

An Agent-based and Organisation oriented

Software Architecture for Supply Chains Simulation

Karam MUSTAPHA, Erwan TRANVOUEZ, Bernard ESPINASSE, Alain FERRARINI

LSIS UMR CNRS 6168 – Aix-Marseilles University

Domaine Universitaire de Saint-Jérôme, 13397 MARSEILLE CEDEX 20, France

 {karam.mustapha, erwan.tranvouez, bernard.espinasse, alain.ferrarini}@lsis.org

Abstract

The Supply Chain (SC) organizational structure and

related management policies are crucial factors that can

be adjusted to improve the SC performance, and tested

through simulations. To facilitate the design of these

simulations, we have proposed an agent-based metho-

dological framework for SC modelling, taking into

account observables of different levels of details and

related to these SC organizational aspects. This paper

describes an agent-based software architecture, based

on a mediator, enacting this methodological framework

at a software level, to allow SC organisational-oriented

simulation. This architecture can be seen as the

interaction between different simulation platforms.

Keywords: Agent Based Simulation, Multi-Agent

Systems, Supply Chains, Organization, Indicator,

1. Introduction

The Supply Chain (SC) domain raises numerous

conceptual and architectural challenges. Because of its

complexity, developing SC simulation-based decision

support systems implies a heavy workload. Simulation

aims to experiment and understand (in a controlled

environment) the economic, human and environmental

consequences of decisions related to the design and the

organization and the management policies of production

facilities. Multi-agent or Agent Based Simulation (ABS)

contribution to SC studies is well established [5] [23]

[15]. As autonomous entities with the ability to perform

their functions without the need for continuous

interaction from the user, agents are used for design

and/or simulation of complex systems. ABS also allows

focusing on the behaviours of the various SC's actors.

The Supply Chain (SC) organizational structure and

related management policies are a central factor that can

be adjusted to improve the SC performance, which

consequently has to be taken into account in the SC

modelling and simulation. However, most of the related

various research works does not allow to study the

efficiency of organizational related decisions. Such a

study supposes to: i) describe the SC organization; ii)

model and simulate the behaviours and decisions of its

actors and iii) implement these decisions and exhibit

their local and global effects on the SC, iv) support each

of these steps with specific conceptual and software

support.

The global objective of the present research is to give

a focus on the impact of a SC‟s organizational structure

performance by providing a methodological framework

which ranges from domain model analysis to running the

simulation. In line with our previous works [14] on SC

simulation, and in order to consider these organizational

aspects of the SC, we have proposed a specific agent-

based methodological framework [16] allowing, from

modelling to simulation, the production of observables at

different levels of details related to a SC organization.

This framework aims to facilitate the realization of the

SC simulation with gradual processes. It begins by

defining the needs of the user prior to arriving to the

implementation of the system while satisfying the initial

requirements. This methodological framework relies on

a software architecture adapted to the needs of SC

simulation, such as heterogeneous simulation software

environments integration.

This paper proposes an agent based software

architecture that supports the simulation of supply chains

in operation, taking into account its organizational

structure and allowing the study of the impacts of this

organization, based on a methodological framework.

This architecture can be seen as the interaction between

different simulation platforms.

Section 2 exposes our research problematic, which

concerns modelling and simulation (M&S) of SC with

their organizational aspects. In section 3, we briefly

present our organizational-oriented methodological

framework that takes into account SC‟s organizational

aspects, with models at a conceptual and operational

abstraction level. Then in section 4, we detail the agent-

based software architecture in line with the proposed

methodological framework, to simulate SC‟s

organizational aspects. This architecture is instantiated

on an illustrative example. Finally, we conclude by

drawing the future step of our research.

Bernard-User
K. Mustapha, E. Tranvouez, B. Espinasse, A. Ferrarini (2011), « An Agent-based and Organization oriented Software Architecture for Supply Chains Simulation »,
IEEE-ETFA 2011, 16th International Conference on Emerging Technologies and Factory Automation, Toulouse, France, 5-9 sept. 2011�

2. Agents and Organisation Oriented SC

Modelling and Simulation

Agent Based Simulation (ABS) allows the understanding

of various dynamic models, as composed of entities with

different complexity levels (from very simple entities or

reactive agents to more complex ones such as

deliberative agents). Another interest of ABS is the

ability offered to the modeller to manipulate different

levels of representations, such as individuals and groups

of individuals. Agent-based modelling allows capturing

of the dynamic nature of SCs and facilitates the study of

numerous resources coordination associated with the

interaction of multiple companies [15].

