Parameter Estimation:

The Perceptron Algorithm

What we have done so far...

- packed forest
 - as a general representation for many NLP problems
 - formalized as a weighted hypergraph
 - DP algorithms for I-best and k-best on hypergraphs

Baoweier yu Shalong juxing le huitan

Powell held a meeting w/ Sharon

What we have done so far...

- packed forest
 - as a general representation for many NLP problems
 - formalized as a weighted hypergraph
 - DP algorithms for I-best and k-best on hypergraphs

Baoweier yu Shalong juxing le huitan

Powell held a meeting w/ Sharon

Big Q: where do the weights come from?

Perceptron is ...

- an extremely simple algorithm
- almost universally applicable
- and works very well in practice

Perceptron is ...

- an extremely simple algorithm
- almost universally applicable
- and works very well in practice

Generic Perceptron

- online-learning: one example at a time
- learning by doing
 - find the best output under the current weights
 - update weights at mistakes

Example: POS Tagging

- gold-standard: DT NN VBD DT NN
 - the man bit the dog
- current output: DT NN NN DT NN
 - the man bit the dog
- assume only two feature classes
 - tag bigrams t_{i-1} t_i
 - word/tag pairs
- weights ++: (NN, VBD) (VBD, DT) $(VBD \rightarrow bit)$
- weights --: (NN, NN) (NN, DT) (NN \rightarrow bit)

Wi

Example: POS Tagging

- gold-standard: DT NN VBD DT NN y
 - the man bit the dog x
- current output: DT NN NN DT NN ~~
 - the man bit the dog x
- assume only two feature classes
 - tag bigrams t_{i-1} t_i
 - word/tag pairs
- weights ++: (NN, VBD) (VBD, DT) $(VBD \rightarrow bit)$
- weights --: (NN, NN) (NN, DT) (NN \rightarrow bit)

 $\Phi(x, y)$

 $\Phi(x, z)$

Wi

Example: POS Tagging gold-standard: DT NN VBD DT NN \mathcal{Y} $\Phi(x, y)$ bit the man the dog \mathcal{X} NN DT NN current output: DT NN \boldsymbol{z} $\Phi(x, z)$ dog man bit the the ${\mathcal X}$ assume only two feature classes

- tag bigrams t_{i-1} t_i
 word/tag pairs w_i
- weights ++: (NN,VBD) (VBD, DT) (VBD \rightarrow bit)
- weights --: (NN, NN) (NN, DT) (NN \rightarrow bit)

- word/tag pairs
- weights ++: (NN, VBD) (VBD, DT) $(VBD \rightarrow bit)$
- weights --: (NN, NN) (NN, DT) (NN \rightarrow bit)

Wi

Structured Perceptron

$$y_i \rightarrow update weights$$

$$x_i \rightarrow inference \rightarrow z_i \rightarrow update weights$$
Inputs: Training set (x_i, y_i) for $i = 1 \dots n$
Initialization: $\mathbf{W} = 0$
Define: $F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \Phi(x, y) \cdot \mathbf{W}$
Algorithm: For $t = 1 \dots T$, $i = 1 \dots n$
 $z_i = F(x_i)$
If $(z_i \neq y_i)$ $\mathbf{W} \leftarrow \mathbf{W} + \Phi(x_i, y_i) - \Phi(x_i, z_i)$

Output:

Parameters W

• the inference (argmax) must be efficient

- either the search space GEN(x) is small, or factored
- features must be local to y (but can be global to x)
 - e.g. bigram tagger, but look at all input words (cf. CRFs)

- either the search space GEN(x) is small, or factored
- features must be local to y (but can be global to x)
 - e.g. bigram tagger, but look at all input words (cf. CRFs)

- either the search space GEN(x) is small, or factored
- features must be local to y (but can be global to x)
 - e.g. bigram tagger, but look at all input words (cf. CRFs)

- either the search space GEN(x) is small, or factored
- features must be local to y (but can be global to x)
 - e.g. bigram tagger, but look at all input words (cf. CRFs)

- either the search space GEN(x) is small, or factored
- features must be local to y (but can be global to x)
 - e.g. bigram tagger, but look at all input words (cf. CRFs)

What about tree-to-string?

