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Abstract �– Relevant information extraction from text and web 
pages in particular is an intensive and time-consuming task that 
needs important semantic resources. Thus, to be efficient, auto-
matic information extraction systems have to exploit semantic 
resources (or ontologies) and employ machine-learning tech-
niques to make them more adaptive. This paper presents an On-
tology-based Information Extraction method using Inductive 
Logic Programming that allows inducing symbolic predicates 
expressed in Horn clausal logic that subsume information extrac-
tion rules. Such rules allow the system to extract class and rela-
tion instances from English corpora for ontology population pur-
poses. Several experiments were conducted and preliminary ex-
perimental results are promising, showing that the proposed 
approach improves previous work over extracting instances of 
classes and relations, either separately or altogether. 

Keywords�— Ontology-based Information Extraction; Ontology 
Population; Inductive Logic Programming;  

I.  INTRODUCTION 
The Web has become the major source of information, bear-

ing the potential of being the world�’s greatest encyclopaedic 
source of all the news, data, etc. It brings up the interesting idea 
of converting this sheer volume of unstructured textual data into 
useful information available for everyone. However, accurate 
information extraction from web pages is an intensive and time-
consuming task, which requires important background knowl-
edge. Thus, the development of efficient and robust information 
extraction systems is a big challenge. In order to be accurate, 
such systems have to exploit semantic resources (e.g. ontolo-
gies) to take into account this background knowledge. Recently, 
Ontology-Based Information Extraction (OBIE) has emerged as 
a subfield of Information Extraction in which ontologies are 
used by the extraction process and the output is generally pre-
sented through an ontology. Furthermore, to be more quickly 
developed and adaptive to other domains, such systems also 
have to be based machine learning techniques. 

The main goal of Information Extraction (IE) is recognizing 
and extracting certain types of information from natural lan-
guage texts. The decision to leave out irrelevant information is 
a conscious one, and it reduces the difficulty associated with the 
task at hand. Because IE deals with natural language sources, it 
is seen as a subfield of Natural Language Processing (NLP). 
Two important subtasks in IE are Named Entity Recognition 
(NER) and Relation Extraction (RE). Machine learning is 
widely used to approach both subtasks.  For NER extraction, 
the performance results of the state-of-the-art systems are 
around 90%. On the other hand, extracting relations among 

entities is still a substantially harder task than NER, and NER 
systems exhibit considerably lower performance [5]. 

Entity and relation extraction oppose numerical approaches 
vs. symbolic ones. Numerical approaches exploit the distribu-
tional aspect of data, and use statistical techniques, whereas 
symbolic ones exploit the structural aspect of data, and use 
structural information. Numerical methods have been widely 
used and they are the core learning component of  robust, and 
fully automatic IE systems. However, they provide poor expla-
nations for their results and, as observed in [16], they face some 
difficulties to grasp relations involving more than two entities. 
Moreover, they are relatively computationally burdensome and 
do not scale well with increasing amounts of input data. 

On the other hand, symbolic methods can be distinguished 
between linguistic and machine learning methods. In the for-
mer, operational definitions of the elements to be acquired are 
manually established by linguists, mainly with the help of mor-
pho-syntactic patterns that identify the target entities (terms) or 
relations [13]. In the latter, the relevant patterns are unknown, 
but examples of the target terms or relations are used as input 
for building supervised classifiers. 

By adopting a symbolic machine learning approach, this 
paper presents an OBIE method and its implementation using 
Inductive Logic Programming (ILP) [7]. The proposed method 
permits to induce symbolic rules in order to extract, from tex-
tual data, instances of classes (entities) and relations between 
them as ontology classes and properties. It assumes that the 
dependencies among instances, considered here as relational 
features, can be exploited in an automatic induction of symbolic 
extraction rules from sentences. This method is mainly based 
on the principle that the establishment of a relationship among 
entities in a same sentence can be obtained by the (shortest) 
path between them in a specific graph-based model. In addition, 
as our experimental results have demonstrated, the proposed 
ILP-based approach had a significant improvement over pro-
positional machine learning methods based on kernels and 
features. 

The remainder of this paper is organized as follows: Section 
II describes some fundamental concepts addressed in this paper, 
namely OBIE and ILP. Section III presents in details the graph-
based model of sentences used in this work, and the different 
tasks composing the OBIE method using ILP. The Section IV 
reports and discusses results of several experiments conducted 
on a reference dataset of texts in order to extract class instances, 
and relations between class instances. Section V presents re-



 

 

lated work. Finally, Section VI concludes this paper and out-
lines future work. 

II. FOUNDATIONS: OBIE AND ILP 
This section describes some fundamental concepts explored 

in this paper, namely: Ontology-based Information Extraction, 
and Inductive Logic Programming.  

