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Abstract. Spatial role labeling (SpRL) is a complex task that requires
large amounts of feature engineering to achieve high performance. This
paper proposes an end-to-end neural network architecture for SpRL
that automatically captures both words and characters-level informa-
tion. Our proposed model combines a bidirectional LSTM network with
CharLSTM and Conditional Random Field (CRF) Layer (CharLSTM-
BiLSTM-CRF). Our system outperforms all classical baseline models
and is in line with those using deep learning approaches.

Keywords: Spatial Role Labeling · Spatial relation extraction · Deep
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1 INTRODUCTION

In natural language processing, Semantic Role Labelling (SRL) assigns labels to
words or phrases in a sentence that indicate their semantic role in the sentence,
such as agent, goal, or outcome.

Spatial Role Labeling (SpRL) is the process of extracting spatial informa-
tion between objects in a text. Linguistic constructs may communicate complex
relationship structures and spatial relationships between them and movement
patterns across space relative to a reference point. A spatial relationship be-
tween two objects is typically expressed in natural language through a prepo-
sition (e.g. in, on, at, ...) or prepositional expression (on top of, inside of, ...).
SpRL is used in many application areas such as robotics, maritime navigation,
tra�c management, and query response systems.

As SpRL is a cumbersome and complex task, early consideration was given to
automating it, mainly through machine learning techniques, which are based on
artificial intelligence. Implementing these techniques led to the development of
specific systems, using di↵erent approaches based on di↵erent types of machine
learning, namely symbolic, statistical, and deep learning.

We hypothesized that character embeddings combined with word embed-
dings and conditional random field (CRF) could improve SpRL tasks’ accuracy.
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Indeed, character embeddings help syntactic tasks in nature like SpRL, as the
character patterns within words are strongly related to their syntactic function
[11]. Furthermore, adding a CRF in top of a bidirectional long-short term mem-
ory (BiLSTM) architecture improved the performance of sequence labeling tasks
like NER [3].

In this paper, we propose an end-to-end neural network approach to resolve
the SpRL task. We first use character embeddings and long-short term memory
(LSTM) to encode every word as a vector. Then we concatenate character- and
word-level information and feed them into bi-LSTM. Finally, we use a condi-
tional random field CRF to decode tags for the entire sentence. The rest of the
document is organized as follows. Section 2 describes the fundamental concepts
of SpRL. Section 3 presents the systems involved in SpRL. Section 4 describes
the layers of our neural network architecture. Section 5 outlines the experimen-
tal evaluation of the adapted architecture. Finally, in Section 6, we present our
conclusions and discuss possible directions for future work.

2 Spatial Role Labeling

The SpRL task [9] implies automatic recognizing of spatial information in a
sentence with a set of spatial role tags. Let us take the sentence:

[Trees] TRAJECTOR [in] SPATIALINDICATOR

the [background] LANDMARK .

where the token ”Trees” is a TRAJECTOR (TR), ”background” a LANDMARK
(LM), and ”in” the SPATIAL INDICATOR (SI). A trajector describes a central
object of a spatial scene. It can be static or dynamic; including persons, objects,
or events. The landmark is a spatial role label that denotes the location or the
motion of the trajector. It indicates a secondary object of a spatial scene, to
which a possible spatial relation can figure out. Spatial Indicator is a spatial role
label allocated to a word or a phrase to flags a spatial relation between objects
(trajectors and landmarks).

Many studies have focused on SpRL, developed at the crossroads of the ge-
omatics and natural language processing (NLP) communities within SemEval
campaigns. SemEval is a series of ongoing evaluations of computational seman-
tic analysis systems, aimed at exploring the nature of meaning in language.
Although meaning is intuitive to humans, the transfer of these intuitions to
computer analysis has proven to be complicated.

The SemEval campaigns in automatic information extraction, of the years
2012, 2013, and 2015, involved challenges to be taken up in SpRL on a specific
proposed corpus of reference texts. Thus the SpRL task at SemEval 2012 [7]
focused on the roles of trajectors, landmarks, spatial indicators, and the links
between these roles that form spatial relations.

In the SemEval 2013 SpRL task [6], introduced new roles to include motion
indicators, paths, directions, and distances to capture the fine-grained spatial
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semantics of static spatial relationships and also to take into account dynamic
spatial relationships.