Averaged Perceptron

Inputs:	Training set (x_i, y_i) for $i = 1 \dots n$
Initialization:	$\mathbf{W}_0 = 0$
Define:	$F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \mathbf{\Phi}(x, y) \cdot \mathbf{W}$
Algorithm:	For $t = 1 \dots T$, $i = 1 \dots n$ $z_i = F(x_i)$ If $(z_i \neq y_i) \mathbf{W}_{j+1} \leftarrow \mathbf{W}_j + \Phi(x_i, y_i) - \Phi(x_i, z_i)$
Output:	Parameters $\mathbf{W} = \sum_{j} \mathbf{W}_{j}$

- more stable and accurate results
- approximation of voted perceptron (Freund & Schapire, 1999)

Comparison with Other Models

from HMM to MEMM

MEMM: locally normalized (per-state conditional)

Label Bias Problem

- bias towards states with fewer outgoing transitions
- a problem with all locally normalized models

Conditional Random Fields

- globally normalized (no label bias problem)
- but training requires expected features counts
 - (related to the fractional counts in EM)
 - need to use Inside-Outside algorithm (sum)
- Perceptron just needs Viterbi (max)

Experiments

Experiments: Tagging

- (almost) identical features from (Ratnaparkhi, 1996)
 - trigram tagger: current tag t_i, previous tags t_{i-1}, t_{i-2}
 - current word w_i and its spelling features
 - surrounding words W_{i-1} W_{i+1} W_{i-2} W_{i+2}.

Method	Error rate/%	Numits
Perc, avg, cc=0	2.93	10
Perc, noavg, cc=0	3.68	20
Perc, avg, cc=5	3.03	6
Perc, noavg, cc=5	4.04	17
ME, cc= 0	3.4	100
ME, $cc=5$	3.28	200

Experiments: NP Chunking

•	B-I	-0 s	sche	me	
Rockwell International Corp.					
	В		1		I
('s T	ulsa	unit	said(i	t)się	gned
В	I.	I.	0	B	0
a te	entat	ive a	greer	nen	ıt)
В					

- features:
 - unigram model
 - surrounding words and POS tags

Current word	w_i	$\& t_i$
Previous word	w_{i-1}	$\& t_i$
Word two back	w_{i-2}	$\& t_i$
Next word	w_{i+1}	$\& t_i$
Word two ahead	w_{i+2}	$\& t_i$
Bigram features	w_{i-2}, w_{i-1}	$\& t_i$
	w_{i-1}, w_{i}	$\& t_i$
	w_{i}, w_{i+1}	$\& t_i$
	w_{i+1}, w_{i+2}	$\& t_i$
Current tag	p_i	$\& t_i$
Previous tag	p_{i-1}	$\& t_i$
Tag two back	p_{i-2}	$\& t_i$
Next tag	p_{i+1}	$\& t_i$
Tag two ahead	p_{i+2}	$\& t_i$
Bigram tag features	p_{i-2}, p_{i-1}	$\& t_i$
	p_{i-1}, p_i	$\& t_i$
	p_{i}, p_{i+1}	$\& t_i$
	p_{i+1}, p_{i+2}	$\& t_i$
Trigram tag features	p_{i-2}, p_{i-1}, p_i	$\& t_i$
	p_{i-1}, p_i, p_{i+1}	$\& t_i$
	p_i, p_{i+1}, p_{i+2}	$\& t_i$

Experiments: NP Chunking

results

Method	F-Measure	Numits
Perceptron, avg, cc=0	93.53	13
Perceptron, noavg, cc=0	93.04	35
Perceptron, avg, cc=5	93.33	9
Perceptron, noavg, cc=5	91.88	39
Max-ent, cc=0	92.34	900
Max-ent, $cc=5$	92.65	200

- (Sha and Pereira, 2003) trigram tagger
 - voted perceptron: 94.09% vs. CRF: 94.38%

Other NLP Applications

- dependency parsing (McDonald et al., 2005)
- parse reranking (Collins)
- phrase-based translation (Liang et al., 2006)
- word segmentation
- ... and many many more ...

Theory

Vanilla Perceptron

Vanilla Perceptron

Vanilla Perceptron

Convergence Theorem

- Data is separable if and only if perceptron converges
 - number of updates is bounded by $(R/\gamma)^2$
 - γ is the margin; $R = \max_i || \mathbf{x}_i ||$
- This result generalizes to structured perceptron $R = \max_{i} \|\Phi(x_{i}, y_{i}) - \Phi(x_{i}, z_{i})\|$
- Also in the paper: theorems for non-separable cases and generalization bounds

Conclusion

- a very simple framework that can work with many structured problems and that works very well
 - all you need is (fast) I-best inference
 - much simpler than CRFs and SVMs
 - can be applied to parsing, translation, etc.
- generalization bounds depend on separability
 - not the (exponential) size of the search space
- extensions: MIRA, k-best MIRA, ...
- major limitation: only local features