A. Ontology-based Information Extraction 
In general, classical IE aims to retrieve certain types of in-

formation from natural language text by processing them auto-
matically. For instance, an IE system might retrieve information 
about economical indicators of countries from a set of web 
pages while ignoring other types of information.  

OBIE can be defined as the process of identifying in text, 
relevant concepts, properties, and relations expressed in an 
ontology [14]. In general such ontology is a domain ontology, 
which represents the domain of the application and captures the 
domain experts�’ knowledge. Ontologies contain concepts ar-
ranged in class/subclass hierarchies (e.g. a University is a type 
of Institution), relations between concepts (e.g., a University 
has a Campus), and properties. OBIE normally takes place by 
specifying a domain ontology for the domain targeted by an IE 
system which attempts to discover individuals for classes and 
values for properties. 

Different OBIE systems have already been proposed. In 
some of such implementations, the OBIE system is part of a 
larger system. The more popular IE methods used in OBIE 
systems are: linguistic rules, represented by regular expressions; 
gazetteer lists, classification techniques, and construction of 
partial parse trees. 

One of the most important potentials of OBIE resides in its 
ability to automatically generate semantic contents for the Se-
mantic Web. The Semantic Web has the goal of bringing mean-
ing to the Web, creating an environment where software agents, 
roaming from page to page, can carry out sophisticated tasks for 
end- users [14].  

B. Inductive Logic Programming  
The Inductive Logic Programming (ILP) framework uses 

first order clauses as a uniform representation for examples, 
background knowledge (BK) and hypotheses [7]. 

According to De Raedt [3] there are two main motivations 
for using ILP. The first one is that it overcomes the representa-
tional limitations of attribute-value (propositional) learning 
systems that employ a table-based example representation. In 
this formalism,  the representation of the examples to be learned 
from correspond to rows in a table, and the features to columns, 
in which a single value is assigned to each one of the attributes. 
The second motivation is that it rather employs a declarative 
representation, which means that hypotheses are understandable 
and interpretable by humans. Moreover, by using logic, ILP 
systems can exploit background knowledge (BK) in its learning 
(induction) process. For instance, such BK can be expressed in 
the form of auxiliary predicate definitions provided by the user.  

The aim in ILP is to find a definition of the target relation p 
that is both consistent and complete. Informally, the ultimate 
goal of ILP is to explain the entire set of positive examples and 

none of the negative ones. More formally, as introduced by 
Muggleton [9], given: 

- a set of examples E = E+  E-, where E+ contains posi-
tive and E- negative examples, and; 

- background knowledge BK.  

the task of ILP is to find a theory T such that: 
- Сe Щ E+ : BK шT |= e (T is complete), and  
- Сe Щ E- : BK шT |ҁe (T is consistent).  

One of the main advantages of ILP over other statistical 
machine learning algorithms is that not only the learned pat-
terns are expressed in a symbolic form, which is more easily 
interpreted by a knowledge engineer, but also allows the inte-
gration of considerable amount of prior knowledge as part of 
the solution to the problem. Moreover, according to Patel et al. 
[10], when compared with a handcrafting rule approach, an 
ILP-based method can provide a complete and consistent view 
of all significant patterns in the data at the level of abstraction 
specified by the knowledge engineer. Thus, an ILP-based ap-
proach enables the discovery of rules that could be missed by 
the domain expert, making also possible to scale the rule devel-
opment to a larger training dataset.  

Compared to other propositional rule learning techniques as 
decision trees and decision lists, ILP is more powerful in sev-
eral aspects, according to [15]: 

- ILP uses an expressive first-order rule formalism enabling 
the representation of concepts and hypotheses that cannot be 
represented in the attribute-value framework of traditional 
machine learning. 

- ILP facilitates the representation and use of background 
knowledge that broadens the class of problems for which 
inductive learning techniques are applicable. 

- Many techniques and theoretical results from computational 
logic can be used and adapted for the needs of inductively 
generating from specific observations and BK. 
Most of existing ILP implementations like Aleph1 and 

GILPS [12] are implemented in Prolog language and, therefore, 
they impose the following typical restriction to the way of how 
BK (in terms of predicates or rules), and examples are repre-
sented: (i) BK is restricted to Prolog clauses, which are in the 
form head:- body1, body2, ..., bodyn. Thus, the head is implied 
by the body clauses, and (ii) E+ and E- are restricted to ground 
facts. 

