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Abstract

The motivation of this article is the need for a large temporal
data set, which allows to reason about the changes regard-
ing person’s features over a long period of time. Faced with
the difficulty of finding such a data set, we propose an algo-
rithm to simulate such a data set, based on real static data pro-
vided by the service of fall prevention of Lille’s hospital. We
select five persistent variables, meaning that their value may
change at most once, toward positive value for positive persis-
tent variables. The algorithm is based on assumptions regard-
ing the temporal evolution of each contextualized variable, as
defined by a Bayesian network learned on the real static data
set. The temporal data set simulated thanks to the proposed
algorithm is evaluated by the comparison of the temporal dis-
tribution of each contextualized variable with the functions
obtained by linear interpolation from the real data set.

Introduction
Data are the basis of a lot of works in artificial intelligence,
often related with learning and reasoning. A temporal data
set includes series of values over time for a set of variables,
and a set of samples. With regard to data on people, describ-
ing for example their abilities, environment, behavior, etc,
longitudinal studies allow to collect repeated observations
over time of a phenomenon and/or a sample of individuals.
However, such data collection is very costly and it often con-
cerns either a short period of time, and / or a small number
of persons, and / or a limited number of observations for a
given variable.

In order to palliate that difficulty, we aim to simulate
a complete temporal data set that includes the values of
all variables at each time step for a long period (several
decades) and for a large number of elderly.

When dealing with static data, it is frequent to simulate
data from a Bayesian network (Gootjes-Dreesbach et al.
2020; de Vries et al. 2021). Temporal data set can also be
simulated with dynamic Bayesian networks (DBN) (Murphy
2002). An example is given in (Marini et al. 2015) where
a cohort is simulated for fifteen years, thanks to a DBN
learned from a longitudinal study. In a DBN, variables are
related to each other over two or more time slices. From

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a theoretical point of view, in order to consider sequences
of arbitrary length, a solution is to consider that the proba-
bility distributions describing the temporal dependencies are
time invariant. In that way, the relations defined between two
time slices can be easily deployed (unrolled) for a particular
number of steps. However, when we create a junction tree
from an unrolled DBN, the cliques tend to be very large,
often making exact inference tends to become intractable
(Ducamp et al. 2020; Murphy 2002).

In that article, we propose another approach to simulate
a temporal data set that allows us no to make the strong
assumption that temporal evolution is time invariant. We
present an algorithm to simulate a temporal data set on the
basis of a real static data set. including information collected
during the multidisciplinary consultation for fall prevention
in Lille’s Hospital. The real data set includes only one ob-
servation per person and per variable. We first present the
context and the motivation to simulate a temporal data set,
followed by the real static data set from Lille’s hospital. Sec-
ond, we explain the algorithm and related assumptions and
definitions. We also provide some elements to evaluate the
quality of the simulated data set. Finally, we give some per-
spective about how this data set could be used in the context
of the prediction of risk factors for fall from a partial time
stamped data set.

Context and motivation
This work takes place in the context of fall prevention. We
present below our collaboration with Lille’s hospital and our
motivation to simulate a temporal data set from a real static
data set provided by that service.

One third of people aged 65 and over living at home fall
every year. This is the case for half of those over 85 years
of age (Dargent-Molina and Bréart 1995). Falls account for
40% of all injury deaths (Rubenstein 2006). According to
the World Health Organization (World Health Organization
2008), falls and consequent injuries are major public health
problems that require frequent medical attention. Falls pre-
vention is a challenge to population ageing, but it is one
of the issues that have not been given a sufficient attention.
Since falls result from a complex interaction of risk factors,
an important step in fall prevention is to detect the presence
of risk factors for falls.



At the hospital in Lille, patients are received in a day hos-
pital for a multidisciplinary evaluation of the risk factors for
falls. This leads to the selection of a small number of adapted
recommendations. Most part of the time in this specialized
consultation consists of data collection by different special-
ists, using specific equipments and tests. It provides a picture
of the person’s current state, behavior and environment, in-
corporating past events that can help to assess risk factors
for falls.

