
Combining Agents and Wrapper Induction for
Information Gathering on Restricted Web Domains

Shereen Albitar
LSIS UMR CNRS 6168

Université d’Aix-Marseille,
Domaine Universitaire de St Jerôme,
F-13997, Marseille Cedex 20, France

shereen.albitar@lsis.org

Bernard Espinasse
LSIS UMR CNRS 6168

Université d’Aix-Marseille,
Domaine Universitaire de St Jerôme,
F-13997, Marseille Cedex 20, France

bernard.espinasse@lsis.org

Sébastien Fournier
LSIS UMR CNRS 6168

Université d’Aix-Marseille,
Domaine Universitaire de St Jerôme,
F-13997, Marseille Cedex 20, France

sebastien.fournier@lsis.org

Abstract — Web is growing constantly and exponentially every
day. Thus, gathering relevant information becomes unfeasible.
Existent indexing-based search engines ignore information
context, which is essential to deciding on its relevance.
Restraining to a single web domain, domain ontology can be used
to take into consideration the related context, the fact that might
enable treating web pages that belong to the considered domain
more intelligently. Nevertheless, symbolic rules that exploit
domain’s ontology to realize this treatment are delicate and
fastidious to develop, especially for information extraction task.
This paper presents Boosted Wrapper Induction (BWI), a
machine learning method for adaptive information extraction,
and its exploitation as a replacement of the symbolic approach
for information extraction task in AGATHE, a generic multi-
agent architecture for information gathering on restrained web
domains.

Keywords-component; Information extraction; machine
learning; multi-agent systems; boosted wrapper induction;
cooperative information gathering.

I. INTRODUCTION
The growing size of the web and the heterogeneity of

accessible pages made information gathering more and more
complex. In order to retrieve relevant information, gathering
must be restrained to specific web domains, in other words, the
context in which information is gathered must be taken into
consideration.

Considering context permits a better treatment of
information contained in collected web pages. For instance,
first of all these web pages can be classified according to the
different classes specific to the concerned web domain, then,
relevant information can be extracted from pages belonging to
the same class more accurately. Most information extraction
from web pages belonging to the same class is realized in this
way (for example, researcher’s interesting subjects, etc.).

This work has been realized within the framework of the
project AGATHE [1] that proposes a generic multi-agent
architecture for contextual information gathering on restricted
web domains. In AGATHE, software agents exploit ontologies
in order to realize web page classification and information
extraction tasks. This paper is focused particularly on the
information extraction (IE) task.

IE consists in extracting automatically relevant information
from text. Many software systems were developed to
accomplish IE tasks. Earlier, these systems were mainly based
on symbolic rules handcrafted by domain experts [2, 3].
Considering the dynamism and the heterogeneity of the web,
they should be constantly modified and maintained. This
constant maintenance is time consuming and requires expertise
in the application domain.

Recently, progress achieved in the domain of supervised
and non-supervised Machine Learning (ML) algorithms has
simplified the development of IE programs; these algorithms
have been utilized to automate rule production. This evolution
was the origin of Adaptive Information Extraction (AIE). In
recent times, many AIE systems had been developed following
three-step procedure: (1) Recognizing semantically relevant
information in the text (2) Extracting this information (3)
Stocking it in an organized structure or in a database for future
analysis [2, 4].

Currently in AGATHE, first web pages are retrieved from
the web. Then, some agents use domain ontology to classify
them semantically. Finally, other agents, depending on the
same ontology, extract relevant information from these pages
according to their classes. Based on symbolic rules (production
rules) handcrafted in Jess platform, the implementation of these
tasks is painful especially for the IE task.

The goal of this work was firstly to carry out a study of
different IE techniques using ML algorithms (AIE), secondly,
to replace, in AGATHE, information extraction symbolic rules
by AIE techniques encapsulated in software agents, leaving the
semantic classification task intact; it is still implemented in
symbolic rules deploying domain’s ontology. Coupling both
symbolic and machine learning techniques in AGATHE is the
major contribution of this work leading to improve its IG
capabilities.