III. AN ILP-BASED METHOD FOR OBIE 
The method for OBIE proposed in this paper relies on both 

a domain ontology and an ILP learning component that induces 
symbolic extraction rules. These rules are used to clas-
sify/extract instances of classes and relations between them in a 
domain ontology. For that, our method employs a relational 
model of sentences based on dependencies among instances. 
Such dependencies are considered here as logical predicates, 
which can be exploited by an automatic induction process. This 
method is based on the principle that the establishment of a 

                                                           
1 http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html 



 

 

relationship between two entities in same sentence can be ob-
tained, for example, by a path between them in a dependency 
graph, which encode grammatical relations between phrases or 
words [8]. 

This section first presents the graph-based model of sen-
tences in our approach, which relies on a dependency graph as 
structural building blocks for rules induction in ILP. Then an 
overview of the method is presented, covering the specific tasks 
starting from a natural language pre-processing, followed by the 
symbolic extraction rules generation with ILP and the applica-
tion of such rules for extracting instances of classes and rela-
tions, up to the population of a domain ontology. Each one of 
these tasks are presented in detail in the following subsections. 

A.  A Graph-based Model of Sentences for Rule Induction 
The proposed representation that supports our OBIE method 

consists of a graph-based model of sentences. In this model, a 
simple relationship can be specified between conceptual entities 
(instances of classes and relations): each major phrasal con-
stituent (nominal and verbal chunking) in a sentence are con-
sidered as a candidate instance for extraction. In other words, 
all phrases that express tokens or chunking constituents are 
potentially referencing real-world concepts defined by a domain 
ontology. Moreover, the relational representation of the syntac-
tic structure of a sentence S provided by our graph-based model 
is defined as the mapping G: sentence  tuples of relations.  

This model is based on a dependency analysis that consists 
of generating the typed dependencies parses of sentences from 
phrase structure parses, a.k.a. constituent parsing and produces 
a dependency graph [8]. This directed graph is the result of an 
all-path parsing algorithm based on a dependency grammar [6] 
in which the syntactic structure is expressed in terms of de-
pendency relations between pairs of words, a head and a modi-
fier. This relation defines a dependency tree, whose root is a 
word that does not depend on any word.  

We have adopted the typed dependencies proposed in [8] 
and named Stanford dependencies. It is worth noticing that 
typed dependencies and phrases structures are different ways of 
representing the inner structure of sentences, in which a phrase 
structure (constituent) parsing represents the nesting of multi-
word constituents, whereas a dependency parsing represents 
dependencies between individual words. In addition, a typed 
dependency graph labels dependencies with grammatical rela-
tions, such as subject or direct object. 

Different variants of the Stanford typed dependency repre-
sentation are available in the dependency parsing system pro-
vided with the Stanford parser [8]. We adopt the collapsed tree 
representation, where dependencies involving prepositions, 
conjuncts, as well as information about the referent of relative 
clauses, are collapsed to get direct dependencies between con-
tent words. This collapsed representation can simplify the rela-
tion extraction process.  

In addition, the proposed graph-based model exploits 
chunking analysis, which is useful to define entity boundaries, 
and the head constituents of nominal, verbal and prepositional 
phrases. For example, consider the sentence "Mary is reading a 
book on Semantic Web". Fig 1 shows the head tokens of this 
sentence obtained after a previous chunking analysis. Usually, 

verbal phrases are possible candidates for relations, and nomi-
nal ones, can represent an entity or an instance of a class. 

Fig. 1. Chunking analysis and head tokens of the sentence 

In our method, dependencies are considered as relational 
features that can be exploited in the automatic induction of 
symbolic extraction rules from sentences. Indeed, we develop 
an ILP-based formulation of this IE problem and show how to 
cast this problem in it. In addition, the proposed approach is 
based on the observation that, when learning about properties of 
objects in relational domains, feature construction can be 
guided by the structure of individual objects [Raedt, 2010], 
which can be used for asserting relationships between two (or 
more) class instances in the same sentence.  

Fig. 2 shows the graph-based model of a sentence obtained 
by: (i) a dependency analysis with collapsed dependencies (e.g. 
prep-on) according to the Stanford dependency parser, (ii) a 
chunking analysis (head tokens in bold), (iii) the sequencing of 
tokens in a sentence (NextToken vertices), and (iv) morpho-
syntactic features as nodes attributes (arrows in gray color).  

 
Fig. 2. Graph-based model of the sentence: �“Mary is reading a book on 

Semantic Web�”. 

This graph-based model can be expressed by a set of binary 
relations or predicates. For the same sentence in Fig. 2, here is a 
list of some binary relations: 

nsubj (reading, Mary) 
aux (reading, is) 
det (book, a) 
head (Mary, NP) 

nextToken (Mary, is) 
nextToken (is, reading) 
length (Mary, 4) 
ner(Marry, person) 



 

 

The graph-based model represents a collection of binary re-
lations, and their arguments can be enriched with additional 
constraints on the types of the arguments. These additional 
binary relations are used in the ILP induction process to link 
terms in a sentence with classes and relations from a domain 
ontology. For example, if the predicate to be learned is 
read (X, Y), or putting it as ontological terms, the object prop-
erty read(X, Y), then the first argument X should be an instance 
of the Person class, and the second one Y should be an instance 
of the Publication class in the domain ontology. To sum up 
with, instances of classes and relations can be viewed, respec-
tively, as nodes and edges in our model. Each node can have 
many attributes, e.g., the ontology class label which it belongs 
to.  

