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Abstract — Web is growing constantly and exponentially every 
day. Thus, gathering relevant information becomes unfeasible. 
Existent indexing-based search engines ignore information 
context, which is essential to deciding on its relevance. 
Restraining to a single web domain, domain ontology can be used 
to take into consideration the related context, the fact that might 
enable treating web pages that belong to the considered domain 
more intelligently. Nevertheless, symbolic rules that exploit 
domain’s ontology to realize this treatment are delicate and 
fastidious to develop, especially for information extraction task. 
This paper presents Boosted Wrapper Induction (BWI), a 
machine learning method for adaptive information extraction, 
and its exploitation as a replacement of the symbolic approach 
for information extraction task in AGATHE, a generic multi-
agent architecture for information gathering on restrained web 
domains. 

Keywords-component; Information extraction; machine 
learning; multi-agent systems; boosted wrapper induction; 
cooperative information gathering. 

I.  INTRODUCTION  
The growing size of the web and the heterogeneity of 

accessible pages made information gathering more and more 
complex. In order to retrieve relevant information, gathering 
must be restrained to specific web domains, in other words, the 
context in which information is gathered must be taken into 
consideration.  

Considering context permits a better treatment of 
information contained in collected web pages. For instance, 
first of all these web pages can be classified according to the 
different classes specific to the concerned web domain, then, 
relevant information can be extracted from pages belonging to 
the same class more accurately. Most information extraction 
from web pages belonging to the same class is realized in this 
way (for example, researcher’s interesting subjects, etc.). 

This work has been realized within the framework of the 
project AGATHE [1] that proposes a generic multi-agent 
architecture for contextual information gathering on restricted 
web domains. In AGATHE, software agents exploit ontologies 
in order to realize web page classification and information 
extraction tasks. This paper is focused particularly on the 
information extraction (IE) task. 

IE consists in extracting automatically relevant information 
from text. Many software systems were developed to 
accomplish IE tasks. Earlier, these systems were mainly based 
on symbolic rules handcrafted by domain experts [2, 3]. 
Considering the dynamism and the heterogeneity of the web, 
they should be constantly modified and maintained. This 
constant maintenance is time consuming and requires expertise 
in the application domain. 

Recently, progress achieved in the domain of supervised 
and non-supervised Machine Learning (ML) algorithms has 
simplified the development of IE programs; these algorithms 
have been utilized to automate rule production. This evolution 
was the origin of Adaptive Information Extraction (AIE). In 
recent times, many AIE systems had been developed following 
three-step procedure: (1) Recognizing semantically relevant 
information in the text (2) Extracting this information (3) 
Stocking it in an organized structure or in a database for future 
analysis [2, 4]. 

Currently in AGATHE, first web pages are retrieved from 
the web. Then, some agents use domain ontology to classify 
them semantically. Finally, other agents, depending on the 
same ontology, extract relevant information from these pages 
according to their classes. Based on symbolic rules (production 
rules) handcrafted in Jess platform, the implementation of these 
tasks is painful especially for the IE task. 

The goal of this work was firstly to carry out a study of 
different IE techniques using ML algorithms (AIE), secondly, 
to replace, in AGATHE, information extraction symbolic rules 
by AIE techniques encapsulated in software agents, leaving the 
semantic classification task intact; it is still implemented in 
symbolic rules deploying domain’s ontology. Coupling both 
symbolic and machine learning techniques in AGATHE is the 
major contribution of this work leading to improve its IG 
capabilities. 

In the second section, we study the advantages of using ML 
techniques in IE (in particular supervised ML) and introduce 
Adaptive Information Extraction (AIE) with its principal 
methods. Boosted Wrapper Induction (BWI), the supervised 
AIE method chosen for this work, is presented in the third 
section accompanied by a description of the TIES system that 
was developed in IRST laboratory in Trento implementing this 
method. Section 4 presents the encapsulation of TIES in a 
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software agent, and then its integration in the new multi- agent 
architecture of AGATHE. Section 5 presents some 
implementation details related to the prototype in progress in 
addition to first results obtained by deploying the new version 
of AGATHE demonstrating the progress achieved in this work. 
Finally, we conclude with our research perspectives. 

II. MACHINE LEARNING FOR INFORMATION 
EXTRACTION 

Production rule based IE systems used to be developed in 
an ad hoc manner; they were specific to the application domain 
for which they had been implemented. In order to easily adapt 
IE systems to multiple application domains, ML algorithms 
and statistic methods were deployed [2] leading to Adaptive 
Information Extraction (AIE). 