In the second section, we study the advantages of using ML
techniques in IE (in particular supervised ML) and introduce
Adaptive Information Extraction (AIE) with its principal
methods. Boosted Wrapper Induction (BWI), the supervised
AIE method chosen for this work, is presented in the third
section accompanied by a description of the TIES system that
was developed in IRST laboratory in Trento implementing this
method. Section 4 presents the encapsulation of TIES in a

mailto:shereen.albitar@lsis.org�
mailto:bernard.espinasse@univ-cezanne.fr�
mailto:sebastien.fournier@lsis.org�
Bernard-User
S. Albitar, B. Espinasse, S. Fournier (2010), « Combining Agents and Wrapper Induction for Information Gathering on Restricted Web Domains »,
IEEE-RCIS 2010, Fifth International Conference on Internet and Web Applications and Services, Nice, France, May 19-21, 2010.�

software agent, and then its integration in the new multi- agent
architecture of AGATHE. Section 5 presents some
implementation details related to the prototype in progress in
addition to first results obtained by deploying the new version
of AGATHE demonstrating the progress achieved in this work.
Finally, we conclude with our research perspectives.

II. MACHINE LEARNING FOR INFORMATION
EXTRACTION

Production rule based IE systems used to be developed in
an ad hoc manner; they were specific to the application domain
for which they had been implemented. In order to easily adapt
IE systems to multiple application domains, ML algorithms
and statistic methods were deployed [2] leading to Adaptive
Information Extraction (AIE).

A. Adaptive Information Extraction (AIE)
Domain specific extraction rules or patterns, instead of

being handcrafted for each application domain, can be learnt
directly by generic domain-independent IE system using a
tagged domain-specific training set [3, 4]. Enriched with
natural language processing (NLP) and inductive logic
programming (ILP) methods, a spectrum of generic
architectures were proposed to realize supervised IE on Web
pages [5].

Recently, self-supervised IE systems, a new paradigm in IE
research domain, has come to life. In general, these systems
depend on domain-independent patterns to label their training
sets for each application domain [3]. According to the under
test performance of self-supervised systems, supervised IE
systems are still more attractive. In order to evaluate and
compare AIE supervised algorithms, three measures are
principally used: Precision, Recall and F-Measure [6].

B. Methods for Adaptive Information Extraction
In the last decade, different classifications for adaptive

information extraction methods were proposed [2, 7].
According to the classification proposed in [7], the three
distinguished classes of AIE methods are: Rule Learning based
methods, Classification based Methods, and finally, Sequential
Labeling based Methods.

1) Rule Learning based methods

The most widely used among the others, this class includes
three different categories of methods:

a) Dictionary based methods

Methods of this type create a dictionary of templates
(patterns) using tagged texts and then deploy these templates in
extracting relevant information from untagged plain text [7]. In
this category, many systems, like AutoSlog [7] and STALKER
[8], were developed for IE. Each of them adopts its particular
strategy in realizing dictionary learning and IE tasks.

b) Rule based methods

These methods discover the semantic/syntactic
characteristics surrounding tagged information in the training
set, and then they deploy this knowledge in constructing rules

(instead of the pattern dictionary produced by the previous
category) for information extraction. In other words they learn
the contexts in which relevant information could be probably
detected in any text belonging to a specific application domain
[7].

Methods that start first by learning special cases and then
try to generalize them during training are called bottom-up
methods. On the contrary, top-down methods start with a
general rule and specialize it according to tagged examples in
the training set. We mention particularly in the rule based
category the following IE systems: Rapier [9] and LP² [10].
These systems were mostly deployed for extracting
information from semi-structured text.

c) Wrapper Induction Methods

This category performs the same steps as the previous one
in learning and IE tasks. What makes this category a particular
case is that its methods consider HTML tags as well as text in
learning extraction wrappers while these tags might cause a
great difficulty to other linguistic methods [11]. So additional
information provided by HTML tags might help in improving
IE results. This is why they were principally used in extracting
information from both structured and semi-structured text [5,
7]. In order to cover IE from unstructured text as well, Boosted
Wrapper Induction (BWI) algorithm was proposed [11].

2) Classification based Methods

These methods depend on classification algorithms in
deciding whether a text partition is relevant to the application
domain (is to be extracted) or not [7]. During training phase, a
classification-based algorithm is provided with training
examples to construct two classification models for both
boundaries considering each domain concept. These models are
then used to predict and locate relevant information.

Support Vector Machines (SVMs) are largely deployed in
developing IE systems in this class, like both ELIE [12] and
SIE [13]. Other algorithms, like Maximum Entropy and Voted
Perceptron were also the basis of many methods belonging to
this class.

3) Sequential Labeling based Methods

In sequential labeling, each token in the document is
labeled referring to its characteristics. Deploying
interdependencies between different concepts in labeling
tokens made sequential labeling a particular case compared to
the formerly introduced classes.