Agent based SC simulation is now frequently used,

but few researchers have proposed a general framework

to support both the design and the realization of the SC

simulation. Among those, the MASCF methodology

(Multi-Agent Supply Chain Framework) [11] adapts the

SCOR model to a structured generic methodology for

multi-agent system development (Gaia). However, the

organizational modelling is based on a management of a

process metaphor that underrates the organizational

structure. A more general study of agent oriented

software engineering methodologies (among those rare

holonic compliant methods), undertaken in order to find

conceptual and operational solutions, has confirmed that

organizational issues were to be added to the actor

approach [14]. Methods like GAIA [27], CRIO [10],

MOISE+ [13] or Luis Antonio work [1], provide only a

part of the solution for the required objectives.

Almost all the previously referred approaches use the

notion of roles in order to promote the flexibility of the

design process, even with different abstraction or

hierarchical levels. As an abstract view of the distributed

organization, roles can be combined and associated to

agents' specific architecture: from complex information

processing units (i.e. with deliberating capacities) to

more simple programmable units (reactive agents or

state-machine like automata).

As the structure of the studied systems pre-exists, the

description of the organization must be included from

the beginning of the modelling approach, in order to

propose the best suitable observables of its components.

The group and the holon concepts meet this requirement.

Finally, cooperative behaviours are needed to reproduce

cooperation situation in a “real” SC, as well as a way to

deal with disrupting events, adding adaptability to the

SC [24]. The deliberative/reactive agent architecture

results directly from the needs of validating such

cooperative behaviours [14].

Moreover, in order to complete or reduce the M&S

process, previous experimentations can be reused by

exploiting “black-box” simulations already implemented

(ie COTS - Components On the Shelves) in more

“classical” modelling language and dedicated simulation

environment. The final simulation must deal with

deliberative agents, reactive agents and other simulations

involving different time horizons. Time synchronization

then becomes a hard requirement to be identified at the

modelling phase and eventually controlled at the

software level (and maintained at the intermediate

translation steps).

Observables that have to be taken into account are SC

data and information on on-going decision processes,

which need to be highlighted in the simulation results.

Therefore, the main goal is to reproduce the SC

behaviour according to the level of details required to

produce the user desired observables. The observables

represent simple or aggregated (at different hierarchical

levels) values or indicators describing the states of the

SC entities or performance, as well as physical or

decision processes (scheduling plans, stock management

strategies, etc.) and their consequences (performance

evaluation of their outcomes on the SC). An indicator is

usually defined as selected information associated with a

phenomenon and designed to observe periodic changes

by the light of objectives. Therefore, it is a quantitative

data that characterizes an evolving situation (an action or

consequences of an action) in order to evaluate and to

compare their status at different dates [16].

Another objective of the presented work is to propose

software architecture to execute the obtained simulation

models. In order to achieve this objective, we consider

the following requirements (at a functional or software

level) which have to be met [8] [10] [14] [25]: Multi-

level modelling, Multi-scale simulation, Multi-paradigm

modelling, Managing different temporal scale, and

Openness to modelling or simulation legacy software

[16]. Due to the SC nature and its simulation

requirements, specific distributed software architecture is

needed. Two main approaches are possible:

- Propose a generic (homogeneous) agent based

architecture (with a dedicated modelling language)

[10] [12] that requires either modelling from scratch

or translation of the models into a new/other

simulation environment; resulting in both case in

development cost rise (time and expertise).

Moreover, modelling decision process requires AI-

like (Artificial Intelligence) behaviours hindering

such approach [6].

- Coordinate separate simulations (particularly when

different paradigms are used) through interoperability

mechanisms and protocols as HLA (High Level

Architecture) [17] that provide a more open approach

to integrate previous simulations. Some agent-Based

HLA implementation has been proposed, but HLA

architecture has suffered some critics about its

complexity and performance (level of data

exchange). [2] as well as imposing significant

modification in the simulators architectures.

