
1

KEYWORD
Environmental Decision Support Systems, integration
infrastructure, environmental decision support, multi-
agent systems.

ABSTRACT

The environmental dynamics complexity makes more
and more difficult the decision-making process in the
environment domain. Therefore, this process needs to be
supported by powerful computerized tools, called
Environmental Decision Support Systems (EDSS). This
research tries to propose software solutions to facilitate
development of such systems. Searching for a generic
architecture of EDSS based on simulation, first of all,
this paper identifies the main functional requirements of
decision makers from such systems, and then defines the
main functionalities of functional software modules
needed. Du to the variety of implementation of these
functional modules, such architecture is difficult to
define. Consequently, inspired by HLA (High Level
Architecture) and FIPA specifications, an agent based
generic infrastructure is proposed in order to integrate
such functional modules to constitute a specific EDSS.
The various components of this generic infrastructure,
currently in development, are presented in detail.

1. INTRODUCTION

The environmental dynamics complexity makes more
and more difficult the decision-making process in the
environment domain. This complexity overloads decision-
makers in quantity of data, information and knowledge of
different form and quality. The environmental decision-
making process, in sustainable development, in water
management, or ecosystems management more or less
human-influenced is increasingly complex.

Therefore, this process needs to be supported by
powerful computerized tools, denoted Environmental
Decision Support Systems (EDSS) (Jansen 1992). These
systems have to assist the decision-makers and do not
substitute them. They aim to reduce the duration of the
decision-making process as well as the consistency and the
quality of the decisions (Cortés and al. 2000). Such
systems can be used to understand and manage an
ecosystem, to accumulate qualitative and quantitative
information, to adapt conceptual models to a local
management, or to select appropriate management options

to optimize the (often conflicting) decision criteria
(Mowrer 1997).

This research tries to propose software solutions to
make easier the development of such systems, mainly in
proposing a generic software architecture, permitting to
reduce the development time of such systems and permit
reuse of existing software modules.

This paper is organized in 5 sections including this
one. Section 2 briefly presents a conceptual framework
based on different decision levels that is then used to study
some existing relevant EDSS. Based on this study, the
major functional requirements that EDSS must abide by,
are identified. Section 3 presents the functionalities of
software modules supporting these functional requirement,
and interactions between these modules. Due to the variety
of implementation of these functional modules, such
architecture is difficult to define. Therefore, in the section
4, is presented an agent based generic infrastructure,
inspired of HLA (High Level Architecture), and permitting
to integrate such functional modules to constitute a
specific EDSS. The various components of this
infrastructure are presented software agents as the
integration principle used (main integration services
supplied by the infrastructure. Finally, in section 5,
conclusions are drawn and future directions are proposed
for the work.

2. FUNCTIONAL REQUIREMENTS IN
ENVIRONMENTAL DECISION

Environmental decision-making can take different
forms, according to the nature of the decision, the
decisional context, or the characteristics of the problem
the decision-makers are encountering.

In this section, first is briefly presented a conceptual
framework based on different decision levels. Then this
framework is used to study and compare some relevant
existing EDSS projects. Afterwards, based on this
comparative study, are identified the major functional
requirement that have to be supplied by EDSS.

A comparative study of these EDSS projects on these
different aspects is quite difficult. For each of these
projects of EDSS, its objectives, its functionalities and its
software architecture are specific.

AN AGENT INTEGRATION INFRASTRUCTURE FOR THE DEVELOPMENT OF
ENVIRONMENTAL DECISION SUPPORT SYSTEMS BASED ON SIMULATION

Bernard ESPINASSE, Julien SERMENT, Erwan TRANVOUEZ

Laboratoire des Sciences de l’Information et des Systèmes, LSIS UMR CNRS 6168,
Universités Aix-Marseille, Marseille, France.

{firstname.lastname}@lsis.org

Bernard-User
B. Espinasse, J. Serment, E. Tranvouez (2007), « An Agent Integration Infrastructure for the Development of Environmental Decision Support Systems based on Simulation »,
IMSM07 (International Modeling and Simulation Multiconference) - CMS (Conceptual Modelling and Simulation) Conference, Buenos Aires, Argentine, February 8-10, 2007.僫

2

Conceptual framework

An EDSS is developed in a specific environmental
decisional context, which can be specified according to:

• The nature of the decision (ecological, political,
socio-economical …).