Statistical learning algorithms like Markov models and
Maximum Entropy models [5], were basically used in
developing sequential labeling systems for natural language
preprocessing such as Part Of Speech tagging (POS) and also
for Information Extraction tasks [2, 7].

III. BOOSTED WRAPPER INDUCTION AND TIES
SYSTEM

In our research, we adopted the boosted wrapper induction
(BWI) algorithm, a Rule Learning based method belonging to
the Wrapper Induction category. The reason for which BWI
was chosen for this work is its competence in information

extraction from unstructured text in addition to structured and
semi-structured text.

We introduce in this section the supervised IE algorithm
“BWI” and the generic IE system “TIES” implementing this
algorithm.

A. Boosted Wrapper Induction (BWI)
For methods developed on Wrapper Induction paradigm,

target documents must have some kind of regularity in their
structure, which is not true in most cases.

However, BWI [11, 14] was developed to overcome this
limitation enabling IE from unstructured text as well. The main
idea was to combine predictions of many simple specific
patterns in more general and complex ones, which will have a
higher recall rate covering many possible contextual patterns in
natural language text. BWI, as in [11], works following this
procedure:

procedure BWI (example sets S and E)
 {
 F ← AdaBoost(LearnDetector, S)
 A ← AdaBoost(LearnDetector, E)
 H ← field length histogram from S and E
 return wrapper W = <F, A, H>
 }

An induced wrapper W=<F, A, H> consists of a set of
detectors that classify the start boundaries of a field (F),
another set of detectors to classify the end boundaries of the
same field (A) in addition to the function H(k) who estimates
the prior probability that the specific field has the length k.
Each detector consists of two patterns of tokens surrounding
the boundary it classifies.

In order to produce more effective and general patterns,
detector learner is wrapped in a boosting algorithm (AdaBoost)
that accomplishes training in a predetermined number of
iterations. At the end of every iteration, AdaBoost assigns
weights to training set examples and confidence values to the
induced detectors according to the weights and the number of
examples they cover. These weights guide oncoming iterations
so uncovered examples are treated more carefully and simple
specific detectors are generalized or discarded. This leads to a
final group of general detectors with high recall rates and
confidence scores.

During IE phase, detectors’ patterns and confidence scores
in addition to the field length prediction are combined to
classify target field boundaries or in other words to locate and
determine tokens of relevant information to extract.

Uses boosting technique to combine many contextual
patterns in final effective predictors, BWI is competitive with
other IE algorithms, this was the reason for which we’ve
chosen this algorithm for this work.

B. The TIES System
TIES, being part of the project IST-Dot.Kom [15] and

developed by the IRST of Trento, is a generic modular

architecture for supervised IE implementing the formerly
detailed algorithm BWI.

Using an annotated training corpus with predefined tags,
TIES can automatically generate wrappers (Training phase)
which afterwards can be used to extract information from new
unannotated text (Extraction phase). Both phases are illustrated
in fig. 1.

Figure 1. The two phases of TIES’s execution.

1) CFP corpus
The corpus Call For Papers (CFP) [16] of the Pascal

Challenge was adopted in this work as it had been used earlier
as a formal basis to evaluate and compare the performance of
different ML algorithms [17]. The majority of the 1100
documents (850 calls for workshops, 250 calls for conferences)
constituting the CFP corpus come from the domain of
computer science. Others were collected from the biomedicine
and linguistics domains.

The 1100 documents were arranged in three different
corpuses; the training corpus containing 400 calls for
workshops, the test corpus containing 200 calls for workshops
and the enrich corpus containing 250 calls for workshops and
250 calls for conferences. A call for workshop might include
details regarding conferences as workshops might be related to
other conferences.

Corpus’ documents are annotated using eleven tags; eight
for workshop concepts and three for conference concepts.
Some concepts like dates can be shared between both classes.
Conference concepts have lower frequencies in corpus
compared to workshop concepts. Table Ι shows concepts’
frequencies in both training and test corpuses.