However, outside the context of a specialized consulta-
tion on fall, such a complete data collection is not pos-
sible because of a lack of time, expertise and equipment.
Though, there are many potential actors in the prevention
of falls, and furthermore, it is possible to have almost in-
stantaneously a partial set of information on a person from
his or her personal medical record (electronic health record).
These records regroup a collection of reports and informa-
tion over the patient’s life and are increasingly being used.
It is therefore possible to extract quickly dated information
about a person. But for some variables, the person’s current
condition may have changed making the information use-
less, even misleading.

In real life, when information is required immediately for
a given person, such as for fall prevention by general prac-
titioners, the available information can be seen as a partial
time stamped observation set. Beyond this article, our over-
all objective is to allow an assessment of the risk factors for
falls, based on a partial set of dated information (Delcroix,
Grislin-Le Strugeon, and Puisieux 2021). For this purpose,
we need knowledge about the dynamics of the considered
variables, as well as a sufficient temporal data set in num-
ber of patients, covering a long period of time with a fine
time step. For these reasons, we aim to simulate a realistic
temporal data set about features of interest in fall prevention.

The simulated data will make possible to simulate a par-
tial dated observation set, and to build and evaluate some
models or algorithms to predict fall risk factors from a par-
tial dated observation set. The prediction of the unobserved
risk factors for fall contributes to fall prevention since ade-
quate actions may reduce those risks and in turn reduce the
risk of fall. In this article, the variables about loss of auton-
omy (ADLinf5) and dementia (demence) are two target risk
factors for fall.

Below, we present a brief overview of some existing
methods to predict fall risk, then, we present the static data
set provided by Lille’s hospital that we use to simulate tem-
poral data.

Overview on some methods to predict fall risk
Several recent articles focus on the prediction of fall or
fall risk based on models learned from large data sets
(Marschollek et al. 2012; Marier et al. 2016; Homer
et al. 2017; Ye et al. 2020) which comes from the pop-
ulation for which the data collection is facilitated (in-
patients (Marschollek et al. 2012), nursing home residents
(Marier et al. 2016), or people with a specific program of
given health insurance, ensuring complete claims coverage
(Homer et al. 2017). Despite this favorable data source, in

Short
name

Description Persistent
variable

G GUGOgt20 true when the result of the
Get Up and GO test is
greater than 20 seconds

positive

C conduit true when the person still
drives her car

negative

A ADLinf5 true when the score of
Activities of Daily Living
(ADL) is less than 5

positive

D demence true when a dementia is
probable or confirmed

positive

M maisRet true when the person lives
in a retirement home

positive

Table 1: The persistent variables selected for that study

(Marschollek et al. 2012), the authors mentioned the limita-
tion to generalize their findings due to the significant amount
of missing data for some sub-items. Our work is also moti-
vated from this aspect with the final objective to propose a
way to help in fall prevention for the whole elderly popu-
lation, on the basis of their available information, even if
it is very partial. Furthermore, existing Electronic Medical
Record (EMR) systems do not provide an easy mechanism
to synthesis and summarize information on changing risk
variables collected in various portions of the EMR to sup-
port clinical decision making (Marier et al. 2016). This point
brings us to our second consideration, which is determining
how old data can be used to assess present risk. Finally, all of
those articles are concerned with assessing fall risk, whereas
we focus on the evaluation of risk factors for falls.

Lille’s data set and variable selection
The real data set from the multidisciplinary consultation for
fall prevention of Lille’s Hospital includes personal data
about 1810 persons, collected between 2005 and 2016. In
that study, we keep only the 1752 cases with age between 65
and 95.

The original file contains more than 400 columns, among
which we have first selected 65 variables for a previous study
about the prediction of the main risk factors for fall (Sihag
et al. 2020). We now present the five variables selected for
this paper.