A. Adaptive Information Extraction (AIE) 
Domain specific extraction rules or patterns, instead of 

being handcrafted for each application domain, can be learnt 
directly by generic domain-independent IE system using a 
tagged domain-specific training set [3, 4]. Enriched with 
natural language processing (NLP) and inductive logic 
programming (ILP) methods, a spectrum of generic 
architectures were proposed to realize supervised IE on Web 
pages [5]. 

Recently, self-supervised IE systems, a new paradigm in IE 
research domain, has come to life. In general, these systems 
depend on domain-independent patterns to label their training 
sets for each application domain [3]. According to the under 
test performance of self-supervised systems, supervised IE 
systems are still more attractive. In order to evaluate and 
compare AIE supervised algorithms, three measures are 
principally used: Precision, Recall and F-Measure [6]. 

B. Methods for Adaptive Information Extraction 
In the last decade, different classifications for adaptive 

information extraction methods were proposed [2, 7]. 
According to the classification proposed in [7], the three 
distinguished classes of AIE methods are: Rule Learning based 
methods, Classification based Methods, and finally, Sequential 
Labeling based Methods. 

1) Rule Learning based methods 

The most widely used among the others, this class includes 
three different categories of methods: 

a) Dictionary based methods 

Methods of this type create a dictionary of templates 
(patterns) using tagged texts and then deploy these templates in 
extracting relevant information from untagged plain text [7]. In 
this category, many systems, like AutoSlog [7] and STALKER 
[8], were developed for IE. Each of them adopts its particular 
strategy in realizing dictionary learning and IE tasks. 

b) Rule based methods 

These methods discover the semantic/syntactic 
characteristics surrounding tagged information in the training 
set, and then they deploy this knowledge in constructing rules 

(instead of the pattern dictionary produced by the previous 
category) for information extraction. In other words they learn 
the contexts in which relevant information could be probably 
detected in any text belonging to a specific application domain 
[7]. 

Methods that start first by learning special cases and then 
try to generalize them during training are called bottom-up 
methods. On the contrary, top-down methods start with a 
general rule and specialize it according to tagged examples in 
the training set. We mention particularly in the rule based 
category the following IE systems: Rapier [9] and LP² [10]. 
These systems were mostly deployed for extracting 
information from semi-structured text. 

c) Wrapper Induction Methods 

This category performs the same steps as the previous one 
in learning and IE tasks. What makes this category a particular 
case is that its methods consider HTML tags as well as text in 
learning extraction wrappers while these tags might cause a 
great difficulty to other linguistic methods [11]. So additional 
information provided by HTML tags might help in improving 
IE results. This is why they were principally used in extracting 
information from both structured and semi-structured text [5, 
7]. In order to cover IE from unstructured text as well, Boosted 
Wrapper Induction (BWI) algorithm was proposed [11]. 

2) Classification based Methods 

These methods depend on classification algorithms in 
deciding whether a text partition is relevant to the application 
domain (is to be extracted) or not [7]. During training phase, a 
classification-based algorithm is provided with training 
examples to construct two classification models for both 
boundaries considering each domain concept. These models are 
then used to predict and locate relevant information. 

Support Vector Machines (SVMs) are largely deployed in 
developing IE systems in this class, like both ELIE [12] and 
SIE [13]. Other algorithms, like Maximum Entropy and Voted 
Perceptron were also the basis of many methods belonging to 
this class. 

3) Sequential Labeling based Methods 

In sequential labeling, each token in the document is 
labeled referring to its characteristics. Deploying 
interdependencies between different concepts in labeling 
tokens made sequential labeling a particular case compared to 
the formerly introduced classes. 

Statistical learning algorithms like Markov models and 
Maximum Entropy models [5], were basically used in 
developing sequential labeling systems for natural language 
preprocessing such as Part Of Speech tagging (POS) and also 
for Information Extraction tasks [2, 7]. 

III. BOOSTED WRAPPER INDUCTION AND TIES 
SYSTEM 

In our research, we adopted the boosted wrapper induction 
(BWI) algorithm, a Rule Learning based method belonging to 
the Wrapper Induction category. The reason for which BWI 
was chosen for this work is its competence in information 



extraction from unstructured text in addition to structured and 
semi-structured text. 