The SpaceEval task, introduced in SemEval-2015, adopted a more advanced
annotation specification with respect to ISOspace [15]. SpaceEval, first, enriches
the semantics’ granularity in both static and dynamic spatial configurations, and
secondly, by extending the variety of annotated data and the domains considered.
Indeed, the concept of place is distinguished from the concept of a spatial entity.

3 SpRL Systems

The Systems covered in this section focus only on SemEval 2012 and 2013,
and do not explore SpaceEval 2015 campaign considering the change of corpus
annotation.

The KUL-SKIP-CHAIN-CRF [10] system adopted a pipeline approach. In
the beginning, spatial indicators are found and labeled for each sentence. Then,
given a spatial indicator, the second task consists of classifying parts of an input
sentence with landmark or trajector labels. To identify the spatial indicator,
authors use an external corpus The Preposition Project (TPP) labeled to learn
the sens of preposition through a set of linguistic features (lemma, POS,...). As
a result, the binary classification of a preposition’s spatial is made. In the same
way, Trajectory and Landmark are identified to leverage many linguistically
motivated features. Finally, spatial indicators, trajectors, and landmarks are
combined into spatial relation triplets.

The UTDSpRL [17] system used a join approach to tackle the SpRL task.
Authors expose that the pipeline approach cannot perform well if a spatial roles
arguments are considered in isolation. They propose an alternative system that
jointly decides whether a given candidate triple expresses a spatial relation or
not. The approach used a recall heuristics to find spatial relation candidate
triple. A hand-crafted dictionary was used to detect SPATIAL INDICATOR
candidates, allowing the decrease of negative relation candidates in compari-
son to the pipeline method, which considers every phrase as a spatial role. Then,
noun phrase heads were treated as TRAJECTOR and LANDMARK candidates.
Finally, a Support Vector Machine (SVM), was trained with some manually en-
gineered features chosen by an automatic feature selector, to classify the relation
candidate.

The UNITOR-HMM-TK [1] system uses a sequence-based classifier. First,
classifies spatial and motion indicators, then built on these outcomes to identify
spatial roles through a set of lexical and grammatical features. The generated
candidate spatial relations are verified by a Support Vector Machine (SVM).
This approach’s significant contribution is to adopt smooth grammatical features
instead of a full syntax of the sentence.

SpRL-CNN system [14] rely on an adapted version of the nlpnet4 system.
First, a spatial indicator is identified by a multilayer perceptron (MLP) witch it

4 http://nilc.icmc.usp.br/nlpnet/
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converts the tokens (spatial indicator) into feature vectors. Then, these vectors
are fed to Conventional Neural Network (CNN) to classify the argument and
spatial relation triples. Additionally, pre-trained Glove word embeddings were
used to reduce the impact of words not seen in the training data.

The VIEW system [12] consists of producing word embedding vectors from
the Microsoft COCO dataset to enrich the generated ”Feature” by SpRL meth-
ods. ”Microsoft COCO dataset” represents a collection of segmented images. At
first, the systems start by transforming each image’s legends into word embed-
ding vectors that will be fed into a Long Short Term Memory (LSTM) network.
The goal is to be able to encode the visual information of images within the ”Fea-
ture vector” produced by [8]) (generating from POS, semantic roles, syntactic
dependencies, ...) by concatenating them with the ”embedding” of VIEW.

Most of the existing systems depend heavily on manual features and do not
benefit from the advances of NLP systems based on deep learning techniques.

4 Proposed Architecture

In this section, we provide details about our neural network architecture (Figure
1) inspired by [13]. We introduce the neural components in our network one-by-
one upward.
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Fig. 1: Global architecture of our neural network

4.1 Character-level Representation

Character-level contains much information about the meaning of the word. It
proves than it can memorize the arbitrary aspects of word spelling. Using this
information can significantly improve the quality of the model [2]. To encode

56



the structure of words, we will use an LSTM. In practice, we will encode each
character into a vector using one-hot encoding and feed them into an LSTM one
at a time.