TABLE I. CONCEPTS’ FREQUENCIES IN CORPUS

Concepts Frequency
Training % Test %

Workshopname 543 11.8 245 10.8
Workshopacronym 566 12.3 243 10.7
Workshophomepage 367 8.0 215 9.5
Workshoplocation 457 10.0 224 9.9
Workshopdate 586 12.8 326 14.3
Workshopsubmissiondate 590 12.9 316 13.9
Workshopnotificationacceptancedate 391 8.5 190 8.4
Workshopcamerareadycopydate 355 7.7 163 7.2
Conferencename 204 4.5 90 4.0
Conferenceacronym 420 9.2 187 8.2
Conferencehomepage 104 2.3 75 3.3
TOTAL 4583 100 2274 100

2) Tokenization step

In this step, input files (HTML or XML files) are converted
into TIES input format (TIESIF); the text is broken down into
series of tokens labeled by their identification, type (word,
separator or punctuation mark), and position in the original
text.

3) Feature Extraction step
During this step, a number of Boolean functions are applied

to the series of tokens produced through the previous step
bringing out attributes to be bounded to each of these tokens.
The following is a fragment of the result of tokenization and
feature extraction on a document from the CFP corpus. The
initial fragment was annotated using the tag
(<workshopname>):

<token id="27" type="tag" start="113" len="14"
open_tag="true">workshopname</token>
<token id="28" type="word" start="127" len="8"
alpha_token="true"
upper_case_token="true">WORKSHOP</token> <token
id="30" type="word" start="136" len="2"
alpha_token="true"
lower_case_token="true">on</token> <token id="32"
type="word" start="139" len="10" alpha_token="true"
upper_case_token="true">CONSTRAINT</token> <token
id="34" type="word" start="150" len="9"
alpha_token="true"
upper_case_token="true">DATABASES</token> <token
id="36" type="word" start="160" len="2"
alpha_token="true"
lower_case_token="true">in</token> <token id="38"
type="word" start="163" len="2" alpha_token="true"
upper_case_token="true">AI</token><token id="39"
type="tag" start="165" len="15"
close_tag="true">/workshopname</token>

As the previous example shows, the token workshopname
is an open tag whereas the token /workshopname is a closing
tag. Also, the tokens WORKSHOP, CONSTRAINT,
DATABASES, and AI are words in uppercase while on and in
are both in lowercase.

4) Training step
The BWI algorithm inducts the wrappers at some point in

this step. TIES provide different validation strategies like 4-
fold cross validation in order to validate training results; a part
of training corpus is reserved to extract information from it
using the learnt models to evaluate and validate the results

using statistical measures. In fact, this enables evaluating
system performance and orients its parameters’ calibration.

The next detector is a fore-detector for the beginning of the
concept workshopname. It indicates that if the three successive
tokens pattern (any_token, Workshop, on) was matched in
text, the beginning of this concept would be detected with a
confidence score equal to (2.209582649580836).
<fore-detector>
<detector>

<pattern type="prefix" />
<pattern type="suffix">
 <feature name="any_token" value="true" />
 <feature name="token" value="Workshop" />
 <feature name="token" value="on" />
</pattern>
<confidence-
value>2.209582649580836</confidence-value>

</detector>
</fore-detector>

5) Information Extraction step

Using the wrappers produced during the training step,
target fields can be detected and extracted from new plain text.
For each concept, extraction results are organized in a XML
file.

A fragment of an output file for the concept
conferenceacronym is presented below. The element entity
contains tokens of the extracted field accompanied by their
source and their position in the original text.
<entity-list>
<entity name="conferenceacronym"
score="5.125015282673751" src=".\input\CFP\key2\1.5-
train-0-2-3-ESSLLI-LSLCBT_1999.xml" start="89"
end="98" >
 <token start="89" end="7">ESSLLI-</token>
 <token start="96" end="2">99</token>
</entity>
……….
……….
</entity-list>

6) Executing TIES
Which concepts to learn, which strategy to follow and what

value to be assigned to the lookahead parameter and other
parameters can be passed to TIES using configuration files.
This enables the user to control its execution during training
phase.

The parameter lookahead determines the context that
should be taken into consideration throughout training for each
detector. In fact, this parameter has a crucial effect on training
performance. Assigning the value (3) to the lookahead, this
means that for every field three tokens before its beginning and
three tokens after its beginning should be taken into
consideration to learn the fore-detector of its related concept. In
other words, the context the algorithm takes into consideration
during training phase would cover six tokens.

Fig. 2 illustrates the influence of lookahead on the F-
measure during training. As the value of lookahead increases,
the value of F-measure increases as well for most concepts.
Nevertheless, as the value of lookahead reaches 5, this increase
becomes insignificant and most curves become stable.

Figure 2. The effect of Lookahead on F-measure

IV. COMBINING AGENTS AND WRAPPER
INDUCTION IN AGATHE

In this section, the AGATHE system is briefly presented,
and the architecture of its new extraction subsystem, combining
agents and wrapper induction techniques, is presented in
details.