We introduce in this section the supervised IE algorithm 
“BWI” and the generic IE system “TIES” implementing this 
algorithm. 

A. Boosted Wrapper Induction (BWI) 
For methods developed on Wrapper Induction paradigm, 

target documents must have some kind of regularity in their 
structure, which is not true in most cases. 

However, BWI [11, 14] was developed to overcome this 
limitation enabling IE from unstructured text as well. The main 
idea was to combine predictions of many simple specific 
patterns in more general and complex ones, which will have a 
higher recall rate covering many possible contextual patterns in 
natural language text. BWI, as in [11], works following this 
procedure: 

procedure BWI (example sets S and E) 
  { 
      F ← AdaBoost(LearnDetector, S) 
      A ← AdaBoost(LearnDetector, E) 
      H ← field length histogram from S and E 
      return wrapper W = <F, A, H> 
  } 

 

An induced wrapper W=<F, A, H> consists of a set of 
detectors that classify the start boundaries of a field (F), 
another set of detectors to classify the end boundaries of the 
same field (A) in addition to the function H(k) who estimates 
the prior probability that the specific field has the length k. 
Each detector consists of two patterns of tokens surrounding 
the boundary it classifies. 

In order to produce more effective and general patterns, 
detector learner is wrapped in a boosting algorithm (AdaBoost) 
that accomplishes training in a predetermined number of 
iterations. At the end of every iteration, AdaBoost assigns 
weights to training set examples and confidence values to the 
induced detectors according to the weights and the number of 
examples they cover. These weights guide oncoming iterations 
so uncovered examples are treated more carefully and simple 
specific detectors are generalized or discarded. This leads to a 
final group of general detectors with high recall rates and 
confidence scores. 

During IE phase, detectors’ patterns and confidence scores 
in addition to the field length prediction are combined to 
classify target field boundaries or in other words to locate and 
determine tokens of relevant information to extract. 

Uses boosting technique to combine many contextual 
patterns in final effective predictors, BWI is competitive with 
other IE algorithms, this was the reason for which we’ve 
chosen this algorithm for this work. 

B. The TIES System 
TIES, being part of the project IST-Dot.Kom [15] and 

developed by the IRST of Trento, is a generic modular 

architecture for supervised IE implementing the formerly 
detailed algorithm BWI.  

Using an annotated training corpus with predefined tags, 
TIES can automatically generate wrappers (Training phase) 
which afterwards can be used to extract information from new 
unannotated text (Extraction phase). Both phases are illustrated 
in fig. 1. 

 
Figure 1.   The two phases of TIES’s execution. 

1) CFP corpus 
The corpus Call For Papers (CFP) [16] of the Pascal 

Challenge was adopted in this work as it had been used earlier 
as a formal basis to evaluate and compare the performance of 
different ML algorithms [17]. The majority of the 1100 
documents (850 calls for workshops, 250 calls for conferences) 
constituting the CFP corpus come from the domain of 
computer science. Others were collected from the biomedicine 
and linguistics domains. 

The 1100 documents were arranged in three different 
corpuses; the training corpus containing 400 calls for 
workshops, the test corpus containing 200 calls for workshops 
and the enrich corpus containing 250 calls for workshops and 
250 calls for conferences. A call for workshop might include 
details regarding conferences as workshops might be related to 
other conferences. 

Corpus’ documents are annotated using eleven tags; eight 
for workshop concepts and three for conference concepts. 
Some concepts like dates can be shared between both classes. 
Conference concepts have lower frequencies in corpus 
compared to workshop concepts. Table Ι shows concepts’ 
frequencies in both training and test corpuses. 



TABLE I.  CONCEPTS’ FREQUENCIES IN CORPUS 

Concepts Frequency 
Training % Test % 

Workshopname  543 11.8 245 10.8 
Workshopacronym 566 12.3 243 10.7 
Workshophomepage 367 8.0 215 9.5 
Workshoplocation 457 10.0 224 9.9 
Workshopdate  586 12.8 326 14.3 
Workshopsubmissiondate  590 12.9 316 13.9 
Workshopnotificationacceptancedate 391 8.5 190 8.4 
Workshopcamerareadycopydate 355 7.7 163 7.2 
Conferencename  204 4.5 90 4.0 
Conferenceacronym 420 9.2 187 8.2 
Conferencehomepage  104 2.3 75 3.3 
TOTAL  4583 100 2274 100 
 
2) Tokenization step 

In this step, input files (HTML or XML files) are converted 
into TIES input format (TIESIF); the text is broken down into 
series of tokens labeled by their identification, type (word, 
separator or punctuation mark), and position in the original 
text. 