In the present work, the task of identifying the labels of 
candidate instances of classes and relations is defined as the 
target predicate in our learning problem formulation. Con-
cretely speaking, we learn such target predicates as a combina-
tion of  base predicates on several constituents of the sentence.  

Most previous research work in Relation Extraction and On-
tology Population (OP) [2] has only considered attribute-value 
features, or propositional features derived from input text data 
[11], [5], [4]. On the contrary, we rely on a first-order logic 
representation of examples which provides a much richer repre-
sentation formalism, allowing classification of objects whose 
structure is relevant to the classification task [15]. 

B. System Architecture  
As previously mentioned, an inductive logic programming-

based framework has been adopted as the core component for 
machine learning in our architecture. The main reason is that 
this learning component can generate extraction rules in sym-
bolic form. As a result, such rules may be fully interpreted by a 
knowledge engineer, which could refine them in a posterior 
stage of the rule induction task, aiming at improving the whole 
extraction process. Moreover, symbolic rules can be automati-
cally converted into other rule formalisms, such as SWRL, the 
proposed rule language for the Semantic Web. 

 In general terms, the method consists of a supervised ap-
proach to automatically infer efficient and expressive extraction 
patterns of complex terms or syntactic relations from examples 
(sentences). As a result, the induced rules can be applied on an 
unseen set of pre-processed documents in order to extract in-
stances for populating a domain ontology. 

The main goal of this work is to propose and assess our 
OBIE approach. For that, we developed a modular architecture 
for OBIE in which we integrate several system components in a 
pipeline architecture. Fig. 3 shows the functional architecture of 
the developed prototype. 

The OBIE process is performed in two distinct phases. First, 
a theory (a set of rules) is induced from a given annotated cor-
pus (Rule Learning module). This phase correspond to the 
Learning phase in Fig. 3, which generates extraction rules from 
an annotated learning corpus by induction. In the second phase, 
i.e., the Exploitation phase, the learned theory is then applied in 
pipeline to extract ontology instances from new tagged docu-
ment. In both above phases, a previous preprocessing stage take 
place in which several Natural Language Processing (NLP) 

tools are used (Natural Language Preprocessing module), fol-
lowed by an automatic representation of the examples in our 
approach (Background Knowledge Generation module). 

In the following sections, we explain each component of the 
architecture shown in Fig. 3 in more detail. 

C. Text Processing  
The proposed OBIE system consists of automatically induc-

ing extraction patterns that discover both hypernymy relations 
(is-a relationships) and other types of relations between two 
terms. To do so, we need a representation formalism that ex-
presses these patterns in a simple and effective way.  

Accordingly, we defined a set of lexico-syntactic features 
generated by the natural language preprocessing component in 
our architecture. These features are the building blocks that 
compose the BK that will be used later by the learning compo-
nent. Thus, three NLP tasks are performed: lexico-syntactic 
analysis, dependence parsing, and chunking analysis. We use 
the Stanford CoreNLP2 for carrying out the following sequence 
of NLP subtasks: sentence splitting, tokenization, Part-of-
Speech tagging, lemmatization (which determines the base form 
of words), Named Entity Recognition (NER), and dependency 
parsing on the input corpus. Finally, we rely on the OpenNLP3 
tool for the chunking analysis. In addition, we employed the 
simple heuristic of considering the rightmost token in a chunk-
ing (nominal or verbal) as its head element. 

 
Fig. 3. Overview of our OBIE process using ILP 

D. Background Knowledge Generation  
After the previous text preprocessing step, we carry out the 

critical task on identifying, extracting, and appropriately repre-
senting relevant background knowledge (BK). This process is 
not trivial because, without it, the ILP features that make it 

                                                           
2 http://nlp.stanford.edu/software/corenlp.shtml 
3 http://opennlp.apache.org 



 

 

different from traditional learning algorithms cannot be truly 
exploited.  

Previous research has shown that shallow semantic parsing 
can provide very useful features in several IE related tasks [4]. 
Accordingly, we explore the features listed in Table I, which 
constitute the BK in our solution. These features provide a 
suitable feature space for the classification problem of ontologi-
cal instances, describing each token in the corpus. We illustrate 
in Table I the BK in logical predicates that characterizes the 
candidate instance of the Person class, "Mary".  