A. The AGATHE system overview
The AGATHE system is a generic software architecture

allowing the development of information gathering systems on
the Web, for one or more restricted domains. Being developed
between France and Brazil, the system AGATHE [1]
implements a cooperative information gathering approach
based on software agents that cooperate and exploit ontologies
related to restricted web domains.

First version of AGATHE reused the ontology based
techniques of classification and extraction associated to these
restricted domains of MASTER-Web [18], and deployed them
in a complex organization of multiple specialized, effective,
and interacting software agents. Moreover AGATHE allows
treating several domains of search simultaneously, and deploys
mechanisms for inter-domain recommendations.

AGATHE’s general architecture [1], illustrated in fig. 3, is
particularly composed of three interacting subsystems:

• The Search Subsystem is in charge of querying external
search engines on the Web (such as Google) in order to
obtain Web pages to treat by other subsystems.

• The Extraction Subsystem is composed of multiple
"extraction clusters" (EC), each of them is specialized
in processing web pages of a specific domain (ex. The
academic research domain or the tourism domain).

• The Front Office Subsystem ensures the storage of the
extracted information resulting from web pages
treatments in the previous subsystem, and provides a
query interface for the users, counting humans and
other software agents.

Figure 3. General AGATHE architecture

Software agents using symbolic rules that exploit
ontologies realized most tasks in the first AGATHE. Since
symbolic rules were domain dependent and arduously written,
it seemed judicious to replace a part of them responsible for the
information extraction task by TIES, the previously detailed IE
system. The aim of this work was to combine symbolic based
classification and machine learning information extraction in
new extraction subsystem architecture.

Other information gathering systems have also adopted this
approach. We mention particularly the system CROSSMARC
[19] that was implemented for both e-retail and job offers
domains coupling symbolic rules with wrapper induction.

B. AGATHE adaptive extraction subsystem architecture
AGATHE’s new extraction subsystem, performing an

adaptive information extraction, is composed of extraction
clusters. These clusters are composed of software agents
performing various tasks, like semantic classification and
information extraction, on collected web pages.

The classification task is kept as it was in the first version
of AGATHE [1]. Agents that exploit a domain ontology using
symbolic rules realize it. For each relevant concept of this
ontology, agents that extract information according to BWI
method achieve the IE task.

The detailed architecture of AGATHE’s new extraction
cluster is presented in fig. 6. Every extractor agent wraps a
running TIES for IE, while the classifier agent realizes
semantic classification only.

An extractor master agent is introduced in this cluster in
order to ensure system modularity and agent specialization.
This agent manages the allocation of IE tasks to extractor
agents according to a predetermined strategy. Finally, the
storage agent stores extracted information in a database for
future analysis.

C. Information extraction combining agents and wrapper
induction
In this section, we detail the three new agents in the new

architecture of AGATHE’s Extraction Subsystem assuring IE
tasks with wrapper induction technique (BWI method):

1) The classifier agent
As defined in previous version of AGATHE, this agent

classifies web pages semantically, using symbolic Jess rules
and exploiting the domain ontology; if the page belongs to a
relevant class of the domain, it sends it to the extractor master
agent, otherwise it sends it to the recommendation agent of its
cluster. Moreover, the page’s class (ex. Conference, workshop,
journal, etc.), with its address as well as other details are sent
by this agent to the storage agent to be eventually stored in the
database.

2) The extractor master agent
Web pages belonging to a specific class of the considered

domain might contain information related to different concepts
in the domain ontology. While AGATHE has a multi-agent
architecture, it appeared coherent and beneficial to distribute
the IE load among multiple extractor agents according to user-
defined strategies. Consequently, it was legitimate to introduce
the extractor master agent to dispatch IE tasks; first; it receives
a classified web page then it resends it toward the extractor
agents specialized in its class according to the defined
distribution strategy.

Fig. 4 illustrates the class based distribution strategy
actually adopted in AGATHE. Each extractor agent is
specialized in extracting information from pages belonging to a
specific class in the scientific domain.

Figure 4. Distribution strategy in the extraction subsystem

3) The extractor agent
This agent wraps an adapted version of TIES, the IE system

previously presented. It extracts relevant information from web
pages by executing TIES, using wrappers produced off-line
during a training step and saved in XML files. Choosing a
concept-based distribution strategy, a single domain concept is
delegated to each extractor. Consequently, as soon as an
extractor agent receives a message, it runs TIES to extract a
specific concept from the page specified in the message.
Wrapped inside AGATHE, TIES is always executed in “IE”
mode; supervised training is carried out independently.