3) Feature Extraction step 
During this step, a number of Boolean functions are applied 

to the series of tokens produced through the previous step 
bringing out attributes to be bounded to each of these tokens. 
The following is a fragment of the result of tokenization and 
feature extraction on a document from the CFP corpus. The 
initial fragment was annotated using the tag 
(<workshopname>): 

<token id="27" type="tag"  start="113" len="14" 
open_tag="true">workshopname</token> 
<token id="28" type="word"  start="127" len="8" 
alpha_token="true" 
upper_case_token="true">WORKSHOP</token> <token 
id="30" type="word"  start="136" len="2" 
alpha_token="true" 
lower_case_token="true">on</token> <token id="32" 
type="word"  start="139" len="10" alpha_token="true" 
upper_case_token="true">CONSTRAINT</token> <token 
id="34" type="word"  start="150" len="9" 
alpha_token="true" 
upper_case_token="true">DATABASES</token> <token 
id="36" type="word"  start="160" len="2" 
alpha_token="true" 
lower_case_token="true">in</token> <token id="38" 
type="word"  start="163" len="2" alpha_token="true" 
upper_case_token="true">AI</token><token id="39" 
type="tag"  start="165" len="15" 
close_tag="true">/workshopname</token> 

 

As the previous example shows, the token workshopname 
is an open tag whereas the token /workshopname is a closing 
tag. Also, the tokens WORKSHOP, CONSTRAINT, 
DATABASES, and AI are words in uppercase while on and in 
are both in lowercase. 

4) Training step 
The BWI algorithm inducts the wrappers at some point in 

this step. TIES provide different validation strategies like 4-
fold cross validation in order to validate training results; a part 
of training corpus is reserved to extract information from it 
using the learnt models to evaluate and validate the results 

using statistical measures. In fact, this enables evaluating 
system performance and orients its parameters’ calibration. 

The next detector is a fore-detector for the beginning of the 
concept workshopname. It indicates that if the three successive 
tokens pattern (any_token, Workshop, on) was matched in 
text, the beginning of this concept would be detected with a 
confidence score equal to (2.209582649580836). 
<fore-detector> 
<detector> 

<pattern type="prefix" /> 
<pattern type="suffix"> 
 <feature name="any_token" value="true" /> 
 <feature name="token" value="Workshop" /> 
 <feature name="token" value="on" /> 
</pattern> 
<confidence-
value>2.209582649580836</confidence-value> 

</detector> 
</fore-detector> 

 
5) Information Extraction step 

Using the wrappers produced during the training step, 
target fields can be detected and extracted from new plain text. 
For each concept, extraction results are organized in a XML 
file.  

A fragment of an output file for the concept 
conferenceacronym is presented below. The element entity 
contains tokens of the extracted field accompanied by their 
source and their position in the original text. 
<entity-list> 
<entity name="conferenceacronym" 
score="5.125015282673751" src=".\input\CFP\key2\1.5-
train-0-2-3-ESSLLI-LSLCBT_1999.xml" start="89" 
end="98" > 
 <token start="89" end="7">ESSLLI-</token> 
 <token start="96" end="2">99</token> 
</entity> 
………. 
………. 
</entity-list> 
 

6) Executing TIES 
Which concepts to learn, which strategy to follow and what 

value to be assigned to the lookahead parameter and other 
parameters can be passed to TIES using configuration files. 
This enables the user to control its execution during training 
phase. 

The parameter lookahead determines the context that 
should be taken into consideration throughout training for each 
detector. In fact, this parameter has a crucial effect on training 
performance. Assigning the value (3) to the lookahead, this 
means that for every field three tokens before its beginning and 
three tokens after its beginning should be taken into 
consideration to learn the fore-detector of its related concept. In 
other words, the context the algorithm takes into consideration 
during training phase would cover six tokens. 

Fig. 2 illustrates the influence of lookahead on the F-
measure during training. As the value of lookahead increases, 
the value of F-measure increases as well for most concepts. 
Nevertheless, as the value of lookahead reaches 5, this increase 
becomes insignificant and most curves become stable. 