• The decisional objectives (Denzer 1997) (prediction,
medium/long term planning, supervision and control,
emergency crisis’ management …).

• The characteristics of the problem decision-makers
face (natural resources, natural park, forest fires …).

• The temporal constraints of the decision: short,
medium or long term.

• The impact of the decisions: local or global.

• The modelling paradigm adopted: analytical models,
stochastic models, individual centred models, object
models…

In general, the environmental decision comes within
the scope of a management activity, for instance of an
ecosystem. In the management field, a management
activities typology has been proposed by Anthony
(Anthony 1966). Three types of activity are distinguished:
the strategic planning, the management planning and
control, and finally the operational control. To each type
of activity corresponds a specific type of problems to
solve, and consequently a specific kind of decision. An
EDSS can be used on one or several of these levels:

• Strategic planning. It is a managerial activity that
leads to major decisions with global impact and long
term consequences (eg decisions involving the future
of a whole ecosystem).

• Management planning and control. In general, this
managerial activity leads to decisions with medium
term consequences and intermediary impact between
local and global.

• Operational control. This activity concerns decision
with short term consequences (less than the month)
and a local and limited impact (eg a small area of an
ecosystem).

Faced with this diversity of approaches, the definition
of different usage levels or decisional levels appears
relevant to present an unified view of environmental
projects.

Study of some existing EDSS

In order to better define the different forms of the
decision support that can be supply by EDSS, and to
define the major generic functionalities of such systems,
several relevant EDSS have been studied among them, the
following representative cases are underlined in this paper:

• the BIOMAS project (Courdier 2002) deals with
practices in collective management of animal wastes,

• the CATCHSCAPE project (Becu and al. 2003)
relates shared natural resources management,

• the PROBIO project (Botequilha and al. 2001)
concerns by the biodiversit forecast and management
in protected area,

• the N E D project (Nute 2003) studies a forest
ecosystem management situation,

• the project ALI (Jaber 1999) for the prevention and
the struggle against forest fire,

• the WWTP project (Borrell and al. 2002) concerns
control and management of used water treatment
plants.

In general, a particular decision level is favoured. For
example, the BIOMAS and CATCHSCAPE projects
mainly concern strategic planning. In the two projects, the
aim is not to find an immediate solution to a specific
problem, but to provoke (with the stakeholders) a
reflection on a process involving a whole ecosystem
(stakeholders included). These projects are dedicated to
these actors in order to make them realize, for example,
they are part of this ecosystem, and that each of their acts
has consequences. This can leads to collective decisions or
progressive changes of collective behaviours with
consequences in the long term.

The PROBIO and NED projects concern mainly
management planning and control decisions. These
projects support planning in medium or long terms and
concern management means to maintain ecosystems in a
stable state.

The ALI and WWTP project mainly support
operational control decisions, in supervision and control.
These two projects concern problems (fires, used water)
where the decision-makers have to quickly react and with
immediate consequences (short or very short term).
Solutions to these problems affect very limited areas.

Functional requirements to support by EDSS

The study of these EDSS projects has permitted to
define the following major functional requirements
concerning the three decisional levels previously
introduced:

• Modelling requirement. The decision-makers have
to set the problem with models. This requirement
concerns the description of entities implicated in the
various models used (ecological, biological,
economic …). Some of these models are simulation
models and specify the behaviours of such entities.
Several supplementary models can be used (multi-
modelling), and theirs interactions (or couplings)
have to be specified.

• Simulation requirement. The simulation is often
used in EDSS, according to different perspectives

3

(Reynols and al. 1999) prediction, understanding,
extrapolation or interpolation. The simulation
requirement implies the design of scenarios and
experiment plans related to the simulation models,
the control and the supervision of the simulation
execution, and sometimes the synchronisation of
different simulation model executions on different
software environments.

• Visualization requirement. This requirement allows
the visualization of models and results obtained from
these models especially by simulation. It improves
results' interpretation and communication between
different decision-makers. In EDSS, the models are
often spatiallized, and such visualization is based on
a defined spatial referential.

• Analysis requirement. Different alternatives having
been simulated, synthetised evaluation is needed. For
example, this requirement of the user can concern the
analysis of simulation results, or to compare results
of different simulations.