4.2 Bi-directional LSTM

LSTM The Long Short-Term Memory (LSTM) architecture is a concrete in-
stantiation of the abstract RNN architecture. In practice, RNNs fails to learn
long-distance dependencies due to the vanishing gradients problem. Indeed, er-
rors detected in the later steps in the sequence decrease quickly in the back-
propagation phase, and do not attempt the first input signals. LSTM was de-
signed to address this shortcoming using a controllable gating mechanism with a
memory cell. Di↵erentiable gating mechanisms determine, at each stage, which
inputs parts to write in memory, and which memory’s parts are overwritten. The
LSTM architecture is described in mathematical terms for a unit at time j as:

cj = f � cj�1 + i� z (1)

hj = o� tanh(cj) (2)

i = �(xjW
xi + hj�1U

hi) (3)

f = �(xjW
xf + hj�1U

hf ) (4)

o = �(xjW
xo + hj�1U

ho) (5)

z = tanh(xjW
xz + hj�1U

hz) (6)

where cj denotes the memory cell and hj is the hidden state. � denotes the
element-wise sigmoid function, and � is the element-wise product. i , f , and o
are the three gates. Wxi, Wxf, Wxc, Wxo denote the weight matrices of di↵erent
gates for input xj, and Uhi, Uhf, Uhc, Uho are the weight matrices for hidden
state hj. The values of the gate are determined on the basis of linear combinations
of the current input xj and the previous state hj-1 using a sigmoid function. The
updated candidate z is estimated as a linear combination of xj and hj via a tanh
function. Figure2a shows a LSTM sequence tagging model.

Bidirectional LSTM Access to both past (left) and future (right) contexts
is useful for many sequence labeling tasks. However, the hidden state h of the
LSTM takes knowledge took only the prior words for consideration. The Bidirec-
tional LSTM [5] solves this problem through encoding the ith word in a sequence
by the concatenation of two LSTM, one reading the sequence from the begin-
ning, and the other reading it from the end. Figure2b shows a BiLSTM sequence
tagging model.

4.3 CRF

When processing sequence labeling tasks, each labeling decision is produced inde-
pendently of the others words, but in many cases neighboring decisions leverage
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Fig. 2: LSTM and BiLSTM architectures

each other. The conditional random field (CRF) solves this problem and model
label sequence jointly. Given an input sequence (word)

x = (x1, ..., xn) (7)

and a sequence of SpRL labels

y = (y1, ..., yn) (8)

for x. The CRF models the conditional probability as follow:

p(y1, ..., yn|x1, ..., xn) (9)

We denotes the set of possible label sequences for x to some d-dimensional feature
vector by a feature map:

�(x1, ..., xn, y1, ..., yn) 2 Rd (10)

The the probabilistic model for over all possible tag sequences will be define as :

p(s|x;w) =
e(w.�(x,y))

P
x0 e(w.�(x0,y))0

(11)

where s extends over all possible output sequence and w is the parameter vector.
During training, we use the maximum conditional likelihood estimation. The

regularized log-likelihood function L is:

L(w, b) =
X

i

logp(y|x;w, b) (12)
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Finally, we can find the highest conditional probability tag y⇤ for a sentence x
by:

y⇤ = argmaxp(y|x;w, b) (13)

4.4 CharRNN-BiLSTM-CRF

We construct our neural network architecture by feeding the BiLSTM out-
put vectors into a CRF layer. For each word, the character-level representa-
tion is given by the first LSTM with character embeddings as inputs. Then the
character-level representation vector is concatenated with the word embedding
vector to feed into the BiLSTM network. Finally, the output vectors of BiLSTM
are fed to the CRF layer, taking advantage of neighboring tag information in
predicting current tags. This network can e�ciently use past input features via
the LSTM layer and sentence level tag information via the CRF layer, as shown
in Figure 1.

Indeed, from equation 11 the expression

w.�(x, y) = scorecrf (x, y) (14)

represents the potential functions, also known as scoring function, that indicates
how y fits x. In the CRF layer, we aim to replace the linear scoring function by
a non-linear neural network. We define the score by:

scoreBiLSTM�crf (x, y) =
nX

i=0

Wyi�1,yi .BiLSTM(x)i + byi�1,yi (15)

With the score function constructed, we can e�ciently use past and future tags
to predict the current tag and optimize the conditional probability p(y|x;w, b)
and propagating back through the network.