As for all AGATHE’s agents, this agent was implemented
in JADE platform using two kinds of behaviors;
ExtraTIESProcessor which is an instance of CyclicBehaviour
that receives messages sent by the extractor master agent and
then passes its content to the ExtraTIESAnalyze. The latter is an
instance of OneShotBehaviour. It executes an adapted version
of TIES, extracts information from the concerned web page,
and returns control to ExtraTIESProcessor. Extractor agent
implementation is illustrated in fig. 5.

Figure 5. Jade Behaviors of the Extractor agent

As presented in fig. 6, system execution goes through the
following steps:

Figure 6. The new Extraction Cluster architecture

1. The classifier agent sends a demand for a web
search to the supervisor agent.

2. The supervisor agent forwards the demand
towards the search subsystem and then sends the
retrieved pages to the preparation agent.

3. After filtering and functionally classifying
(discarding emails and lists), preparation agent
sends valid web pages to the classifier agent and
sends preparation results to the storage agent.

4. Web pages belonging to the cluster’s specific
domain are sent by the classifier agent, after
classifying them semantically, to the extractor
master agent.

5. The extractor master agent dispatches IE task
between multiple extractor agents according to a
predetermined distribution strategy.

6. Each extractor agent realizes the assigned IE task
and sends extracted information to the storage
agent in order to be stored in the database.

7. If the classifier agent discovers that the web page
doesn’t belong to its domain, it forwards it to the
recommendation agent who decides to which
cluster the page must be sent.

V. IMPLEMENTATION DETAILS AND FIRST
RESULTS

This new version of AGATHE integrating wrapper
induction for IE task is currently under development, and this
section presents some implementation details as well as first
results obtained.

A. Implementation details
The AGATHE architecture is implemented using Eclipse

environment in Java, and based on Jade multi-agent platform
[20]. The Search Subsystem and the Front Office Subsystem
are composed of agents developed in java. The Extraction
Subsystem is composed of agents that execute Jess symbolic
rules [21]. These agents exploit domain ontology and an
internal ontology in order to perform the semantic

classification task. For information extraction task, this
subsystem deploys agents that wrap an adapted version of
TIES. Moreover, the actual AGATHE contains only one
extraction cluster without recommendation mechanisms.
Finally, the construction and the management of the system’s
ontologies are realized in the Protégé environment [22], and
treatment results are stored in a MySQL relational database
system.

B. First results
In order to evaluate the new system’s performance, we used

in our experiments the Pascal test corpus (200 pages containing
2274 annotated fields) without taking into consideration text
annotation. Being executed on a single machine supplied with
an Intel core 2 Duo (2 GHz) CPU and 3GB of RAM, one page
treatment took about (24 seconds) whereas whole corpus
treatment took (46 minutes). This treatment covers page
filtration and classification in addition to information extraction
and storage. Concerning TIES configurations, we adopted the
value (4) for the lookahead as a compromise between
performance and resource consumption.

1) Classification results
According to the first version of AGATHE [1],

classification task based on symbolic rules resulted in good
precision and recall. For this reason, we maintained the
symbolic approach based part for the semantic classification.

Statistical results presented in table II shows that AGATHE
had some difficulties in classifying some test corpus’ pages
(200 calls for workshops) as both classes (workshop and
conference) are very close. Anyway, AGATHE was able to
classify most corpus pages as workshop as it obtained (86%
and 85%) rates for the precision and the recall respectively.

TABLE II. CLASSIFICATION RESULTS

Number of
pages

Classified as
conference

Classified as
Workshop

Unclassified
pages

199 28 169 2

2) IE results

The former version of AGATHE [1] didn’t deliver
promising results concerning IE task. This task was

implemented in symbolic rules, which were a heavy load for
the system with low accuracy rate. This was the reason for
which we adopted an AIE algorithm in the new version that
demonstrated considerably promising results.

After statistical analysis for about 10000 database entries
retrieved from treating the test corpus, the average value of F-
measure for workshop concepts was equal to (70%), which
seems comparable to TIES evaluation results presented earlier.
Furthermore, for some concepts like workshoplocation and
workshopdate, highest values (more than 85%) were observed
for both precision and recall. Fig. 7 illustrates F-measure
values obtained during our experimentation concerning
different domain concepts. Lowest F-measure values were
obtained for conferenceacronym and conferencehomepage
concepts. Such low values come from the low frequency of
these concepts in the training corpus; as it does not contain
enough instances of both concepts so TIES was not trained
well to extract them (see table I).