• Data management requirement. This requirement
concerns the management of exogenous or
endogenous data used by the previous functionalities.
This implies storing data, especially spatial and
temporal data, relative to the different models and
managing/controlling their use, in particular for
simulation. This requirement manages also data
generated by simulation (intermediary and final
results). The data management requirement is closely
tied to the other requirements.

• User integration requirement. This requirement
supports the user-system interaction by providing the
user transparent access to the others functionalities.
The user integration can be extended to his
participation to the modelling process (roles game,
participative approaches …), or in the simulation
steering. This requirement is also closely tied with
other requirement.

The two last functional requirements can be considered
as auxiliary requirement. In the studied EDSS projects, the
relative importance of the four first requirements depends
on the decisional level concerned. The figure 1 illustrates
this importance according the three decision levels for the
Modelling (M), Simulation (S), Visualization (V) and
Analysis (A) functionalities.

Fig. 1. Functional requirements versus decision level

The BIOMAS and CATCHSCAPE projects, which
mainly involve the strategic planning level, focus on the
understanding and the interaction of models. These tools

should permit the user (decision-maker) to modify himself
the models, and to intervene during the simulation
process.

These requirements are true at the management
planning and control decision level, as in the PROBIO and
NED projects. In these systems, the user can elaborate and
evaluate numerous of alternatives. The simulation and
analyse requirement are the more used by the decision-
makers.

Finally, in the ALI and WWP projects, which are
mainly related to the operational control decision level,
the models needs not to be modified, but the simulation
results have to be easily and quickly analysed. Analysis
and Visualization requirement are very important for the
user to follow and exploit the simulation execution.

3. FUNCTIONAL ARCHITECTURE OF EDSS

Each of these six main requirements can be supported
by a specific software module (functional module). A
generic functional architecture of EDSS could be
composed of six software modules in interaction, namely:
(i) a modelling module, (ii) a simulation module, (iii) a
visualisation module, (iv) an analysis module, (v) an user
integration module, and finally a data management
module.

In the following section, each of the functional module
is defined by its basic functions, and the specific data it
manipulates. Then the main interactions between these
fuctional modules are specified.

Modelling Module

The aim of this module is to elaborate models. Models
mainly concerned in this paper are simulation models.
These models can be multiagents models, object models,
cells automatas or others simulation models. This module
permits the description of the entities composing the
model, their behaviours, and their interactions. It allows
describing the interactions between modeles (coupling).
This module can be based on a metamodel as in the
MIMOSA project [Muller 2004].

In this module, different approaches are used for
modelling: cells automats, object, reactive agents,
cognitive agents, hybrid agents … Cognitives agents are
mainly used for the representation of social process
(negociation, cooperation …). They can also enable a
participative approach (Bousquet and Le Page 2004). The
reactive agents are mainly used in the representation of
emergent phenomenoms et are particularly adapted to the
representation of behaviours of individus in interaction.
The hybrid agents can be used (Andriamasinoro 2003) to
take into account the reactive behaviour of cognitive
agents. The object approach is in general used for the
representation of entities with simpler behaviours or for
analytic models. This module has also to permit the user
to use some popular notations of specification as UML,

4

AUML or DEVS.

Simulation Module

This module plays a central role in the decision support
process; it permits to test different possible scenarios,
solutions or alternatives. It has to perform the execution
of simulation models and their coordination.

Various simulation environments can be concerned by
this module. For example, agent-based models can either
be translated into objects models which in turn are
executed, or conversely directly simulated through agent-
oriented simulator such as MatKit (Ferber et al., 2000) or
Cormas (Becu et al., 2003).

Visualisation module

This module focuses on the visualisation of models,
their behaviours and simulation results. It permits to
supervise the simulation, to display intermediary and final
simulation results with adapted graphical representation In
order to ease the communication with users, and make
easier results interpretations.

This module can be composed of various visualisation
tools adapted to specifica data, such as Geotools for
example for geographical data (Geotools 2006). The
Object Oriented programming is largely used, but agent
programming begin to be used (interface agents). One
advantage of this agent programming is that the
visualisation can be directly linked to the simulated
entities (Campos 2000), permitting a better follow-up of
the simulation. The models agents can also provide
themselves an interpretation of the state of the system
(Servat and al. 1998).

Analyse Module

This module allows the user to analyse results
(simulation results) and to compare different alternatives
computed sometimes according to various criterions. This
module can be implemented according to differents
technologies indifferently based on objects or agents
oriented programming.