The solution, proposed in this paper, is to combine

these two approaches, by using an organizational

oriented individual-based modelling approach that is

simple enough to be related to the domain-dedicated

modelling language, and also by producing models

which afterward can be translated into other modelling

paradigm and simulation language. The simulation of

this model is ensured by an agent-based framework

coupling distributed simulations potentially implemented

in different environments (as in [8] in an environmental

decision support context), while respecting the temporal

and data dependencies between all the simulations.

This paper focuses on the software architecture, but in

order to apprehend the global simulation process, next

section presents briefly our methodological framework.

3. A Methodological Framework for SC

Organizational Aspects M&S

The complexity of SC modelling and simulation

process as well as implementation support, lead us to

propose a modelling approach based on an incremental

process, relying upon models with gradual increasing

details. The real system is firstly represented by a

domain model of SCs (e.g. a NetMan model as in [14],

an UEML model -Unified Enterprise Modelling

Language - etc.) to represent the organizational aspects.

We propose a structured organization-oriented methodo-

logical framework according to two main abstraction

levels: a conceptual and an operational level. Using the

domain model provided by the domain expert, a

simulation model is built step by step. The conceptual

level proposes concepts and models helping to grasp the

complexity of the SC and its simulation objectives,

whereas the operational level prepares the

implementation of the simulation model including

software integration issues. The different models and the

transition to agent-oriented M&S in our methodological

framework are presented in Figure 1 (refer to [16] for

more details).

The Conceptual Organizational Modelling engages

through a dialogue between the domain expert and an

agent-knowledgeable modeller. An actor model is

produced by identifying the active entities and their

organization from the domain model according to the

role concept. The modeller has to translate/abstract the

domain model into a Conceptual Organizational

Modelling based on (hierarchical) levels, actors, roles

and groups named Conceptual Role Organizational

Model (CROM). This stage highlights the organizational

structure of the SC as wells as the structural and dynamic

relations between the entities composing this SC. Then, a

conceptual agent-based model is produced on the basis

of observables which the user needs to obtain from the

simulation building up the route toward the

implementation of the simulation. This model is

transposed into the agent world (at a conceptual level)

concluding the phase of "specification" with a multi-

agent and organization model named Conceptual Agent

Organizational Model (CAOM) ready to be described at

an architectural and software design level.

The important key of this step is to precisely identify

the agents defined at the conceptual level in order to

develop them adequately at the operational level. The

Operational and Organizational Modelling provides a

solution to implement an executable system to perform

simulations based on the previous conceptual models.

This step involves the choice of agent architectures,

depending on the complexity of the behaviours needed to

be simulated. This process is guided by the observables

selected earlier by the domain expert.

The software designer details the CAOM by

associating a conceptual agent with a software agent

architecture (e.g. BDI - Believe, Desire, Intention - [20])

and specifying their behaviours (e.g. an UML - “Unified

Modelling Language” - activity diagram for a reactive

agent) and interactions (e.g. AUML - “Agent Unified

Modelling Language” - sequence diagram [18]),

resulting in an OPerational Agent Model (OPAM). The

implementation of these models in a simulation(s)

environment results in an ABS system which can be

executed. The refining process currently follows ad hoc

rules. As experience with the models increase rule

generalisation can be defined and then automated

through model transformation engines.

Figure 1. Methodological framework cycle

In [14] the observables, potentially related to the

organizational structure of the real system, are not

described in the design model. They are only mentioned

in the multi-agent system model, i.e. only one step

before implementation. As they may induce different

simulation needs, it is necessary to describe them earlier

in the modelling process (at a conceptual and operational

level). Moreover, as observables can describes

phenomena at different level of the SC (an actor state or

activity, a group of actor ie a production cell or a

company, a cooperation process…), the organisation

modelled can be studied along different points of view

and modelled according to these observables.

A second objective of our work is to propose a

software model that is adequately open to different

software platforms in order to facilitate the translation

process (model to implementation) as well as reuse the

previous simulation models. In the next section, we

present the proposed general software architecture for

modelling and simulation.

