
Parameter Estimation:

The Perceptron Algorithm



Collins Perceptron

What we have done so far...
• packed forest

• as a general representation for many NLP problems

• formalized as a weighted hypergraph

• DP algorithms for 1-best and k-best on hypergraphs
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Big Q: where do the weights come from?
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A Quiz
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Perceptron is ...

• an extremely simple algorithm

• almost universally applicable

• and works very well in practice
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vanilla perceptron
(Rosenblatt, 1958)

structured perceptron
(Collins, 2002)

the   man   bit    the    dog

DT   NN   VBD  DT   NN
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Generic Perceptron
• online-learning: one example at a time

• learning by doing

• find the best output under the current weights

• update weights at mistakes
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Example:  POS  Tagging
• gold-standard:    DT   NN   VBD  DT   NN

•                       the   man   bit    the    dog

• current output:  DT   NN   NN   DT   NN

•                       the   man   bit    the    dog

• assume only two feature classes

• tag bigrams          ti-1    ti

• word/tag pairs            wi

• weights ++:  (NN, VBD)    (VBD, DT)     (VBD→bit)

• weights --:  (NN, NN)     (NN, DT)      (NN→bit)
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←

Structured Perceptron
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Efficiency vs. Expressiveness

• the inference (argmax) must be efficient

• either the search space GEN(x) is small, or factored

• features must be local to y (but can be global to x)

• e.g. bigram tagger, but look at all input words (cf. CRFs)
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What about tree-to-string?
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Averaged Perceptron

• more stable and accurate results

• approximation of voted perceptron 
(Freund & Schapire, 1999)
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Comparison with 
Other Models
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from HMM to MEMM
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HMM: joint distribution MEMM: locally normalized
(per-state conditional)
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Label Bias Problem

• bias towards states with fewer outgoing transitions

• a problem with all locally normalized models
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Conditional Random Fields

• globally normalized (no label bias problem)

• but training requires expected features counts

• (related to the fractional counts in EM)

• need to use Inside-Outside algorithm (sum)

• Perceptron just needs Viterbi (max)
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Experiments: Tagging
• (almost) identical features from (Ratnaparkhi, 1996)

• trigram tagger: current tag ti, previous tags ti-1, ti-2 

• current word wi and its spelling features

• surrounding words wi-1 wi+1 wi-2 wi+2..

16



Collins Perceptron

Experiments: NP Chunking

• B-I-O scheme

• features:

• unigram model

• surrounding words 
and POS tags
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Rockwell International Corp. 
       B               I              I
's Tulsa unit said it signed 
B    I        I      O  B    O       
a tentative agreement ...
B      I              I
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Experiments: NP Chunking
• results

• (Sha and Pereira, 2003) trigram tagger

• voted perceptron: 94.09% vs. CRF: 94.38%
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Other NLP Applications

• dependency parsing (McDonald et al., 2005)

• parse reranking (Collins)

• phrase-based translation (Liang et al., 2006)

• word segmentation

• ... and many many more ...
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 Vanilla Perceptron
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Convergence Theorem

• Data is separable if and only if perceptron converges

• number of updates is bounded by

• γ is the margin;  R = maxi || xi ||

• This result generalizes to structured perceptron

• Also in the paper: theorems for non-separable cases 
and generalization bounds
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(R/γ)2

R = max
i

‖Φ(xi, yi) − Φ(xi, zi)‖
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Conclusion

• a very simple framework that can work with many 
structured problems and that works very well

• all you need is (fast) 1-best inference

• much simpler than CRFs and SVMs

• can be applied to parsing, translation, etc.

• generalization bounds depend on separability

• not the (exponential) size of the search space

• extensions: MIRA, k-best MIRA, ...

• major limitation: only local features
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