Variables selection from the real data set
We had several interviews with Pr. Puisieux, from the multi-
disciplinary consultation on fall prevention at Lille’s hospi-
tal about the way the 65 variables previously selected evolve
with time. As a result, we have identified a subset of vari-
ables whose temporal behavior is simple and that we name
(positive) persistent variables. They are binary variables,
whose value is most often false for young people and that
can change at most once during the life of a person. Table 1
presents the 5 persistent variables that we select for the pur-
pose of the current study.

The variables demence and ADLinf5 are important pre-
disposing risk factors for fall (Delcroix et al. 2019). The



variable ADLinf5 is an indicator of loss of autonomy. ADL
measurements and scales can vary significantly (Mlinac and
Feng 2016). The Katz Index of independence in ADLs (Katz
et al. 1963) is one of the most commonly used tools to asses
basic ADLs (bathing, dressing, toileting transferring, conti-
nence, and feeding). Both demence and ADLinf5 are impor-
tant to be predicted because information related with these
risk factors can be difficult to collect, and because they are
modifiable, meaning that specific actions can be conducted
to reduce them.

The get up and go test (GUGOgt20) is related with gait
disorder. When its score is greater than 20 seconds, it is con-
sidered as a risk factor for fall (Delcroix et al. 2019).

The four variables GUGOgt20, maisRet, ADLinf5 and de-
mence are positive persistent: when they become true for a
given person, there is no chance that they become false again
later. The variable conduit is negative persistent since it is
generally true for adults and becomes false when the capac-
ities of the elderly decrease, while people who did not drive
as adults will not drive as elderly.

Definitions and assumptions
Before presenting our algorithm to simulate a temporal data
set which represents information over time on a set of per-
sons, we first introduce some notations, definitions, and the
assumptions used for the temporal data simulation.

Notations
Here is a list of some notations:

• X: main set of variables,

• X,Xi ∈ X: some random variables,

• Dom(X): domain of the variable X ,

• Dom(Y) = Dom(Y1) × . . . × Dom(Ym), where Y =
{Y1, . . . , Ym} ⊂ X

• x ∈ Dom(X), xi ∈ Dom(Xi): a value of X or Xi
1,

• T = {t0, t1, . . . , tp} with ti+1 = ti + ∆t: period of time
over which information is simulated and ∆t is the length
of a step,

• t, tk ∈ T : different times,

• xt ∈ Dom(X), xt
i ∈ Dom(Xi): values of the variables

X and Xi at the time t for a given person.

• N : size of the population (number of samples),

• n: index of a specific person,

• DT : complete temporal data set over the period T ,

We now present the definitions and related assumptions
regarding the variables and their temporal evolution in a con-
text defined by the Bayesian network.

1We do not use a specific notation to distinguish the different
values of X in Dom(X)

Variables, observations and temporal data set
In that study, we consider only binary variables. For any
variable X , Dom(X) = {0, 1}, where 1 is called the pos-
itive value. We also consider only hard observation (see
(Mrad et al. 2015) about uncertain observations and (Del-
croix, Grislin-Le Strugeon, and Puisieux 2021) about their
use in fall prevention). Let’s precise definitions and nota-
tions regarding dated information.

Definition 1 Time stamped observation
A time stamped observation o on a variable X for a given

person n is a tuple o = (X,x, t, n) where x ∈ Dom(X) is
the value of X observed at t.

An time stamped observation o = (X,x, t, n) of a binary
variable X is said to be positive when the observed value is
positive (x = 1).

Definition 2 Complete temporal data set
A time stamped data set D on the set of variables X and a

set of persons indexed by [1..N ] is said to be complete over
a period T when the set D = {(X,x, t, n), X ∈ X, t ∈
T , n ∈ [1..N ]} includes exactly one value for each element
(X, t, n) ∈ X× T × [1..N ].

When we consider a specific ordered subset of variables
XJ = (. . . , Xj , . . . ) and one of its a possible setting v =
(. . . , vj , . . .), we write that (XJ,v, t, n) ∈ D to denote that
for each variable Xj ∈ XJ and its value vj , the element
(Xj , vj , t, n) belongs to the temporal data set D.