4. An Agent-based Software Architecture

for SC Organizational Aspects Simulation

The simulation of the operational model, produced after

several stages of models refinement, assumes the

existence of a software infrastructure that supports

heterogeneous simulation models. In addition, it should

ensure the integrity of the distributed simulation (of two

or more software environments) while providing the

desired simulation data (observable). In this section,

firstly we present what requirements rise up from these

objectives, before introducing the general architecture of

an agent and the organizational oriented simulator.

4.1. Architectural requirements

This section addresses simulations integration and

interoperability issues, viewed as the management of

data and event dependencies between simulators.

Considering the complexity of such task, we combine

different integration approach: FIPA (Foundation of

Intelligent Physical Agents) specifications on agent-

based software integration [9], HLA specification on

distributed simulation integration [7], in order to redefine

initial ad-hoc Actor simulation architecture [14].

FIPA proposes to agentify software services in order

to separate the discovery and selection of services from

the actual service call. Interaction protocols are defined

to support the chain of actions that agents follow to track

and execute software distributed over an open

environment. It is a general software integration

approach which, however, does not deal with data

sharing and time synchronization at a conceptual or

software level.

HLA, an IEEE standard, is totally dedicated to

distributed simulation management As an integration

specification, HLA does not propose a software

implementation or consider the internal structure of

Simulators (Federate). Its reckoning by the simulation

community has resulted in numerous implementation

and adaptation to different application domain, including

SC simulation [17]. A Distributed Simulation is seen as a

Federation of Simulators, coordinated by a central unit -

the RTI (Real Time Infrastructure) – exchanging data

and instantiating an Object Modelling Template (OMT)

in respect with simulation rules which maintain the

integrity of the global simulation (data format, time

synchronization, events causality chain…).

Labarthe„s architecture couples an agent-based

simulation - simulating decision-making processes - with

Anylogic (www.xjtek.com) a Discrete Event Simulation

Software - simulating SC resources i.e. the SC physical

system. Coupling is ensured by an agent scheduler who

routes events from the physical systems to the decision

system. As the simulation clock is used in the Anylogic

models, simulation is driven by Anylogic. Additionally,

organization structures are not explicitly described, and

simulation data is centralized in Anylogic.

Our approach to SC simulation considers

heterogeneity of agent behaviour as the consequences of

the domain which expert observable choices and not

necessarily the nature of the SC entities. Thus the

simulation deals with heterogeneous complex behaviour

which the simulation framework must integrate.

4.2. Software Architecture for Modeling and

Simulation (SAMOS)

As a first step toward generalization, we have considered

two simulation environments integrated through a

mediator. The basic idea was to identify and isolate the

simulation function which ensures the simulators

integration. As shown in fig.2; the architecture is

designed to be the more open to other simulators as

possible with a mediator used to facilitate the

interactions between them. However, while keeping in

mind such objectives, we have chosen to test our

propositions by beginning with two “specialized”

simulation environments. SAMOS is thus currently

composed of i) the JASON platform; ii) the JADE

platforms and iii) a mediator.

The JASON platform is adapted to the development of

BDI (ie deliberative) agents [3] [4]. It is an extended

interpreter [25] of AgentSpeak [19] a BDI programming

language allowing complex behaviour modelling. The

JADE platform (Java Agent Development Framework)

[22] is also a FIPA compliant Agent Oriented Software

Engineering tool implemented in Java. It proposes a

framework for agent management (agent directories,

communication management …). Agent internal

structure is open and left mostly to the programmer

initiative. The mediator see [22] supports the simulations

integration by proposing generic services the more

independently as possible of the simulators architecture.

JASON is used to implement and simulate decision-

making processes, whereas JADE deals with simple

agent behaviours. Agents from both environments must

interact; the mediator realizes the transmission of

information (message, signals, objects, data…) while

keeping simulation specific constraints respected (for

ex., time synchronicity between both environments). A

Database is also included to capture the model

parameters, record simulation data and results analysis.

It is accessed by the simulators and the mediator. Figure

2 summarizes the general architecture of SAMOS.