Figure 7. F-measure of extracted concepts in Pascal corpus

3) Illustration
Here we demonstrate how AGATHE works taking as

example the call for paper of the conference RCIS2010
presented in fig. 8.

TABLE III. EXTRACTED INFORMATION FROM RCIS’ CALL FOR PAPERS

Concept Value Start End
Conferencename International Conference on

RESEARCH
CHALLENGES

304 351

Conferenceacronym RCIS) 376 381
Workshopdate MAY 19 - 21 , 2010 104 119
Workshophomepage deadline : November 10 ,

2009 http : / / www .
farcampus . com / rcis

152 209

Workshoplocation NICE , FRANCE 121 133

Workshoppapersubmissio
ndate

deadline : NOVEMBER 10 4488 4509

Workshopnotificationofa
cceptancedate

NOVEMBER 10 , 2009 4498 4515

First, the page was prepared and then classified as
conference that is the correct class of the page. Then, the

extractor agent, using TIES wrapped inside it, extracted
information from the page. The resulting information,
highlighted in fig. 8, is presented in table III.

As workshop and conference classes are so close, they
share many concepts like date, location etc. This was the case
of last five extracted concepts.

Figure 8. RCIS call for paper

As TIES used a training corpus to learn how to extract
information, similar information contexts are expected in pages
to extract or else our system won’t be able to extract target
fields. This was the case for the concept
workshopnotificationofacceptancedate that TIES could not
extract well. The reason to this error is that three words “and
registration opening” were placed after “notification of
acceptance” taking the place expected for the acceptance date
as it was learned and registered in detectors’ patterns.
Consequently, TIES did not use the right detectors as it could
not find a match for their patterns in the text and so the date
was not extracted. This kind of error is explainable as training
corpus might not cover all possible cases.

Other sources of confusion might be in the length and the
position of field. This was the case for the conferencename that
was not entirely extracted. Nevertheless, this kind of confusion
might be resolved as AGATHE permits user intervention to
decide on the correct result.

VI. CONCLUSION
The use of supervised ML techniques in IE, as Boosted

Wrapper Induction (BWI), in information gathering on
restricted web domains, appears very relevant. Results obtained
from this new version of AGATHE, combining agent and
wrapper induction in its information extraction task, are very
encouraging.

In short-term perspective, we intend first to reduce IE task
time, especially by using efficient distribution strategies to
dispatch this task. Multiple class specialized extractor agents
might be deployed in parallel balancing information extraction
load among them. Moreover, as classes belonging to the same
domain might share some concepts, extractor agents might be
specialized in concepts rather than in classes.

Then, in order to improve the relevance of results, we aim
at developing pre and/or post treatments exploiting domain
related ontologies. In mid-term, we intend to introduce, in a
preprocessing phase, a Part-of-Speech (POS) tagging, in order
to improve the IE process by taking into account, always with
BWI algorithm, the morphosyntactic structure of the natural
language as proposed in [23]. Finally, comparative study is
intended in order to evaluate AGATHE considering other state
of the art information gathering systems.

VII. ACKNOWLEDGMENT
The authors would like to thank Rinaldo Lima and Fred

Freitas of UFCP for their collaboration on AGATHE system,
and Alberto Lavelli of IRST for his support on TIES system.

REFERENCES
[1] Espinasse, B., S. Fournier, and F. Freitas, AGATHE: An Agent- and

Ontology-Based System for Gathering Information about Restricted
Web Domains. International Journal of E-Business Research (IJEBR),
2009. 5(3): p. 14-35.

[2] Siefkes, C. and P. Siniakov, An Overview and Classification of
Adaptive Approaches to Information Extraction. Journal on Data
Semantics IV, 2005: p. 172-212.

[3] Etzioni, O., M. Banko, S. Soderland, and D.S. Weld, Open information
extraction from the web. Commun. ACM, 2008. 51(12): p. 68-74.

[4] Kushmerick, N., Gleaning the Web. IEEE Intelligent Systems, 1999.
14(2): p. 20-22.

[5] Turmo, J., A. Ageno, and N. Catala, Adaptive information extraction.
ACM Comput. Surv., 2006. 38(2): p. 4.