Bayesian network
In order to set the way each variable evolves with time, it
appears useful to take into account the value of some other
variables. Indeed, for a given variable, different schema of
temporal changes can be defined depending on the values of
some other variables.

In that aim, we use a Bayesian network to define the de-
pendence between variables (Naı̈m et al. 2011). We denote
pa(X) the parents of the variable X in the graph of the
Bayesian network.

In that work, we assume that the Bayesian network graph
does not change with time. As a consequence, each variable
is associated with a context defined by the values of its par-
ents in the graph.

We denote (X,v) a variable X in a context v, where v is
one of the possible combination of values of the parents of X
in the graph of a Bayesian network B: v ∈ Dom(pa(X)).
We name such a couple a contextualized variable, and say
that v is one of the context of X in B.

In order to simplify the notation, when X has no parent in
the graph of the Bayesian network, (pa(X) = ∅), the couple
(X,v) represents the variable X .

In the following, we present a schema of temporal evolu-
tion for each contextualized variable (X,v).

Persistent variable
We got a better understanding of the way the variables
change with time thanks to the interviews with Professor
Puisieux. It appears that variables can be classified in sev-
eral classes regarding the characteristics of their change over



time. Except constant variables that never changes, such as
the sex, we define the concept of persistent variable as the
simplest class regarding temporal evolution.

Definition 3 Positive (resp. negative) persistent variable
A binary variable X with Dom(X) = {0, 1} is said to be

positive persistent in a temporal data set D when its value
never changes after the value becomes 1 for a given person
indexed by n :

∀t, t′ ∈ T , with t′ > t, (X, 1, t, n) ∈ D ⇒ (X, 1, t′, n) ∈ D
Respectively, the value of a negative persistent variable
never changes after it becomes zero.

As a consequence, when we consider a population com-
posed of a group of persons, the proportion of persons with
X being positive increases with the age of the persons.
Thus, when a variable X is positive persistent, the function
f(age) = P (X = 1 | age) is an increasing function, where
P (X = 1 | age) denotes the probability for a variable X to
be positive among the given age group2.

In this work, we consider only persistent variables. Fig-
ure 1 shows the graph of the Bayesian network for the five
variables that we consider in this article. To get it, we first
learned a Bayesian network from the real data set, then we
removed the arc conduit → demence so that every node
has at most two parents. Indeed, the number of combinations
of the values of the parents is higher with three parents, mak-
ing possible that some cases have no representing sample in
the data set.

Figure 1: Graph of the Bayesian network.

Since our real data set includes the age of the persons,
we uses that information to extract temporal behavior of the
variables : we assume that the distributions of each variable
in function of the age on the whole population allows us
to derive the evolution of the variables for a given person
regarding her age. In that aim, we plot the distribution of
each variable regarding the age of the persons from the real
data set (see Figure 2).

2In our simulated temporal data set, the number of persons is
constant whatever the age group. On the contrary, in the real static
data set, the distribution regarding the age is not constant, making
important to consider the conditional probability and not the joint
probability.

Figure 2: Proportion of positive values for each variable ac-
cording to the age in Lille’s real data set.

In order to simulate temporal series for each of these vari-
ables, we consider a linear interpolation for each curve. This
approximation, combined with the feature of persistent vari-
ables, is used to compute the probability of a variable to be-
come positive at a defined time step, when it was negative at
the previous time step. It is important to note that more com-
plex interpolation functions could be used in the algorithm
that we propose.

In addition, we also want that the simulated data set re-
flects the dependencies between variables, such as described
by a Bayesian network. In that aim, we make further as-
sumption described below.

Parent-persistent contextualized variable
Our goal is now to combine information given by dependen-
cies between variables in the Bayesian network and infor-
mation from the distribution of positive value in function of
the age, in order to simulate a temporal data set. In that aim,
we introduce a concept related with the evolution of a vari-
able in the context of its parents’ values, which extends the
concept of persistent variable.

Consider a Bayesian network B on a set of variables in-
cluding a binary variable X , and let v ∈ Dom(pa(X)) be a
context of X in B.