Differently from other machine-learning approaches for OP 
that use feature vectors for representing context windows (n 
tokens on the right/left of a given word w in a sentence), we use 
the next/2 predicate which relates one token to its immediate 
successor in a sentence, along with additional predicates that 
compose our BK (Table I). All predicates are expressed in 
Prolog syntax. 

TABLE I.  PROLOG PREDICATES FOR THE TOKEN "MARY" (T_1)  

Predicates Generated Meaning 
token (t_1) t_1 is the token identifier 

t_dep (nsubj, t_3, t_1) there is a noun subject dependency be-
tween token t_3 and t_1 

t_next (t_1, t_2) token t_2 follows token t_1 
t_stem (t_1, �“Mary�”) the stemming of the token t_1 is �“Mary�” 
t_length (t_1, 4) t_1 has length of 4 
t_orth (t_1, upperInitial) t_1 has an initial uppercase letter 
t_type(t_1, word) t_1 is a word 
t_pos (t_1, nnp) t_1 is a singular proper noun 
t_ner (t_1, person) t_1 is a person entity  
t_root (t_3) t_3 is the root of the dependency graph 
t_bigposbef (t_n, �….) POS tag bigram of the tokens after t_n  
t_bigposaft (t_1, vbz-vbg) POS tag bigram of the tokens before t_1  
t_trigposbef (t_n, �….) POS tag trigram of the tokens before t_n  
t_trigposaft (t_1, vbz-vbg-

dt ) POS tag trigram of the tokens after t_1  

t_isHeadNP (t_1) t_1 is the head of the nominal chunking 
t_isHeardVP (t_n...) t_n is the head of the verbal chunking 

t_isHeardPP (t_n...) t_n is the head of the prepositional 
chunking 

t_ck_tag (t_1, NP) t_1 is part of a nominal chunking 
 

E. Rule Learning  
In the last step from our method, we had to adjust some pa-

rameters of the GILPS system for the task at hand. One of such 
parameters defines the language bias, which delimits and biases 
the possibly huge hypothesis search space. In GILPS, this is 
achieved by providing appropriate mode declarations.  

Mode declarations characterize the format of a valid hy-
pothesis (rule). They also inform both the type, and the in-
put/output modes of the predicate arguments in a rule. There are 
two types of mode declarations in GILPS: head and body. 
Mode head declarations (modeh) state the target predicate, the 
head of a valid rule that the ILP system has to induce, whereas 
mode body declarations (modeb) determine the literals (or 
predicates), which may appear in a rule body. Mode body dec-
larations usually refer to predicates defined in the BK, but they 

can also refer to the target predicate in the case of recursive 
theories [13]. 

In mode declarations, each argument of a predicate has a 
type and an associated symbol that appears before the type 
indicator. The symbol �“ + �” means that the argument is an input 
argument (i.e. the argument must be instantiated before the 
predicate be called); �‘-�’ stands for an output argument, i.e., the 
argument does not need to be instantiated before the predicate 
be called. The symbol �‘#�’ denotes a constant, which is yielded 
directly in the hypothesis body. By both declaring typed argu-
ments of the predicates and imposing input/output restrictions, 
one guarantees that the clauses generated as hypothesis are at 
least executable by the Prolog engine. Note that these restric-
tions also reduce considerably the hypothesis space [12]. 

Another important choice is related to the engine parameter 
in GILPS, since it permits the user to choose the way rules are 
specialized/generalized, i.e., how the hypotheses space are 
traversed, top-down or bottom-up manner. For the purposes of 
this research work, we had chosen the bottom-up engine 
(ProGolem) available in GILPS, as this engine has demon-
strated competitive performance among others ILP systems 
[12]. 

F. Rule Application and Ontology Population 
Once the OBIE system has learned a set of extraction rules, 

the Rule Application module applies the induced rules on the 
knowledge base (Prolog factual base) generated from new 
documents similar to the ones used in the Learning phase. As a 
result, new instances of classes and/or relations are extracted, 
and they can be finally integrated into the domain input ontol-
ogy. For instance, considering the sentence given in the intro-
ductory section of this paper, the obtained extraction rules could 
identify the following instances of binary relations: 

is_a(Mary, Person), is_a (book, Publication), read (Mary, book) 

These new relations are used for populating the domain on-
tology, i.e., after converting the above Prolog predicates into 
OWL assertional axioms. In addition, we perform a redundancy 
checking in order to avoid repeated instances in the domain 
ontology. 

IV. EXPERIMENTAL EVALUATION 
In this section, we present and discuss the results of experi-

ments conducted on a reference corpus. At first, we describe the 
corpus also presenting the frequency distribution of the in-
stances of classes and relations in it. Next, we discuss the re-
sults of our experimental assessment on this dataset concerning 
the extraction of both class and relation instances. Finally we 
compare our method with other supervised propositional IE 
methods evaluated on the same corpus.  