Figure 2. SAMOS General Architecture

The mediator role in the integration process is

synthesized into five services presented in Table 1:

Services Description

Agents

Management

Classical agent life-cycle management, this

module manages the birth and death of agents,

…

Communication

management

Also a basic service in Multi-Agents Systems,

this module manage the agent directories

(address and capabilities), as well as the logical

routing of messages or events.

Organizational

Model

Management

This module manages the organization

dynamics: group creation, subscribing and

unsubscribing to groups…

Interoperability

management

Responsible at the software level for interactions

between simulations. It can rely on APIs to route

physically message, events, data between the

simulators, or clock synchronization signals.

Time

Management

Ensures time is managed coherently in the

simulators. Depending on the time management

strategy it controls the execution of the simulator

(for ex., pause a simulator while response is

computed in another simulator).

Indicator

Management

The aim is to produce the indicators

characterizing the observable defined in the

conceptual modeling of the supply chain studied.

Table 1. Services description

4.3. Agent modelling and interoperability

Current SAMOS environment contains several type

of agents: i) Deliberative agent, developed in JASON,

implements SC decision-making processes i.e. SC

entities whose behaviours produce complex observables;

ii) Reactive agents, developed in JADE, implementing

basic behaviours; and iii) Service agents, i.e. agents not

directly concerned by the simulation models but

supporting the simulation process.

Accordingly to the complexity degree of their

behaviours, agents interact in SAMOS either by

exchanging rich content message or by sending signals.

As deliberative agents may conduct negotiation or

coordination processes, the consequent interaction must

be described and carried out by interaction protocols

with AUML interaction diagram. As FIPA Agent

Communication Language (ACL) has been chosen,

message is structured in order to qualify semantically

each bits of information exchanged (i.e. intent of the

message, protocols required…). Reactive agents can

interact directly by emitting signals (or events) - i.e.

message with limited content (e.g.. “machine

breakdown”) - or indirectly by modifying the state of

objects defining their environment (e.g. status of the

product manufactured). The Communication

management module delivers these messages and

translates them to a suitable format understandable by

another simulation environment if necessary. This

module is composed, in SAMOS, of directory agents

responsible for keeping and spreading the information

about the agents (name, address, capabilities). The

Interoperability Management module then may have to

translate this message at the software level (for ex., call

the adequate API function which may generate an event

in the other simulator). Table 2 summarizes different

types of agents and their roles in SAMOS, some of them

are provided by the JADE Platform.

Agent Description

AMS Agent

Management

System

Manage agent life cycle, as well as “white

pages” directory, i.e. the list of the agents

name and their communication address.

DF - Directory

Facilitator

Provide a “Yellow Page” service as it record

agents roles, capabilities and may answer

request for another agent directory needs.

ACC - Agent

Communication

Channel

Routes messages from an agent to another,

independently of the platform of both agents.

Implements for this purpose the IIOP

protocol.

IAg

Indicator Agent

Is associated to an indicator: it provides

computational facilities to produce the value

of aggregated indicators. Thus it agentifies the

observables identified in the conceptual

models. Indicator agents are also categorized

depending of the type of indicator they

represent (Activity, Productivity, Quality…).

DSA

Data Source

Agent

Centralizes the source of data in a group of

agents, an Indicator Agent is needed for

exploiting its values. Also responsible for

finding the agents that have the required

information. Then, it regroups and sends these

data to the right Indicator Agent.

GMA

Group Manager

Agent

Manages a group i.e. allows an agent to play a

role in the group, as well as represent the

agents in the group for specific requests. For

ex., if an IAg needs a particular type of data,

the Group Manager will identify the agents

producing that data.

Table 2. Agents description

Result

Data

Parameters

Kernel

Management of organizational model

Interoperability Management

Agents Management

Indicator Management

Communication Management

Time Management

Plateform 1 Plateform 2

Plateform NPlateform 3

Next section illustrates how a simulation can be

conducted within the SAMOS architecture.

5. An illustrative architecture of SC and

simulation

5.1. An illustrative SAMOS implementation

Figure 3 illustrates a software architecture supporting

our methodological and “simulation-related” requi-

rement. As exposed in the previous section, this SAMOS

implementation contains Jade Agents, JASON agents

and a mediator in charge of their interaction.