 
Figure 2.   The effect of Lookahead on F-measure 

 

IV. COMBINING AGENTS AND WRAPPER 
INDUCTION IN AGATHE 

In this section, the AGATHE system is briefly presented, 
and the architecture of its new extraction subsystem, combining 
agents and wrapper induction techniques, is presented in 
details.  

A. The AGATHE system overview 
The AGATHE system is a generic software architecture 

allowing the development of information gathering systems on 
the Web, for one or more restricted domains. Being developed 
between France and Brazil, the system AGATHE [1] 
implements a cooperative information gathering approach 
based on software agents that cooperate and exploit ontologies 
related to restricted web domains. 

First version of AGATHE reused the ontology based 
techniques of classification and extraction associated to these 
restricted domains of MASTER-Web [18], and deployed them 
in a complex organization of multiple specialized, effective, 
and interacting software agents. Moreover AGATHE allows 
treating several domains of search simultaneously, and deploys 
mechanisms for inter-domain recommendations. 

AGATHE’s general architecture [1], illustrated in fig. 3, is 
particularly composed of three interacting subsystems: 

• The Search Subsystem is in charge of querying external 
search engines on the Web (such as Google) in order to 
obtain Web pages to treat by other subsystems. 

• The Extraction Subsystem is composed of multiple 
"extraction clusters" (EC), each of them is specialized 
in processing web pages of a specific domain (ex. The 
academic research domain or the tourism domain). 

• The Front Office Subsystem ensures the storage of the 
extracted information resulting from web pages 
treatments in the previous subsystem, and provides a 
query interface for the users, counting humans and 
other software agents. 

 
Figure 3.  General AGATHE architecture 

Software agents using symbolic rules that exploit 
ontologies realized most tasks in the first AGATHE. Since 
symbolic rules were domain dependent and arduously written, 
it seemed judicious to replace a part of them responsible for the 
information extraction task by TIES, the previously detailed IE 
system. The aim of this work was to combine symbolic based 
classification and machine learning information extraction in 
new extraction subsystem architecture. 

Other information gathering systems have also adopted this 
approach. We mention particularly the system CROSSMARC 
[19] that was implemented for both e-retail and job offers 
domains coupling symbolic rules with wrapper induction. 



B. AGATHE adaptive extraction subsystem architecture 
AGATHE’s new extraction subsystem, performing an 

adaptive information extraction, is composed of extraction 
clusters. These clusters are composed of software agents 
performing various tasks, like semantic classification and 
information extraction, on collected web pages. 

The classification task is kept as it was in the first version 
of AGATHE [1].  Agents that exploit a domain ontology using 
symbolic rules realize it. For each relevant concept of this 
ontology, agents that extract information according to BWI 
method achieve the IE task. 

The detailed architecture of AGATHE’s new extraction 
cluster is presented in fig. 6. Every extractor agent wraps a 
running TIES for IE, while the classifier agent realizes 
semantic classification only. 

An extractor master agent is introduced in this cluster in 
order to ensure system modularity and agent specialization. 
This agent manages the allocation of IE tasks to extractor 
agents according to a predetermined strategy. Finally, the 
storage agent stores extracted information in a database for 
future analysis. 

C. Information extraction combining agents and wrapper 
induction 
In this section, we detail the three new agents in the new 

architecture of AGATHE’s Extraction Subsystem assuring IE 
tasks with wrapper induction technique (BWI method): 

1) The classifier agent 
As defined in previous version of AGATHE, this agent 

classifies web pages semantically, using symbolic Jess rules 
and exploiting the domain ontology; if the page belongs to a 
relevant class of the domain, it sends it to the extractor master 
agent, otherwise it sends it to the recommendation agent of its 
cluster. Moreover, the page’s class (ex. Conference, workshop, 
journal, etc.), with its address as well as other details are sent 
by this agent to the storage agent to be eventually stored in the 
database. 

2) The extractor master agent 
Web pages belonging to a specific class of the considered 

domain might contain information related to different concepts 
in the domain ontology. While AGATHE has a multi-agent 
architecture, it appeared coherent and beneficial to distribute 
the IE load among multiple extractor agents according to user-
defined strategies. Consequently, it was legitimate to introduce 
the extractor master agent to dispatch IE tasks; first; it receives 
a classified web page then it resends it toward the extractor 
agents specialized in its class according to the defined 
distribution strategy. 