A. Dataset Description and Preparation 
The experiments reported in this section are based on the 

TREC dataset4, which consists of articles from WSJ (Wall 
Street Journal). This dataset have been annotated for named 
entities and relations, containing 1,441 sentences with 5,349 
entities, namely, 1,691 people, 1,968 locations, 984 organiza-
tions, and 706 miscellaneous names. Each one of the 1,441 

                                                           
4 http://cogcomp.cs.illinois.edu/Data/ER/conll04.corp 



 

 

sentences has at least one active relation. Among those sen-
tences, there are 19,080 possible binary relations with the fre-
quency distribution of the positive ones as shown in Table II. 
This table also shows an example of each relation and the con-
straints with respect to its two arguments. It worth noticing that 
most candidate binary relations have no active relations at all; 
this results in a significant unbalanced distribution between 
positive and negative examples. Fig. 4 shows a sentence from 
this dataset, available in a column format with one POS tagged 
element per line. We used this original tokenization in our ex-
periments. 

 
Fig. 4. Example of a sentence in the TREC dataset: col-2: class label, col-5: 

POS tags, col-6: word form 

TABLE II.  BINARY RELATIONS AND THEIR ARGUMENTS TYPES 

Relation Arg-1 Arg-2 Example # of rela-
tions 

located_in LOC LOC (Toledo, Ohio) 405 
work_for PER ORG (Winter, Court) 401 

orgBased_in ORG LOC (HP, Palo Alto) 452 
live_in PER LOC (Tvazir, Israel) 521 

kill PER PER (Oswald, JFK) 268 
 

Fig. 5 depicts the domain ontology used for storing the in-
stances extracted by our OBIE system. 

 
Fig. 5. Domain Ontology used in the OP process 

B. Evaluation Measures and Rule Induction Setting 
Aiming at assessing the effectiveness of our approach, we 

conducted several experiments on the TREC dataset. The per-
formance evaluation is based on the IR classical measures, i.e., 
Precision P, Recall R, and F1-measure [1].  

In all experiments reported here, we used 5-fold cross-
validation that provides unbiased performance estimates of the 
learning algorithms. Furthermore, although our solution pro-
vides a named entity tagger in its preprocessing component, we 
decided not to use it, in order to have a fair experimental setup 
for all IE tasks reported in this paper.  

C. Results and Discussion 
In all experiments reported in this section, we adopted the 

same assumption in [11] that the problem of phrase detection is 
solved, and the entity boundaries are provided by the dataset as 
input. Thus, our OBIE system needs only to concentrate on the 
classification task.  

We carried out several experiments for evaluating the effec-
tiveness of the proposed method concerning three models, all 
applied to entities (instances of classes) and relations (instances 
of relations), namely: (i) separate, (ii) pipeline, and (iii) omnis-
cient. 

The first model, separate ES and RS, are constructed by train-
ing entities and relation classifiers separately, i.e., the entity 
classifier ES does not know the labels of relations in the sen-
tence, whereas the relation classifier RS is not aware of the 
labels of its entity arguments, either. 

The pipeline model for entities, denoted as EP (for entity 
classifiers) is obtained by first training a separate relation clas-
sifier Rs, in which its output is then used as additional features 
for training the EP classifier. Analogously, the RP model uses 
the predictions on the two entity arguments given by a separate 
entity classifier (ES) as additional features in its learning proc-
ess. 

In the last model, omniscient, it is assumed that the entity 
classifier EO knows the correct relation labels given to it as 
additional input features. Similarly the relation classifier RO 
knows the correct entity labels as well. These additional fea-
tures are then used in both training and testing. Although this 
assumption may appear unrealistic, it may reveal how accurate 
the classifiers can be without this information. 

Tables III and IV show the results obtained for all afore-
mentioned models. The classification results achieved by our 
richer models (EO and EP ) for entities, the ones with additional 
features as input, did not take much profit of them, since the 
score for P, R and F1 are very close to each other. For all rela-
tion classifiers, except for the orgBased_in relation, the addi-
tional feature information decrease the precision of the classifi-
ers, but contributes to better recall scores in all relation classifi-
ers. This can be explained by the fact that the noisy information 
in the dataset itself can be mitigated by these further clues to the 
classifiers, and can enable them to cover more examples in this 
case. Furthermore, in RP and RO models, more rules are added 
to the BK of the ILP rule-learning component. Such additional 
rules might increase the number of false positives. A further 
investigation of this problem is our ongoing work. 