The “simulation model” agents seen in this figures,

results from applying our methodological approach ie

progressive translation of the CROM and CAOM models

of the case study presented in [16]. It is composed of 2

groups describing a simplified SC organisation structure.

Communication between JASON and JADE agents is

done through messages. Therefore, a mediator layer

(denoted Kernel) ensures the communication link

between different platforms (“physical” interoperability

is simulated in this case as both are FIPA compliant

environment). Please note, that the mediator is presently

developed as a group of specialised agents.

Figure 3. Architecture (Platforms: JASON and
JADE, Mediator)

The role of each agent (either simulation-related or

service-oriented) is explained in fig 4 (cf. appendix).

This figure (edited for readability improvement) shows

the exchange of message between these agents traced

during a simple simulation. The simulation scenario

(message – 1 to 22) begins with an initialization phase

consisting in agents‟ requesting to play roles in groups to

dedicated managers (repertories, group manager – “agent

gestionnaire” in fig. 4 - …).

Once registered, the simulation begins (numbers in

parenthesis refers to fig.4 message number).

1- Supplier Agent: This agent needs some goods in a

certain quantity triggering the SC dynamics to

fulfill this need. Firstly it sends a order message

(23) to the agent „production_manager”.

2- Production Manager Agent: Upon receiving

Supplier Agent message, checks available space

with agent stock1 (26). If available space can

hold the products ordered, production process

starts. A command is sent to Material Stock

Agent (28) to deliver all necessary materials to

Production agents and Stock1 Agent is informed

to expect deliveries. In case Stock1 has no space

available, production process is terminated.

3- Production Agent 1, 2 and 3: These agents

receive materials from agent Material Stock (31-

38), produce all product parts and deliver them to

agent Stock1 (40-43).

4- Indicator Agent: collects information from agents

to compute quality, cost…. This process is done

through a Data Source Agent (44, 49), which

gathers data from other agents (e.g. 46).

These communication flows result from the

conceptual models, i.e. they describe a business process,

as well as how the software architecture enacts these

flows considering the software environment in which

these agents evolves.

6. Conclusion

In an agent-based SC simulation context, we have

presented an organizational oriented methodological

framework, for modelling and simulation of Supply

Chain organizational aspects. It allows highlighting

observables of different level of details while

reproducing the SC behaviour according to the desired

observables. This methodological framework is

structured according to a conceptual and an operational

abstraction levels. At the conceptual level, the modelling

is based on a Conceptual Role Organizational Model

(CROM), which is refined into a Conceptual Agent

Organizational Model (CAOM). The operational level,

modelling is mainly based on the Operational Agent

Model (OPAM).

In this paper, we have focused on the proposal of an

open software architecture supporting the transformation

of the conceptual model into an operational model by

generalizing the previous “hard wired” architecture [9]

inspired by previous agent-based integration framework

[3]. This architecture can be seen as the interaction

between different simulation platforms. We have shown

how different types of agents - deliberative and reactive

agents - can interact during simulation as well as the role

of some service agents (group manager, indicator and

DataSource Agent) supporting this simulation.

Development is currently based on the interaction

between the JADE platform (for the reactive agent) and

the JASON environment (for the deliberative agent).

As the modelling cycle relies on model refinement,

based on particular simulation objectives, models can not

be totally reused. However, because agents constitutes

Supplier Agent
Production

manager Agent

Production1

Agent

Production2

Agent

Production3

Agent

Stock

Agent

Module Interoperability

Management of

organizational

model

Time Management

Group

management

Synchronization

between

different platforms

Management

Indicator

J
A

S
O

N
K

E
R

N
E

L
J
A

D
E

Activity, Productivity,

Quality, Cost, Time

Group 1

Group 2

Module Interoperability

Translation

Module

Module Interoperability

Module Interoperability

Material Stock

Agent

Market Agent

models sub-components, their behaviours may be reused

and thus quicken simulation development. As

development is still in progress, agents architecture are

to be improved (in term of genericity) and then used to

simulate a more complex SC case study already defined.