User integration Module

This module gives the user access to the different
functions of the EDSS, functions which are integrated in
the modules previously described. It is a cross module.
This module is not dependent on a particular
programming technology. The agent oriented approach,
with assistant agents, makes possible to integrate some
intelligent functions assisting the user/EDSS interaction,
resuting in more adaptative interactions.

Data Management Module

This module takes in charge the data management and
as the previous module is a cross module. Its role is to
store data of different type, in particular spatial and

temporal data, and make it available to other modules.
These data can be related to the models, scenarios, or the
simulations from which they can be generated
(intermediate and final simulation results). This module
can be closely linked with the visalisation module. This
module can be implemented according to differents
technologies, as objects or agents oriented programming.
Agents can be a relevant technology to assume, for
example, a coupling with GIS (Geographic Information
Systems) as proposed in (Maillé and Espinasse, 2005).

The table 1 summarizes the main functions of each
functional module of the EDSS generic architecture. For
each module specific input and output data are also
mentioned.

Modules Main function assumed Data
Modelling Model elaboration

Define interactions between models
(coupling)
…

Model description
Coupling description
…

Simulation Define simulation parametrer
Manage the simulation
Take place during the simulation
Define intermediary and final results to
store
Define a scenario of simulation
Define an experience plan
…

Model description
Coupling description
Initial values
Simulation scenarios
Simulation results
…

Visualisation Display models
Define visualisation parametrer
Display the follow up of the simulation
Display the simulation results
Display the analyse results
…

Geographic data
Model description
Simulation results
Analyse results
Visualisation parametrers
…

Analyse Analyse simulation results
Analyse experience plan
…

Simulation results
Analyse results
…

User Acces to modelling functions
Acces to simulation functions
Acces to visualisation functions
Acces to analyse functions
Acces to data management functions
…

Data
management

Store a data
Consult a data
Modify a data
Delete a data
Take out a subscription to a data
…

Model description
Coupling description
Initial values
Simulation scenarios
Simulation results
Geographic data
Analyse results
Visualisation parametrer,
…

Table 1: Main functions and data of functional modules

Interactions between modules

The modules interaction matrix in Table 2 highlights
the importante interactions between functional modules of
the EDSS architecture. They somehow echo the following
sequence of action.

The modelling module (M) produces and provides to
others modules the models and coupling decriptions. The
simulation module (S) uses these informations to execute
the simulation models and produces the simulation
results. The visualisation module (V) then receives
information from all the others modules to visualize. The
analyse module (A) produces analyse results from the
simulation results, which are also used by the User
integration module (U) and the data management module
(D). The module U permits to the user to invoque others
modules. Finally, the data management module receives
information, and provides information to all the other
modules of the system.

5

 M S V A U D
M X X X X
S X X X X
V X X
A X X X
U X X X X X
D X X X X X

Table 2. Modules interactions matrix

From a generic architecture to an integration
infrastructure

The proposition of a generic functional architecture for
EDSS design appears difficult to define. The main reason
is that various software solutions can be choosen for each
fuctional module. Moreover, the importance of
interactions between the software modules composing the
EDSS needs interoperability facilities.

Consequently, a generic software architecture dedicate to
EDSS has to propose a specific software module
supporting these interoperability facilities. This specific
module, named an integration infrastructure, has a central
place in this generic architecture as illustrated in the
Figure 3.

Figure 3: Functional modules integration

Such an infrastructure should integrate existing
software solutions for each of the different functional
modules, and to support theirs interactions. Next section
presents a generic architecture based on an integration
infrastructure complying with these requirements.

4. AN AGENTS BASED INTEGRATION
INFRASTRUCTURE

The “functional” modules introduced in the preceding
section are largely interacting with each other. Each of
these modules provides and uses information and services
to/from other modules. Interactions may occur in the
module itself as for example in the case of coupled
simulation. The user integration and data management

module are transverse to all the other modules.
The integration infrastructure has to permit integration

and interoperability of software module (functional
modules) to fulfill the functions required for decision-
making support in the specific context of EDSS design.
Two levels of integration services can be distinguished:
services for decision-making integration related to the user
requirement in the decision-making process (functional
integration), and services for software tools integration and
interoperability (software integration). The first
integration level is assumed by the functional modules
themselves. The second integration level is performed by
such an integration infrastructure.