Definition 4 Positive (resp. negative) parent-persistent
contextualized variable

A contextualized variable (X,v) is said to be positive
parent-persistent in a temporal data set D when its value
in the context v never changes after the value becomes 1 for
a given person indexed by n:

∀t, t′ ∈ T , with t′ > t,

if for each couple(Y, y) with Y ∈ pa(X)

and y is the value of Y in v,

(Y, y, t, n) ∈ D and (Y, y, t′, n) ∈ D, then

(X, 1, t, n) ∈ D ⇒ (X, 1, t′, n) ∈ D

(1)

Respectively, we consider also negative parent-persistent
contextualized variable.

Remark: If a variable X is positive persistent in a data set
D, then for any context v, the contextualized variable (X,v)
is positive parent-persistent in D.

In this work, we thus assume that all contextualized vari-
ables are parent-persistent. For convenience, we also speak



about contextualized variable when the set of parents is
empty.

Figure 3 shows the distribution of each contextualized
variable in function of the age, computed from our real static
data set. These plots are based on intervals of five years for
the age. For each contextualized variable (X,v), we plot the
proportion

#samples(X = 1, Pa(X) = v, Age = al)

#samples(Pa(X) = v, Age = al)

where Dom(Age) = a1, . . . al, . . ., computed from the
real static data set.

More data is needed to obtain smoother curves.

Linear assumption
Figure 3 shows the distribution of contextualized variables
regarding the age of patients. These curves are based on a
discretization of Lille’s data set with intervals of 5 years,
which is a compromise between information quality and sta-
tistical quality.

In order to generate temporal data with any desired tem-
poral granularity, while remaining faithful to the real data
set, we replace these curves by interpolated functions. We
choose linear interpolation:

• the functions f(age) = P (X = x | age) are linear func-
tions, for all X ∈ X,

• the functions f(age) = P (X = x | XJ = v, age)
are linear functions, for all v ∈ Dom(XJ) where XJ =
pa(X).

From the distributions plotted in Figure 3, we have de-
fined a linear function associated with each contextualized
variable.

About Survival Analysis
The functions shown in Figures 2 and 3 are very similar
with survival functions and hazard rate conditional (Klein-
baum and Klein 2010). We show the evolution of the risk
whereas survival functions usually show the chances that
a person survives. In our case, the event of interest is the
change of value of a risk factor, from absent (0) to present
(1). Some methods to estimate Survival function are based
on the assumption that data follows some distribution (such
as exponential, gamma, weibull, log-normal etc.) and then
we calculate its parameters. Other methods such as ‘Kaplan-
Meier’ estimator do not have any prior assumptions. How-
ever, estimating survival function from data supposes that
data include information about the response for each sub-
ject. In that kind of data, the subject is always ”alive” when
the study period starts, and the event of interest may or not
occurs before the end of that period. When the event does
not occurs, the survival time is labelled as ‘Censored’.

In our case, our data from Lille’s Hospital are very dif-
ferent since it corresponds to a single moment of observa-
tion for each subject, and we do not know when the risk
occurs. At the moment of the observation, the risk is present
for some person and absent for others. Because we do not

Figure 3: Proportion of positive values of each contextual-
ized variable in function of the age.



have information about the time when the event of interest
occurs, we take benefit from the fact that the observed pop-
ulation involves persons of different ages, and we assume
that the proportion of persons with a risk factor at a given
age may give us a way to estimate the survival function.

Assumptions regarding the period of time over
which data are simulated
In order to simplify the simulation of the data set, we assume
that the period T starts at time t0 with all persons being 65
years old. This assumption can be easily removed later by
shifting each data row randomly in time. This would allow
to get a data set in which people of any age over 65 are con-
sidered at time t0.

Second, we simulate data for all persons during the com-
plete period, meaning that we do not consider the death of
people. When we want to remove that second assumption,
the age of death could be simulated on the basis of general
knowledge about the distribution of the age of death.

In addition, let’s precise that we consider ∆t = 6 months.

Algorithm to simulate temporal data set from
a static data set

The objective is to generate a temporal data set. The real data
set includes the age of the person.