References

[1] Antonio, L., D‟Amours, S., Frayret, J.M., “A

methodological framework for the analysis of agent-

based supply chain planning simulations”, SpringSim

'08: Proceedings of the 2008 spring simulation

multiconference, Society for Computer Simulation

International San Diego, CA, USA, (2008).

[2] Boer C.A., de Bruin A. and Verbraeck A. Distributed

simulation in industry – a survey. Journal of Simulation,

Volume 3, Number 1, March 2009 , pp. 3-16(14) Journal

of Simulation, Volume 3, Number 1, March 2009 , pp. 3-

16(14)

[3] Bordini, R. and Hubner, J,. An Overview of Jason.

Association for Logic Programming Newsletter 19(3).

DOI=http://www.cs.kuleuven.ac.be/~dtai/projects/ALP/n

ewsletter/aug06/nav/articles/article5/fs.pdf, (2006).

[4] Bordini, R., Hubner, J., Vieira, R,. Jason and the Golden

Fleece of Agent-Oriented Programming. Multi-Agent

Programming. pp. 3-37, (2005).

[5] Bruekner S., Baumgaertel H., Parunak HVD, Vanderbok

and Wilke . “Agent Models of Supply Network

Dynamics: Analysis, Design and Operation, in The

Practice of Supply Chain” Management: Where Theory

and Application converge, Harrison, Lee and Neal Eds.,

(2003).

[6] Chatfield D.C., Hayya J.C., Harrison T.P., A multi-

formalisme architecture for agent-based, order-centric

supply chain simulation, Journal of Simulation

Modelling : practice and theory, Vol 15, pp. 153-174,

2007

[7] DMSO: “High Level Architecture”, (1998).

[8] Espinasse, B., Serment, J., Tranvouez, E., “An Agent

Integration Infrastructure for the Development of

Environmental Decision Support Systems based on

Simulation”, in: AIS-CMS International modeling and

simulation multi-conference, Buenos Aires - Argentina.

ISBN 978-2-9520712-6-0, (2007).

[9] FIPA, FIPA Contract Net Interaction Protocol

Specification, Foundation for Intelligent Physical

Agents, www.fipa.org/specs/fipa00029/, (2002).

[10] Gaud, N., Galland, S., Koukam, A., Towards a

Multilevel Simulation Approach based on Holonic Multi-

agent. Published in the 10th International Conference on

Computer Modeling and Simulation (EUROSIM/

UKSiM‟08), pp. 180–185, England. April 1–3, (2008).

[11] Govindu, R., Chinnam, R.B., MASCF: A generic

process-centered methodological framework for analysis

and design of multi-agent supply chain systems.

Pergamon Press, Inc., NY, USA, (2007).

[12] Hubner, J.F., Vercouter, L., Boissier, O., Instrumenting

Multi-Agent Organizations with Artifacts to Support

Reputation Processes, Sixth European Workshop on

Multi-Agent Systems, Bath, UK, 18-19 December 2008.

[13] Hubner, J. F., Sichman, J. S., Boissier, O. Developing

organized multi-agent systems using the MOISE.

International Journal of Agent-Oriented Software

Engineering, 1(3/4), 370-395, (2007).

[14] Labarthe, O., Espinasse, B. , Ferrarini, A., Montreuil B.,

Toward a Methodological Framework for Agent-Based

Modeling and Simulation of Supply Chains in a Mass

Customization Context, in: Simulation Modeling Practice

and Theory International Journal (SIMPAT), vol. 15, n°

2, pp. 113-136, February (2007).

[15] Monteiro T., Anciaux D., Espinasse B., Ferrarini A.,

Labarthe O., Roy D. , “Chapter 6. The Interest of Agents

for Supply Chain Simulation”, in: Wiley-ISTE (Ed.),

``Simulation for Supply Chain Management'', C. Thierry

– A. Thomas – G. Bel, septembre (2008).

[16] Mustapha, K., Tranvouez, E., Espinasse, B., Ferrarini,

A., An Organization-oriented Methodological

Framework for Agent-Based Supply Chain Simulation,

4th International conference on research challenges in

information sciences, IEEE, Nice, France (2010).

