
tional information estimates as in Fig. 2. ρ values closed
to zero, mimick “V-structures” as they correspond to pair-
wise independence but conditional dependence; by constrast
ρ = 2λ2/(1 + ρZ1Z2

) ' 0.5158 corresponds to condi-
tional independence, while ρ > 0.5158 implies that X and
Y share more information than the indirect flow through Z1

and Z2.The analytical value of the conditional mutual in-
formation is derived as follows; given the 4 × 4 covariance
matrix Σ and its four 2× 2 partitions Σij , we first compute
the conditional covariance matrix Σ = Σ11 −Σ12Σ

−1
22 Σ21

where Σ−122 is the generalized inverse of Σ22. The partial
correlation between X and Y is obtained as ρXY ·Z1Z2

=

Σ12/
√
Σ11 ∗Σ22, and the analytical conditional mutual in-

formation for a multivariate normal distribution is given by
I(X;Y |Z1, Z2) = − log(1− ρ2XY ·Z1Z2

)/2.

Figure S4: CPDAG assessment of benchmark networks
for continuous, non-linear, non-Gaussian datasets. Skele-
ton Precision, Recall and F-scores obtained for benchmark
random networks with 100 nodes and average degree 3 re-
constructed from N = 100 − 10, 000 samples. Results
obtained with our parameter-free information-theoretic ap-
proach MIIC are compared for optimum non-uniform bin
sizes and for equal frequency bin sizes (with N1/3 bins) as
well as to the best results obtained with alternative contin-
uous data methods: PC with Gaussian conditional indepen-
dence test, rankPC and rankFCI from the pcalg package
(Kalisch et al. 2017), kPC with the Helbert-Schmidt Inde-
pendence Criterion (Gretton et al. 2005; Gretton, Spirtes,
and Tillman 2009) and CAM (Bühlmann, Peters, and Ernest
2014) algorithms, after optimizing their respective parame-
ter (α) for each sample size N .