The agent-based integration infrastructure proposed in
this paper is mainly inspired on one hand of HLA (High
Level Architecture) (DMSO-HLA 1996) (IEEE-HLA
2000). and on the other hand by the FIPA
recommendations about agent software integration (FIPA
2000).

First, this section presents the general architecture of
the integration infrastructure proposed. Then the agent
oriented approach to implement this infrastructure is
argued. Then the agent architecture of this integration
infrastructure is presented. Each of the agents composing
this architecture is presented in details, and the general
integration principle is illustrated. Finally some
implementation aspects are detailed.

General architecture

The general architecture of the integration infrastrcture
proposed is inspired of HLA (High Level Architecture)
(DMSO-HLA 1996)(IEEE-HLA 2000).

HLA, standard for distributed simulation, is a software
architecture and also an interface specification. The
interoperability between several simulators is mainly
provided in HLA by a RTI (Run Time Infrastructure)
component. This RTI component is in relation with a
federed component composed of the simulator and a
specific ambassador interface (federed ambassador).

Inspired of HLA, the general architecture of this
integration infrastrcture is composed of three main
components: Wrappers, interfaces and a mediator, as
illustred in the Figure 4 (Serment and al. 2006).

6

Figure 4: Integration infrastructure architecture

• Wrappers component: each wrapper encapsulates a
specific functional software module and integrates it
in the EDSS.

• Interfaces component: allow to connect dedicated
wrappers to the mediator.

• A Mediator component: responsible of the
interoperability of the software tools.

An agent oriented approach

For the implementation of this integration
infrastructure, an agent-oriented approach has been adopted
to develop the different components of this infrastructure.
To provide software integration solutions, the agent-
oriented approach has already been used.

First in the distributed simulation domain, the agent
oriented approach has been already successfully used to
solve integration problems. For example, the GRIDS
infrastructure (Generic Runtime Infrastructure for
Distributed Simulation) is an agent based implementation
of HLA without physical RTI (Taylor and Sudra 2002).
ARTI (Tan and al. 2000) is another HLA agent based
implementation, characterized by a distribution of a RTI
Agent on the ambassador of the federated component.
Other agents based solutions for integration and
interoperability can be mentioned as (Prasithsangaree and
al. 2004) (Giampapa & al. 2004) or (Wilson and al. 2000)
(Wang and al. 2005).

Then in the software agent domain, the FIPA
(Foundation for Intelligent Physical Agents) dedicated to
promoting to the industry the agent technology has
defined specifications to support interoperability among
agents and agent based (or not) software applications. A
specific specification concerns how software resources can
be described, shared and dynamiquely controlled in an
agent community (FIFA 2000). This recommendation
provides important normative statements suggesting ways
by which agents may connect to software via specialized
agents called “Wrapper” and “Broker”.

In conclusion, the agent approach appears a really
relevant approach to solve integration and interoperability
problems. Agent approach is adapted to the design of
middleware to integrate heterogenous softwares. Solutions
obtained are flexible and adaptative, due to the autonomy
of the agents, and also theirs ability to exploit domain
knowledge. Consequently, to implement the integration
infrastructure proposed, this agents oriented approach has
been adopted.

Agent based architecture proposed

In the agent-based infrastructure proposed, the Wrapper
component of the previous architecture is an agent that
encapsulates the functional module of the EDSS. The
Interface component is also an agent that assumes the

communication between the Wrapper component and the
mediator. The mediator, in charge of the interoperability,
is an agent itself a multi-agent system composed of
specialized agents. The following figure illustrates the
agents based architecture of the proposed intregration
infrastructure.

Figure 5. Infrastructure agent-based architecture

A FIPA specification on Agent Software Integration,
has defined [FIPA 2000] how software resources can be
described, shared and dynamiquely controlled in an agent
community. The purpose of this specification is twofold:
it allows agents to describe, broker and negotiate over
software systems, and it allows new software services to
be dynamically introduced into an agent community.

This FIPA specification is based on dedicated agents to
the integration problem. Wrapper Agent assumes the
connection between the software to integrate with the
agent integration agent community thanks to a wrapper
ontology and a software dynamic registration mechanism.
For this purpose, another agent, the Agent Resource
Broker (ARB) service, is defined. It allows advertisement
of non-agent services in the agent domain and
management of their use by other agents, such as
negotiation of parameters (e.g. cost and priority),
authentication and permission.