[6] Maynard, D., W. Peters, and Y. Li, Metrics for evaluation of ontology-
based information extraction, in WWW 2006 Workshop on "Evaluation
of Ontologies for the Web" (EON), Edinburgh, Scotland. 2006.

[7] Tang, J., M. Hong, D. Zhang, B. Liang, and J. Li, Information
Extraction: Methodologies and Applications, in Emerging Technologies
of Text Mining: Techniques and Applications. 2007, Prado and Edilson
Ferneda (Ed.), Idea Group Inc., Hershey, USA. p. 1-33.

[8] Muslea, I., S. Minton, and C. Knoblock (1998) STALKER: Learning
extraction rules for semistructured Web-based information sources.

[9] Califf, M.E. and R.J. Mooney, Bottom-up relational learning of pattern
matching rules for information extraction. J. Mach. Learn. Res., 2003. 4:
p. 177-210.

[10] Ciravegna, F., (LP)2: Rule Induction for Information Extraction Using
Linguistic Constraints. Technical report. 2003.

[11] Freitag, D. and N. Kushmerick, Boosted Wrapper Induction, in
Proceedings of the 17th National Conference on AI and 12th Conference
on Innovative Applications of AI. 2000, AAAI Press / The MIT Press.

[12] Finn, A. and N. Kushmerick. Information Extraction by Convergent
Boundary Classification. in Proceedings of AAAI-2004 Workshop on
Adaptive Text Extraction and Mining. 2004.

[13] Giuliano, C., A. Lavelli, and L. Romano. Simple Information Extraction
(SIE): A Portable and Effective IE System. in Proceedings of the EACL-
06 Workshop on Adaptive Text Extraction and Mining (ATEM-2004)
2006. Trento, Italy.

[14] Kauchak, D., J. Smarr, and C. Elkan, Sources of Success for Boosted
Wrapper Induction. J. Mach. Learn. Res., 2004. 5: p. 499-527.

[15] IST-Dot.Kom. Available from: http://www.dot-kom.org/.
[16] Pascal Challenge. Available from: http://nlp.shef.ac.uk/pascal/.
[17] Ireson, N., F. Ciravegna, M.E. Califf, D. Freitag, N. Kushmerick, and A.

Lavelli, Evaluating Machine Learning for Information Extraction, in
Proceedings of the 22nd international conference on ML. 2005, ACM:
Bonn, Germany.

[18] Freitas, F. and G. Bittencourt. An Ontology-Based Architecture for
Cooperative Information Agents. in International Joint Conference on
Artificial Intelligence (IJCAI). 2003. Acapulco, Mexico.

[19] Pazienza, M.T., A. Stellato, and M. Vindigni, Combining Ontological
Knowledge and Wrapper Induction Techniques into an e-Retail System,
in Workshop on ATEM03 held with ECML/PKDD 2003, Cavtat. 2003.

[20] Java Agent DEvelopement Framework. Available from:
http://jade.tilab.com/.

[21] Jess, the Rule Engine for the JavaTM Platform Available from:
http://www.jessrules.com/.

[22] The Protégé Ontology Editor and Knowledge Acquisition System.
Available from: http://protege.stanford.edu/.

[23] Lima, R., B. Espinasse, and F. freitas, Adaptive Information Extraction
System based on Wrapper Induction with POS Tagging. To appear in
Proceeding of SAC-ACM 2010, Sierre, Switzerland.

http://www.dot-kom.org/�
http://nlp.shef.ac.uk/pascal/�
http://jade.tilab.com/�
http://www.jessrules.com/�
http://protege.stanford.edu/�

	Introduction
	MACHINE LEARNING FOR INFORMATION EXTRACTION
	Adaptive Information Extraction (AIE)
	Methods for Adaptive Information Extraction

	BOOSTED WRAPPER INDUCTION AND TIES SYSTEM
	Boosted Wrapper Induction (BWI)
	The TIES System
	CFP corpus
	Tokenization step
	Feature Extraction step
	Training step
	Information Extraction step
	Executing TIES

	COMBINING AGENTS AND WRAPPER INDUCTION IN AGATHE
	The AGATHE system overview
	AGATHE adaptive extraction subsystem architecture
	Information extraction combining agents and wrapper induction
	The classifier agent
	The extractor master agent
	The extractor agent

	IMPLEMENTATION DETAILS AND FIRST RESULTS
	Implementation details
	First results
	Classification results
	IE results
	Illustration

	Conclusion
	AcKnowledgment
	References