We now describe an algorithm to generate a temporal data
set on a set of variables X, on the basis of a real data set that
includes a set of observations collected only once for a given
person. We follow two main ideas: (1) respect the proportion
of positive values for each variable given the age of the pa-
tient, (2) respect the dependence between the variables as
described by a Bayesian network B learned on X.

Let X = {X1, . . . Xi, . . .} such that the order of the vari-
ables in X is compatible with the partial order defined by the
graph of the Bayesian network B.

The algorithm simulateTDS generates a value for each
variable Xi at each time on a given period, based on the val-
ues of the parents of Xi in the graph of the Bayesian network
at the same time and on the value of Xi at the previous time.

As explained above, we extract the temporal behavior of
each contextualized variable regarding the age of the person.

Two basic functions are used by the algorithm to
simulate the temporal data set: parents(X) and
linearF(X,v,a). These functions are based on a
Bayesian network B and the set of linear functions associ-
ated with each contextualized variable (X,v), where X is
a variable associated with a node of B, and v is a vector of
values of the parents of X in B. The function parents(X)
returns the list of variables that are parents of the vari-
able X in the graph of the Bayesian network. The function
linearF(X,v,a) returns the value of the linear function
associated with the contextualized variable (X,v) for the
age a. In addition, the function generate(p) returns 0 or
1 with probability distribution (1−p, p) where the parameter
p is a value in [0, 1].

In order to simplify the presentation of the algorithm, we
assume that we have only positive persistent variables. In-
deed, a negative persistent variable can be replaced by a pos-

itive persistent variable by exchanging values 0 and 1. The
temporal data are generated with a regular time step for a
given number of iterations, and a given number of samples.
The simulateTDS algorithm generates each new value
and fills gradually a 3D table whose dimensions correspond
to the samples, the variables and the time (lines 1–3).

The values are generated following a partial order of the
variables so that the values of the parents of a given vari-
able can be used to generate the value of this variable, and
following the temporal order, so that the previous value of a
variable can be used to generate its next value.

The operations to generate a value for a given person (or
sample), a given variable and a given time are detailed in the
simulateOne algorithm. At first, the context of the vari-
able is identified by extracting the value of its parents from
the data already simulated (lines 1–2). In order to generate
a value of a variable at the first time step (age = 65), one
generates randomly 0 or 1 with a uniform probability corre-
sponding to the value of 65 for the linear function associated
with the contextualized variable (lines 3–5). When a previ-
ous value has already been generated for a given variable,
the value to be generated depends on it: When the previous
value is 1, the new value has to remain 1, by definition of
a positive persistent variable (lines 6–7). When the previous
value is 0, one generates randomly 0 or 1 with a uniform
probability corresponding to the increase of the linear func-
tion associated with the contextualized variable during one
step of time, and reduced to the negative cases (lines 9–12).
Remark that this step is based on the interpolated functions,
but does not required these functions to be linear.

Algorithm 1: simulateTDS(X,K,∆t,N )

Input: X . an ordered set of variables
Input: K . number of temporal iterations
Input: ∆t . length of the time step
Input: N . number of samples
Output: D . a 3-dimension table containing the simulated

temporal data set on X over the period T . The
cell D[n, i, t] contains the simulated value of
sample n for the variable Xi, at time t.

1 D ← 0 . initialize the 3D array to zero
2 foreach k ∈ [1..K] do . generate data at time tk
3 foreach person n ∈ [1..N ] do . generate N samples
4 foreach variable Xi ∈ X (in topological order) do

. generate value of Xi at tk
5 D[n, i, k]← simulateOne(n, i, tk,∆t,D)

6 return D

Evaluation of the simulated temporal data set
Using this algorithm and the real static data set of Lille, we
have simulated a temporal data set of 2000 cases, over a pe-
riod of 30 years, with a time step of 6 months.