In the following, we show an induced rule expressed in 
terms of (number of literals), (positive examples covered), 
(negative examples covered), and the (rule  precision P):  

Rule: #Literals=4, PosScore=187, NegScore=19, Prec = 90.8%  
located_in(A,B):- t_class(A,loc), t_next(A,B), t_class(B,loc). 

 This rule classifies an instance of the located_in relation  in 
which the good precision score is mainly due to the presence of 
several phrases similar to "Perugia, Italy", indicating that the 
first argument (A) "Perugia" is followed by (predicate next) the 
second argument (B) "Italy", not considering the punctuation 
symbol between them. 



 

 

Learning Curves. We performed a further evaluation of the ES 
and RS classifiers in the intent of examining the effect of limited 
training examples in the learning process by incrementally 
adding provided subsets as training data. Thus, we conducted 9 
experiments in which incremental parts of the training data, 
corresponding to 10% of the total number of examples are 
added to the classifier. Considering the learning curves in Fig. 6 
(left), one can observe that for LOCATION and PERSON enti-
ties, their classifiers obtained a reasonable F1 score with just 
10% of the total number of training examples. This corresponds 
to 30 and 26 extraction rules for LOCATION and PERSON, 
respectively in the final induced model. In contrast, for the 
ORGANIZATION entity classifier, more learning examples 
were needed for attaining the same performance. 

TABLE III.  RESULTS FOR ENTITY CLASSIFICATION (ALL MODELS) 

Model 
LOC ORG PER 

P R F1 P R F1 P R F1 
EO 95.9 92.4 94.1 98.7 79.2 87.8 93.7 91.2 92.4 
EP 95.2 92.0 93.5 97.5 76.5 85.7 93.5 89.0 91.3 
ES 96.0 88.4 92.0 97.0 74.4 84.3 94.8 87.5 91.0 

TABLE IV.  RESULTS FOR RELATION CLASSIFICATION (ALL MODELS) 

Model 
located_in work_for orgBased_in 

P R F1 P R F1 P R F1 
RO 90.5 78.6 84.0 85.7 86.1 85.8 88.7 82.5 85.4 
RP 91.1 78.0 83.9 87.2 80.8 83.8 91.5 84.0 87.5 
RS 91.2 75.9 82.6 93.1 72.9 81.7 88.4 77.0 82.2 

 

Model 
live_in kill 

P R F1 P R F1 
RO 87.4 76.9 81.7 92.3 78.0 84.3 
RP 85.7 72.1 78.2 91.5 77.6 83.9 
RS 92.5 67.4 78.0 97.5 73.7 83.8 

 

In Fig. 6 (right), for each relation, the difference among the 
learning curves is fairly constant, except for the orgbased_in 
and live_in relations. In fact, these two relations have as one of 
its arguments an ORGANIZATION entity, and its lower learn-
ing curve performance is explained by that fact. 

 
Fig. 6. Learning curves for entity and relations classifiers: ES and RS. 

Comparative Results. We provide a comparative evaluation of 
our OBIE method with the best ones proposed in [11] and [5]. 

For the entity classification comparison, we took the best 
result in [5], i.e., their MC classifier. This classifier also assumes 
that entity boundaries have already been determined, and it 
corresponds to our ES model. In [11] the best result for entity 

classification was obtained by their Separate w/Inf model, 
which uses an additional global inference procedure to produce 
the final decision.  The Separate w/Inf  assumes that the entity 
classifier knows the correct relation labels and it equally relates 
to our ES model. 

The results in Table V suggest that the MC model has supe-
rior performance in terms of F1 score. However, statistical 
significance tests (paired Student t-test) for the difference be-
tween F1 scores of the ES model and the MC model revealed 
that there is no significant difference at  = 0.05 (95% confi-
dence interval) between them. The same result occurs when we 
compare the ES model with the Separate w/Inf. A further look at 
Table V shows that the ES model is more precise than the other 
ones, but has a lower recall performance. For some applications 
in which precision is more desirable than recall, the ES model 
could be a good alternative, as it avoids overloading end-users 
with too many false positives. 

On the other hand, considering the relation classifiers, the 
results in Table VI show that our OBIE method significantly 
outperforms the others. The main reason for that probably relies 
on the better sentence representation model employed. In our 
graph-based model, relationships between terms in a sentence 
can be represented using a richer formalism of representation 
that, as it was demonstrated by the experiments reported here, 
are more expressive than the propositional representation of the 
related work evaluated, since it applies attribute-value represen-
tation models. 