Fig. 4 illustrates the class based distribution strategy 
actually adopted in AGATHE. Each extractor agent is 
specialized in extracting information from pages belonging to a 
specific class in the scientific domain. 

 
Figure 4.  Distribution strategy in the extraction subsystem 

3) The extractor agent 
This agent wraps an adapted version of TIES, the IE system 

previously presented. It extracts relevant information from web 
pages by executing TIES, using wrappers produced off-line 
during a training step and saved in XML files. Choosing a 
concept-based distribution strategy, a single domain concept is 
delegated to each extractor. Consequently, as soon as an 
extractor agent receives a message, it runs TIES to extract a 
specific concept from the page specified in the message. 
Wrapped inside AGATHE, TIES is always executed in “IE” 
mode; supervised training is carried out independently. 

As for all AGATHE’s agents, this agent was implemented 
in JADE platform using two kinds of behaviors; 
ExtraTIESProcessor which is an instance of CyclicBehaviour 
that receives messages sent by the extractor master agent and 
then passes its content to the ExtraTIESAnalyze. The latter is an 
instance of OneShotBehaviour. It executes an adapted version 
of TIES, extracts information from the concerned web page, 
and returns control to ExtraTIESProcessor. Extractor agent 
implementation is illustrated in fig. 5. 

 
Figure 5.  Jade Behaviors of the Extractor agent 

As presented in fig. 6, system execution goes through the 
following steps: 



 

Figure 6.  The new Extraction Cluster architecture

1. The classifier agent sends a demand for a web 
search to the supervisor agent. 

2. The supervisor agent forwards the demand 
towards the search subsystem and then sends the 
retrieved pages to the preparation agent. 

3. After filtering and functionally classifying 
(discarding emails and lists), preparation agent 
sends valid web pages to the classifier agent and 
sends preparation results to the storage agent. 

4. Web pages belonging to the cluster’s specific 
domain are sent by the classifier agent, after 
classifying them semantically, to the extractor 
master agent. 

5. The extractor master agent dispatches IE task 
between multiple extractor agents according to a 
predetermined distribution strategy. 

6. Each extractor agent realizes the assigned IE task 
and sends extracted information to the storage 
agent in order to be stored in the database. 

7. If the classifier agent discovers that the web page 
doesn’t belong to its domain, it forwards it to the 
recommendation agent who decides to which 
cluster the page must be sent. 

V. IMPLEMENTATION DETAILS AND FIRST 
RESULTS 

This new version of AGATHE integrating wrapper 
induction for IE task is currently under development, and this 
section presents some implementation details as well as first 
results obtained. 

A. Implementation details 
The AGATHE architecture is implemented using Eclipse 

environment in Java, and based on Jade multi-agent platform 
[20]. The Search Subsystem and the Front Office Subsystem 
are composed of agents developed in java. The Extraction 
Subsystem is composed of agents that execute Jess symbolic 
rules [21]. These agents exploit domain ontology and an 
internal ontology in order to perform the semantic 

classification task. For information extraction task, this 
subsystem deploys agents that wrap an adapted version of 
TIES. Moreover, the actual AGATHE contains only one 
extraction cluster without recommendation mechanisms. 
Finally, the construction and the management of the system’s 
ontologies are realized in the Protégé environment [22], and 
treatment results are stored in a MySQL relational database 
system. 

B. First results 
In order to evaluate the new system’s performance, we used 

in our experiments the Pascal test corpus (200 pages containing 
2274 annotated fields) without taking into consideration text 
annotation. Being executed on a single machine supplied with 
an Intel core 2 Duo (2 GHz) CPU and 3GB of RAM, one page 
treatment took about (24 seconds) whereas whole corpus 
treatment took (46 minutes). This treatment covers page 
filtration and classification in addition to information extraction 
and storage. Concerning TIES configurations, we adopted the 
value (4) for the lookahead as a compromise between 
performance and resource consumption.  

1) Classification results 
According to the first version of AGATHE [1], 

classification task based on symbolic rules resulted in good 
precision and recall. For this reason, we maintained the 
symbolic approach based part for the semantic classification. 

Statistical results presented in table II shows that AGATHE 
had some difficulties in classifying some test corpus’ pages 
(200 calls for workshops) as both classes (workshop and 
conference) are very close. Anyway, AGATHE was able to 
classify most corpus pages as workshop as it obtained (86% 
and 85%) rates for the precision and the recall respectively. 