The agents of the infrastructure

Combining and adapting HLA and FIPA approach to
interoperability, the agents based infrastructure constitutes
an agents community composed of three main kinds of
agents:

7

• Wrapper agent. is an agent able to connect to a
software system uniquely identified by a software
description. The role of the Wrapper agent is mainly
to provide a single generic way for other agents to
interact with software systems.

• The Interface Agent is associated to a particular type
Wrapper agent, represents a particular functional
module encapsulated to the mediator agent, and
assumes the interactions between the Wrapper and
Mediator agents. Therefore, there are as many as
interface agent as the functional module in a EDSS.

• The Mediator agent insures interoperability by
coordinating the dialogues between Interfaces agents,
and providing other services such as data and clock
synchronisation. This agent is composed of
specialized agents.

These three integration agents are described in the
following sections.

The Wrapper agent is an agent that can dynamically
interface with a software system uniquely described by a
software description. The Wrapper agent will allow,
directly or indirectly, others infrastructure agents to invoke
commands on the underlying software system, translating
the commands contained in ACL messages into operations
on the underlying software system. Wrapper agents may
be able to support multiple connections to software
systems simultaneously.

A Wrapper agent that supports the full FIPA-Wrapper
ontology is considered to provide more than a simple
bridging function to an external software system. Such an
agent implicitly provides a management functionality. A
Wrapper agent supports the FIPA-Wrapper ontology with
commands and predicates for initialising and issuing
requests to software systems.

The integration services provided by the Wrapper Agent
are:
• Invoke a data or function of the software module

encapsulated.

• Assumes communications with the corresponding
Interface Agent.

• Translation of the Interface Agent requests into data
or service calls of the encapsulated module.

• Translation of the replies to the others functional
module to the interface component.

A Wrapper agent is already implemented and what
interface exists between the Wrapper agent and the
underlying software system that provides the software
service is a matter not considered in this paper.
Wrapper agents can range from agent simply accessing
SQL databases using for instance CORBA ORBs or it
could be a more general Wrapper agent, which supports
dynamic connection to any system, which has been
registered with the ORB’s Implementation Repository.

The Interface Agent has to represent the functional
module to the mediator agent and sometimes to others
Interface agents. It can be associated to one or more
Wrapper agents encapsulating similar software. This
Interface Agent transmits the data and service requests of a
Wrapper agent to the Mediator agent which in turn can
redirect these requests to the appropriate Interface agent.
These requests and information exchange are formulated in
the FIPA Agent Communication Language (ACL). The
integration services provided by the Interface Agent are:

• Communication with the corresponding Wrapper
Agent(s).

• Communication with the Mediator Agents

• Transfer (and possibly translation) of a demand from
the Wrapper Agent to the Mediator Agent.

• Transfer of a demand from the Mediator Agent to the
wrapper component.

• Calls to the Mediator Agent integration services.

The Mediator agent is the main agent of the proposed
infrastructure. Indeed, it insures integration and
interoperability between Interfaces agents and provides
other services such as data and clock synchronisation. The
integration services provided by the Mediator Agent are
numerous, the mains services are:

• Communication with the Interfaces Agents

• Transfer a demand from an Interfaces Agent to an
other one Interfaces Agent

• Acces to common/shared data

• Data flows control

• Control of the liability of the demands

• Synchronisation of the clocks for simulation

• …

To perform its numerous integration services, the
Mediator Agent is composed of specialized agents. The
main specialized agents composing the Mediator agents
are:

• Directory Facilitator (DF) Agent - this is a
specialized agent which provides a “yellow pages”
directory service. Agents advertise their services to an
agent domain by registering service- descriptions
with the DF. The main actions supported by the DF
Agent are: deregister, modify, register et search.

• Agent Resource Broker (ARB) Agent brokers a set
of software descriptions to interested agents of the
infrastructure. These agents may query on what
software services are available An ARB advertises
this service by registering with the DF. Software
services are described by textual software
descriptions, which list the properties of the software
service. Part of the software description will describe
where the software is located and how to interface
with it (for example, networking protocols, encoding

8

types supported). An agent providing the ARB
interface supports the FIPA-ARB ontology with
commands and predicates for registering and
searching for software services.