In order to evaluate the quality of the simulated temporal
data set, we plot the proportion of positive values for each
variable in the simulated data set (Figure 4). In comparison
to Figure 2, the result clearly shows that the linear assump-
tion is faithfully reproduced in the simulated data set, when



Algorithm 2: simulateOne(n, i, tk,∆t,D)

Input: n . sample index
Input: i . variable index
Input: tk . time to be simulated
Input: ∆t . length of the time step (tk − tk−1)
Input-Output : D . a 3-dimension table containing the

already simulated temporal data set on X
over the period T

Data: a Bayesian network B
Data: Linear functions associated with each contextualized

variable (X,v), regarding B
1 XJ ← parents(Xi)
2 v← values of XJ generated at tk . a context of Xi

3 if k = 0 then . first time step t0
4 p← linearF(Xi,v, 65) D[n, i, 0]← generate(p)
5 else . generate data at time tk from value at tk−1

6 if D[n, i, k − 1] = 1 then . previous value
7 D[n, i, k]← 1 . positive persistent variable
8 else . compute the probability to become 1 among the

negative cases
9 c← linearF(Xi,v, tk)− linearF(Xi,v, tk−1)

10 p← c/(1− linearF(Xi,v, tk−1))
11 D[n, i, k]← generate(p)

considering each variable separately.

Figure 4: Proportion of positive values of each variable in
simulated data.

In addition, the algorithm of data simulation is also based
on information provided by the Bayesian network learned on
the real static data set, by taking into account the way each
variable changes in a given context. In order to evaluate that
second point, we show in Figure 5 the proportion of positive
values for each variable in a given context along with time
in the simulated data set, and we compare with the linear
functions computed for each contextualized variable defined
from the static data set (based on Figure 3).

The comparison of the linear functions and the plot from
simulated data shows that in most cases, the proportion of
positive values in the simulated data is faithful with the lin-
ear functions.

Perspective and conclusion
This article proposes a first attempt to simulate temporal data
using a Bayesian network in the aim to complete a real static
data set to be applied in the context of fall prevention for

Figure 5: Linear functions associated with each contextual-
ized variable (left) and Proportion of positive value of each
contextualized variable in simulated data (right).



elderly people.
We combine several assumptions and expert knowledge

in order to provide a temporal data set that is faithful with
the real data set. In that aim, we select a small number of
variables of the real data set regarding their schema of tem-
poral evolution. We focus on a subset of persistent variables
whose value may evolve only once in the life of a person,
e.g., from zero to one for the positive persistent variables.
This concept emerged during discussions with experts about
temporal changes of a large set of variables of interest for
fall prevention.

The persistent feature of the selected variables is visible
on the plot of the distributions of positive values as functions
of the age. We assume that these distributions can be used as
a basis of the evolution of the associated variables for a given
person. We also consider a set of possible contexts for each
variable, as defined by a Bayesian network learned on the
static real data set. Finally, we use linear interpolation to get
a simple model of the proportion of positive values for each
contextualized variable.

On this basis, we propose an algorithm to simulate a tem-
poral data set. The results are evaluated through the com-
parison of the temporal distributions in the temporal data set
generated thanks to the algorithm and the linear functions
computed from the real data set.

We are aware that the data are generated on the basis of
two strong assumptions: the persistence of the concerned
variables and the linear approximation of their distribution
according to the age. However, the data generation algo-
rithms and their first results consist in a first step toward the
necessary filling of the data gaps in our health application
context.

As a perspective, we now intend to exploit this data set in
the context of fall prevention. More precisely, the objective
is to predict some risk factors for fall based on a partial set
of time stamped observations. In this problem, the challenge
is first to take benefit from old observations, meaning that
the value of some variable observed in the past may have
changed, and second to reason with a number of observa-
tions that can be arbitrary small.

About perspectives on data simulation, it could be inter-
esting to compare our data simulation with the one obtained
by a dynamic Bayesian network when linear functions are
used to approximate the dynamic of contextualized vari-
ables, since it makes changes time invariant. Other perspec-
tives concern the use of non linear functions for interpola-
tion, the inclusion of variables with other temporal schema,
such as semi-persistent variable, and variables with larger
domain.
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