TABLE II.  CLASSIFICATION RESULTS 

Number of 
pages  

Classified as 
conference 

Classified as 
Workshop 

Unclassified 
pages 

199 28 169 2 
 
2) IE results 

The former version of AGATHE [1] didn’t deliver 
promising results concerning IE task. This task was 



implemented in symbolic rules, which were a heavy load for 
the system with low accuracy rate. This was the reason for 
which we adopted an AIE algorithm in the new version that 
demonstrated considerably promising results. 

After statistical analysis for about 10000 database entries 
retrieved from treating the test corpus, the average value of F-
measure for workshop concepts was equal to (70%), which 
seems comparable to TIES evaluation results presented earlier. 
Furthermore, for some concepts like workshoplocation and 
workshopdate, highest values (more than 85%) were observed 
for both precision and recall. Fig. 7 illustrates F-measure 
values obtained during our experimentation concerning 
different domain concepts. Lowest F-measure values were 
obtained for conferenceacronym and conferencehomepage 
concepts. Such low values come from the low frequency of 
these concepts in the training corpus; as it does not contain 
enough instances of both concepts so TIES was not trained 
well to extract them (see table I). 

 
Figure 7.  F-measure of extracted concepts in Pascal corpus 

3) Illustration 
Here we demonstrate how AGATHE works taking as 

example the call for paper of the conference RCIS2010 
presented in fig. 8. 

TABLE III.  EXTRACTED INFORMATION FROM RCIS’ CALL FOR PAPERS 

Concept Value Start End 
Conferencename International Conference on 

RESEARCH 
CHALLENGES 

304 351 

Conferenceacronym RCIS) 376 381 
Workshopdate MAY 19 - 21 , 2010 104 119 
Workshophomepage deadline : November 10 , 

2009 http : / / www . 
farcampus . com / rcis 

152 209 

Workshoplocation NICE , FRANCE 121 133 

Workshoppapersubmissio
ndate 

deadline : NOVEMBER 10 4488 4509 

Workshopnotificationofa
cceptancedate 

NOVEMBER 10 , 2009 4498 4515 

 

First, the page was prepared and then classified as 
conference that is the correct class of the page. Then, the 

extractor agent, using TIES wrapped inside it, extracted 
information from the page. The resulting information, 
highlighted in fig. 8, is presented in table III. 

As workshop and conference classes are so close, they 
share many concepts like date, location etc. This was the case 
of last five extracted concepts. 

 
Figure 8.  RCIS call for paper 

As TIES used a training corpus to learn how to extract 
information, similar information contexts are expected in pages 
to extract or else our system won’t be able to extract target 
fields. This was the case for the concept 
workshopnotificationofacceptancedate that TIES could not 
extract well. The reason to this error is that three words “and 
registration opening” were placed after “notification of 
acceptance” taking the place expected for the acceptance date 
as it was learned and registered in detectors’ patterns. 
Consequently, TIES did not use the right detectors as it could 
not find a match for their patterns in the text and so the date 
was not extracted. This kind of error is explainable as training 
corpus might not cover all possible cases. 

Other sources of confusion might be in the length and the 
position of field. This was the case for the conferencename that 
was not entirely extracted. Nevertheless, this kind of confusion 
might be resolved as AGATHE permits user intervention to 
decide on the correct result.  



VI. CONCLUSION 
The use of supervised ML techniques in IE, as Boosted 

Wrapper Induction (BWI), in information gathering on 
restricted web domains, appears very relevant. Results obtained 
from this new version of AGATHE, combining agent and 
wrapper induction in its information extraction task, are very 
encouraging. 

In short-term perspective, we intend first to reduce IE task 
time, especially by using efficient distribution strategies to 
dispatch this task. Multiple class specialized extractor agents 
might be deployed in parallel balancing information extraction 
load among them. Moreover, as classes belonging to the same 
domain might share some concepts, extractor agents might be 
specialized in concepts rather than in classes.  

Then, in order to improve the relevance of results, we aim 
at developing pre and/or post treatments exploiting domain 
related ontologies. In mid-term, we intend to introduce, in a 
preprocessing phase, a Part-of-Speech (POS) tagging, in order 
to improve the IE process by taking into account, always with 
BWI algorithm, the morphosyntactic structure of the natural 
language as proposed in [23]. Finally, comparative study is 
intended in order to evaluate AGATHE considering other state 
of the art information gathering systems. 
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