TABLE V.  COMPARATIVE RESULTS FOR ENTITY CLASSIFICATION     
(SEPARATE MODELS) 

Model 
LOC ORG PER 

P R F1 P R F1 P R F1 
ES 96.0 88.4 92.0 97.0 74.4 84.3 94.8 87.5 91.0 
MC 94.2 94.4 94.3 91.9 88.5 90.2 94.8 96.6 95.7 

Separate w/Inf 91.8 88.6 90.1 91.2 71.0 79.4 90.6 90.5 90.4 

TABLE VI.  COMPARATIVE RESULTS FOR RELATION CLASSIFICATION 
(BEST MODELS) 

Approach 
located_in work_for orgBased_in 

P R F1 P R F1 P R F1 
RO  90.5 78.6 84.0 85.7 86.1 85.8 88.7 82.5 85.4 

MO|KSL 79.6 76.0 77.8 76.8 80.0 78.4 74.3 77.2 75.7 
Omni w/Inf 61.9 62.9 59.1 79.2 50.3 61.4 81.7 50.9 62.5 

 

Approach 
live_in kill 

P R F1 P R F1 
RO  87.4 76.9 81.7 92.3 78.0 84.3 

MO|KSL 78.0 65.8 71.4 82.8 81.0 81.9 
Omni w/Inf 63.9 57.3 59.9 79.9 81.4 79.9 

 

Limitations. It is worth mentioning that the proposed OBIE 
method does not consider the class hierarchy when assigning 
class instances to classes into the ontology, for example. The 
current system version that implements our approach only 
populates those classes chosen by the user at the beginning of 
the population process. Indeed, we intend to overcome these 
limitations in future work in order to achieve a more robust 
framework for OP.  



 

 

V. RELATED WORK 
Several machine learning approaches to IE have been pro-

posed. 

Patel et al. [10] conducted some experiments using ILP 
techniques to induce rules that extract instances of various 
named entity classes. They also reported a substantial reduction 
in development time by a factor of 240 when ILP is used for 
inducing rules, instead of involving a domain specialist in the 
entire rule development process. More recently, for relation 
extraction between two entities, the authors in [13] propose a 
multi-agent system, which uses the ILP framework. The learn-
ing capability of agents is exploited by training an agent to 
learn extraction rules from the syntactic structure of sentences. 
Typed dependencies of the syntactic constituents of sentences 
provide the background information.  

The system proposed in [13], similar to ours, has also used 
typed dependencies and ILP for RE, but it has some drawbacks: 
(i) it uses a less expressive propositional learner as the key 
component for rule induction; (ii) no comparative evaluation is 
reported; and (iii) its experimental results concern only one 
relation (located_in) which was conducted using a small corpus 
of 13 Wikipedia pages. 

Roth and Yih [11] proposed an entity and relation extraction 
system based on global inference. In their approach, predictors 
that identify entities and relations among them are first learned 
from local information in the sentence. The constraints induced 
from the dependencies among entity types and relations consti-
tute a relational structure over the outcomes of the predictors 
and are used to make global inference.  

Reference [5] describes a system based on shallow linguis-
tic processing (such as tokenization, POS tagging and lemmati-
zation) that uses kernel methods to perform NER and RE tasks. 
This system also uses a combination of kernel functions that 
model two distinct information sources: (i) the global context 
where entities appear and (ii) the local contexts around the 
interacting entities. The whole sentence containing the entities 
(i.e., global context) is used to discover the presence of a rela-
tion between two entities. Text windows of limited size centred 
on the entities (i.e., local contexts) provide clues to identify the 
roles played by the entities within a relation. 

VI. CONCLUSIONS AND FUTURE WORK 
We have proposed an ILP-based method for extracting in-

stances of classes and relations from textual data, such as web 
pages, that mainly relies on shallow syntactic parsing of indi-
vidual sentences in a document followed by an effective graph-
based model of the sentences. 

A further important conclusion was that the ILP-based 
method represents a considerable advantage concerning the 
inclusion of new BK into the OP process by means of simple 
predicates provided by the domain expert. Next, we conducted 
several assessments in order to evaluate the effectiveness of the 
proposed approach. The obtained results were compared with 
related research work on relation extraction using the same 
corpus, showing that the ILP-based approach had a significant 

improvement over other approaches based on propositional 
machine learning methods based on kernels and features. 

Although we have achieved encouraging results, there is 
still room for improvement. Indeed, the method presented here 
currently relies on shallow syntactic parsing of English sen-
tences, which does not take into account semantic aspects relat-
ing entities to verbs, like the ones treated in Word Sense Dis-
ambiguation or Semantic Role Labelling, for example. Thus, 
we would like to evaluate the contribution of semantic shallow 
parsing to OP on other domains. In this case, the desirable ILP 
characteristics of allowing such an incremental BK would be 
put to test. Our long term goal here is to fully exploit different 
types of BK aiming at investigating which kind of BK are more 
useful on specific domains. Finally, we also intent to extend our 
approach to n-ary relation extraction. 
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