• The Agent Management System (AMS) Agent,
controls the acces and the use of the Agent
Communication Channel (ACC) of the agents. This
agent creates and deletes agents, it decides if an agent
can be registed to the agent community, and
supervises the eventual plateform migrations of
agents. The AMS agent maintains an index of all
community agents with their universal address
(GUID) thanks to the DF Agents. The main actions
supported by the AMS Agent are: authenticate,
register-agent, deregister-agent, modify-agent.

• Data Integration (DI) Agent is a specialized agent
providing data integration services. This agent
permits any agent part of the infrastructure to publish
specific information, and insures that it can be shared
among the other agents. This publishing permits to
safely update information, and diffuse it, sometimes
according to different formats, to the interested
agents. This however requires such agents to
subscribe to the DI Agent for theses informations
(possibly organized in classes). Various subscriptions
contract exist: “at each information updating”, “if
information I exceeds a value V”, “at each time step”,
etc. The (DI) Agents manages the set of subscription
contracts for the agent community.

• Synchoniser Agent is a specialized agent providing
services of time management, maily to synchronize
the clocks of several simulation softwares that are
integrated by the integration infrastructure. To
manage time, the synchroniser Agents proposes
similar services as the HLA’s RTI, in particular
algorithms of synchronization (pessimistic and/or
optimistic). This agent manages in particular different
dates as the Lookahead date and the LBTS (Lower
Bound on Time Stamp) date.

Note that the infrastructure is open to new services. For
example, if the infrastructure needs to be replicated (for
security or scability reason for example), an infrastructure-
level DF agent could be added without modifying the
previous agent organisation.

Integration principle

The integration principle can be illustrated by the
treatment of a request of data or service from a functional
software module A. This request, treated by the Wrappers,
Interface and Mediator agents of the infrastructure, leads
for instance to invoke the functional module B. The
integration and interoperability process between these A
and B software modules are performed by the infrastructure
as follows:

• The wrapper Agent that encapsulates the functional
module A receives or interpret the data or service
request from this module, translates this request in
ACL-FIPA message according a specific wrapping
ontology and transmit it to its Interface agent of the
infrastructure.

• The Interface agent receives this message specifying
this request and transmits it to the Mediator agent.

• The mediator agent insures interoperability by
coordinating the dialogues between agents of the
infrastructure, with the help of the DF and ARB
agents. The mediator provides also other services
such as data and clock synchronisation. For instance,
if the treatment of the request leads to the invocation
of the functional software module B, the mediator
will send a message to the Interface Agent associated
to the module B through information provided by the
ARB agent.

• This Interface Agent transmits the request to the
Wrapper Agent relative to the software module B.

• The Wrapper Agent of the module B receives the
message and translates it according to its ontology in
specific function calls acceptable by the software
module B.

A similar process will ensure the result of the request is
returned to the wrapper agent A.

Thie figure 6 illustrates this integration principle.

Figure 6. Integration principle

Infrastructure implementation details

The integration infrastructure for EDSS development
proposed in this paper is currenty under development in
the LSIS laboratory. More precisely we are specifying in
details the models of each agents composing the
infrastructure and the different domain ontology needed,
according the FIPA specifications.

The agents implied in this infrastructure are deliberative
agents and FIPA compliant. The FIPA compliant agents
platform chosen to implement this infrastructure is JADE
(Jade) JADE provides an Agent Communication Channel
(ACC) permitting a message-routing function for inter-
agent communication. These messages exchanged between
agents are defined according to the ACL-FIPA standard.
The ACC of JADE can be accessed by non-agent entities
in order to route messages to agents but non-agent entities
cannot be the recipients of messages routed via the ACC.

The deliberative agents are developed in JESS (Jess).

9

Consequently the agents communicate in ACL-FIPA
language, with the clips contents language and use
specific ontology adapted to the communication context.

The ACC of JADE provides a message-routing
function for inter-agent communications. Messages are
defined according to the ACL-FIPA standard. It can be
accessed by non-agent entities in order to route messages
to agents but non-agent entities cannot be the recipients of
messages routed via the ACC.

5. CONCLUSIONS AND PERSPECTIVES

In order to facilitate the development of Environmental
Decision Support Systems (EDSS) based on simulation,
this paper has attempted to define a generic software
architecture. In this aim, based on this study of some
relevant EDSS project, we have defined the major
functional requirements by such systems should meet.
Then the functionalities of software modules supporting
these functional requirement, and interactions between
these modules have been defined.