5 Experiments

This section presents the experiments in SpRL, using various neural network ar-
chitecture; MLP, LSTM, LSTM+CRF, BiLSTM+CRF, and CharRNN+BiLSTM+CRF.
First, we present the SpRL corpus and then the results obtained with these two
models. Finally, we compare these results and try to interpret them.

5.1 SpRL corpus

SemEval-2012 Data The first corpus is a subset of the IAPR TC-12 image
Benchmark [4]. It contains 613 text files that include 1213 sentences in total.
The original corpus was available without copyright restrictions 5. Tourists took
20,000 images with textual descriptions in di↵erent languages. The texts describe
objects in a scene together with their absolute and relative positions in the image.
The data is released in XML format.
5 http://www.cs.tulane.edu/ pkordjam/SpRL.htm# data
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SemEval-2013 Data The dataset for SemEval2013 includes two distinctive
corpora. The first one is the SemEval2012 Data presented in the previous sub-
section but with some modifications. The Data was transformed into a span-
based annotation, and some annotation error was corrected.

The second corpus originates from the Confluence Project 6. This project
tries to outline all possible latitude-longitude intersections on earth, and people
who visit these intersections provide written narratives of the visit. The authors
use the same annotation then IAPR TC-12 image extended with ”motion indi-
cator”, ”path”, ”direction,” and ”distance” tags to denotes the dynamic spatial
aspect.

Systems were evaluated mainly into two tasks : Individual role identification
and spatial relation extraction. For SemEval2013 task 3, all reported results
followed the relaxed evaluation criteria as motioned by the organizers.

5.2 Sequential labeling for Spatial Role Classification

The task of sequential labeling for SpRL is to assign a spatial role to a specific
word in a sentence. We convert the original XML corpus to IOB2 format (be-
ginning (B), the inside (I), or ending (O)). Thus, the labeling of sentence 2 for
SpRL-2012 data can be as follows:

Trees/B-TR in/B-SI the/O background/B-LM

.
Besides for SpRL-2013 it will be:

Trees/B-TR in/B-SI the/B-LM background/I-LM

To test the e�ciency of our system, we conducted an ablation test. Several
combinations of neural network architectures were used, namely LSTM + CRF,
BiLSTM+CRF, and char+BiLSTM+CRF. These experiments shown in tables
1 and 2 allowed us to highlight the e�ciency of BiLSTM compared to LSTM
but also to confirm the result of the previous work that the contribution of
embedding character-level embedding in the sequence labeling problem. Finally,
the CRF layer allows to optimize further the performance of our model.

5.3 Relation identification

For the relation extraction task, we aim to figure out which spatial roles dis-
covered in the previous classification phase, can be composed as valid spatial
relations. Inspired by [17] where all possible spatial roles are first generated by
heuristics and then combinatorially combined to acquire candidate relationships.
The network has three input vectors, each referring to the trajector, spatial in-
dicator, and landmark. results for static relation are reported in Table 3.

6 http://confluence.org
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Table 1: Results of various neural architecture for the SemEval 2012 tasks

Network architecture Label Precision Recall F1-score

LSTM-CRF
SI 0.755 0.865 0.806
LM 0.676 0.583 0.626
TR 0.479 0.591 0.529

BiLSTM-CRF
SI 0.917 0.862 0.889
LM 0.600 0.720 0.655
TR 0.608 0.687 0.645

Char-BiLSTM
SI 0.871 0.914 0.892
LM 0.541 0.748 0.628
TR 0.637 0.586 0.610

Char-BiLSTM-CRF
SI 0.899 0.919 0.909
LM 0.561 0.809 0.662
TR 0.658 0.677 0.667

Table 2: Results of various neural architecture for the SemEval 2013 tasks

Network Architecture Label Precision Recall F1-score

LSTM-CRF
SI 0.805 0.732 0.767
LM 0.605 0.722 0.658
TR 0.521 0.553 0.536

BiLSTM-CRF
SI 0.868 0.879 0.873
LM 0.600 0.720 0.655
TR 0.589 0.636 0.612

Char-BiLSTM
SI 0.836 0.920 0.876
LM 0.507 0.705 0.590
TR 0.620 0.631 0.626

Char-BiLSTM-CRF
SI 0.927 0.879 0.902
LM 0.566 0.789 0.660
TR 0.677 0.606 0.639

Table 3: Results of relation extraction for the SemEval 2012 and 2013 tasks
Relation Extraction Precision Recall F1-score