 [17] Ounnar, F., Archimède, B., Pujo, P., Charbonnaud, P.,

HLA Distributed Simulation Approaches for Supply

Chain”, in: Hermès Science Europe Ltd (Ed.),

''Simulation for Supply Chain Management'', Hermès

Science Europe Ltd, (2008).

[18] Odell, J., Parunak, H.V.D., Bauer, B. „Representing

agent interaction protocols in UML‟, Proceedings of the

First International Workshop on Agent- Oriented

Software Engineering, CIANCARINI, P. and

WOOLDRIDGE, M. (Eds), (2001).

[19] Rao, A,. S.,AgentSpeak(L): BDI Agents speak out in a

Logical Computable Language. In W. Van de Velde and

J Perram, editors, Proceedings of the Seventh Workshop

on Modeling Autonomous Agents in a Multi-Agent

World (MAAMAW'96), Jan. 22-25, Eindhoven,

Netherlands, no. 1038 in LNAI, pp. 42-55, Springer-

Verlag, London, U.K (1996).

[20] Rao A. S., M. P. Gorgeff. Modeling rational agents

within BDI-Architecture.in J. Allen & al Ed.,

Proceedings of the 2nd International Conference on

Principles of Knowledge Representation and Reasoning.

San Mateo, USA, Morgan Kaufmann, Pub, p. 473-484,

(1991)

[21] Rimassa G., Bellifemine f., Poggi A., JADE - A FIPA

Compliant Agent Framework, PMAA`99, p. 97-108,

Londres (1999).

[22] Serment J., Espinasse B, Tranvouez E., An Agent

Integration Infrastructure for the Development of

Environmental Decision Support Systems based on

Simulation, AIS-CMS International modeling and

simulation multiconference, Buenos Aires - Argentina,

2007 ISBN 978-2-9520712-6-0

http://http/www.scs.org/
http://http/www.scs.org/
http://www.cs.kuleuven.ac.be/~dtai/projects/ALP/newsletter/
http://www.cs.kuleuven.ac.be/~dtai/projects/ALP/newsletter/
http://www.lsis.org/~bernard_espinasse.html
http://www.lsis.org/~julien_serment.html
http://www.lsis.org/~erwan_tranvouez.html
http://www.fipa.org/specs/fipa00029/
http://www.lsis.org/~olivier_labarthe.html
http://www.lsis.org/~bernard_espinasse.html
http://www.lsis.org/~alain_ferrarini.html
http://www.lsis.org/~bernard_espinasse.html
http://www.lsis.org/~alain_ferrarini.html
http://www.lsis.org/~olivier_labarthe.html
http://www.lsis.org/~fouzia_ounnar.html
http://www.lsis.org/~patrick_pujo.html

[23] Shen, W., Hao, Q., Yoon, H. J. and Norrie, D. H.

„Applications of agent-based systems in intelligent

manufacturing: An updated review‟, Advanced

Engineering Informatics, vol. 20, pp. 415-431, (2006).

[24] Tranvouez, E., Ferrarini A., Espinasse B., Cooperative

Disruption Management In Industrial Systems: A

Multiagent Approach, 12th IFAC Symposium on

Information Control Problems in Manufacturing -

INCOM'2006, EMSE, Saint Etienne, Mai (2006).

[25] Vangheluwe, H., et al. An introduction to multi-

paradigm modelling and simulation. School of Computer

 Science, McGill University, Montréal, Canada, (2002).

[26] Vieira, R., Moreira, A., Wooldridge, M. AND Bordini,

R. H, (2007). On the formal semantics of speech-act

based communication in an agent-oriented programming

language. In Journal of Artificial Intelligence Research

29, pp. 221-267 (2007).

[27] Zambonelli, F., Jennings N., Wooldridge, M..

Developing multi-agent systems: the GAIA

methodology. ACM Trans. on Software Engineering and

Methodology, 12(3), (2003).

7. Appendix: Communication between the agents (JASON and JADE)

Figure 4. Simulation trace with interaction between Simulation agents and Service agents

Initialisation phase

(name / roles / abilities registration…)

Simulation phase