SemEval 2012 Relation 0.558 0.785 0.652
SemEval 2013 Relation 0.492 0.706 0.580

5.4 Network training procedure

In this section, we provide details about training the neural network. We im-
plement the neural network using the Keras library. We choose the stochastic
gradient descent (SGD) method to train our model and update parameters on
every training batch. For the BiLSTM network, after empirical tests, we find the
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best results with a batch size of 32, dropout of 0.1, and 200 LSTM units. The
CRF was implemented with the keras-contrib package. For character embedding,
we choose to set the dimension to 10 since the longest word in the corpus has
10 characters. We use the Google’s Word2Vec with varying the dimension of the
embedding matrix. The best result came empirically with dimension vector of
200. Besides, we implemented the Early Stopping mechanism to stop training
once the performance of the model began to decrease. According to our exper-
iments, the “best” epoch number appears at around 70 epochs. We also add a
five epoch delay to the trigger on which we would like to see no improvement of
the model.

5.5 Discussion

The Tables 4 and 5 compares the results of our system with other baselines
approaches. We notice that it is di�cult to compare individual spatial role clas-
sification with [17] because their results are a derivative of a joint classification
and not the performance of an individual classifier.

Moreover, UTDSpRL [17] uses a fixed lexicon of spatial indicators was built
training data, so it will not recognize any relations that use new indicators.

We observed a drop of performance from SpRl-2012 corpus to SpRL-2013 due
to the use of full span annotation instead of headwords. Also, a decrease from
training data to the test data has been shown. As mentioned by [17] it is due
to a more length and complexity of sentences used in test data. To verify this
observation, we perform other experiments with shu✏ed data using the Scikit-
learn library. We preserve the same number of sentences in the original train
and test corpus. The results show an increase in F1-score by +9.36 on average in
SemEval-2012 and by +9.56 in SemEval-2013, which confirms that the original
test data is more challenging to handle.

Besides, we try to understand the prediction of our neural network architec-
ture using the LIME algorithm [16]. LIME ( Local Interpretable Model-agnostic
Explanations) is an explanation technique that attempts to understand the
model by perturbing the input data and perceive how the predictions change.
Figure 3 shows an example of prediction the word ”floor” for the sentence ”light
and dark brown tiles on the floor .”. We can observe that the model relies on the
word ”floor” itself and the spatial indicator ”on” to assign the label landmark
LM.

6 Conclusion

In this paper, we proposed a CharRNN-BiLSTM-CRF neural network architec-
ture for Spatial role labeling mixing character-level and word-level representa-
tion. It is an end-to-end model relying on no feature engineering. We outperform
all classical baselines models and we are in line with those using deep learning
approaches. Notwithstanding the satisfying results, there are several potential
directions for future work. These include:
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Table 4: F1 scores comparison with the state-of-the-art for the SemEval 2012
tasks

System TR LM SI Relation
UTDSpRL [17] 0.707 0.772 0.823 0.573
KUL-SKIP-CHAIN-CRF [10] 0.646 0.756 0.900 0.500
EtoE-IBT-CLCP [8] 0.673 0.797 0.869 0.617
Our CharRNN-BiLSTM-CRF 0.667 0.662 0.909 0.652

Table 5: F1 scores comparison with the state-of-the-art for the SemEval 2013
tasks

System TR LM SI Relation
UNITOR-HMM-TK [1] 0.682 0.785 0.926 0.458
SpRL-CNN [14] NA NA NA 0.460
VIEW [12] 0.732 0.678 0.749 0.235
Our CharRNN-BiLSTM-CRF 0.639 0.660 0.902 0.580

Fig. 3: LIME algorithm interpret the prediction of word ”Floor” with landmark
tag LM

– Exploring the use of syntactic dependencies in Word Embedding and mixing
them with pre-trained ones.

– We would like to use deep contextual language embedding ELMO and Bert
which achieved state-of-art performance in many NLP tasks.
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