Due to the various software solutions that can be
adopted for each functional software module composing
the EDSS, and the importance of interactions between
these modules, integration and interoperability of such
modules appear as the main problem to solve.
Consequently, a generic agent based integration
infrastructure has been proposed, mainly inspired on one
hand of HLA (High Level Architecture), and on the other
hand of the FIPA recommendations about agent software
integration. Each of the agents composing this agent
based integration infrastructure has been presented in
details, the general integration principle illustrated, and
some implementation details has been introduced

Currently we are finalizing the specifications of the
integration infrastructure. The integration infrastructure is
currenty in development under the JADE multiagents
plateform. We are defining the behaviours of each agent
composing the infrastructure and the different domain
ontology needed, according the FIPA specifications. To
develop and validate the infrastructure, a realistic EDSS is
considerated (Serment and al 2006). This EDSS concerns
the hydraulic management of the Camargue, a strongly
human influences ecosystem on the Rhône river delta in
the south of the France. This EDSS would integrate the
various simulation softwares developed in the SimFonHyc
project by the LSIS laboratory (Espinasse and
Franchesquin 2005).

6. REFERENCES

Andriamasinoro F., 2003. Proposition d’un modèle d’agents !eprese !epr
sur la motivation naturelle. Thèse de Doctorat, IREMIA, Université de
La Réunion, France.

Anthony R.N. 1966. “Planning and Control Systems : a Framework for
Analysis”, Cambridge, Mass, Harvard University Press.

Becu N., Perez P., Walker A. Barreteau O., and Le Page C. 2003.
“Agent based simulation of a small catchment water management in
northern Thailand, Description of the CATCHSCAPE model”,
Ecological Modelling 170, Elsevier, pp.319-331.

Borrell F. Riaño D., Sànchez-Marrè M. and Rodriguez-Roda I. 2002.
“Implementation of a Multiagent Prototype for WWTP Management”,
IEMSS, Integrated Assessment and Decision Support System, Lugano,
Suisse.

Botequilha Leitão A., Grueau C. and al. 2001. “Decision Support
System for Planning and Management of Biodivesity in Protected
Areas, The research project PROBIO”, Proceedings of the
international Workshop on Geo-Spatial Knowledge Processing for
Natural Ressource Management, Varese, Italy, 2001, pp. 145-151.
http://alfa.ist.utl.pt/~cvrm/projects/probio

Bousquet F. and Le Page C., 2004. Multi-agent simulations and
ecosystem management : a review. Ecological Modelling 176, p. 313-
332,

Campos A.M.C., 2000. Une architecture logicielle pour le
développement de simulations visuelles et interactives individus-
centrées : application à la simulation d’écosystèmes et à la simulation
sur le Web. Thèse de Doctorat, Université Blaise Pascal – Clermont II,
France.

Cortès U., Sanchez-Marrè M. ad Ceccaroni L. 2000. “Artificial
intelligence and environmental decision support systems”, Applied
Intelligence 13(1), pp.5-6.

Courdier R., Guerrin F., Andriamasinoro F.H., and Paillat J.M. 2002.
“Agent-based simulation of complex systems : application to collective
management of animal wastes”, Journal of Artificial Societies and
Social Simulation, vol. 5, no.3.

Denzer D., Swayne A. and Schimak G., Environmental Software
Systems. Chapman & Hall, 1997.

IEEE-HLA. 2000. “High Level Architecture”, IEEE Standard for
Modeling and Simulation (M&S) High Level Architecture (HLA)---
Federate Interface Specification --- 1516.1-2000

DMSO-HLA. 1996. HLA (High Level Architecture).
https://www.dmso.mil/public/transition/hla/

Espinasse B. and Franchesquin N., 2005. Multiagent Modelling and
Simulation of Hydraulic Management of the Camargue. Simulation,
Vol. 81, Issue 3, p.201-221.

Ferber J., Gutknecht O. and Michel F., 2000. MadKit : une plate-forme
multi-agent générique. Rapport de !epresent n°R.R.LIRM 00061, LIRM.

FIPA, 2000. IEEE Foundation for Intelligent Physical Agents,
http://www.fipa.org/

GeoTools. 2006. http://www.geotools.org/

Giampapa, J., K. Sycara, S. Owens, R. Glinton, Y. Seo, and B. Yu.
2004. “Extending the OneSAF testbed into a C4ISR testbed”.
SIMULATION 80 (12).

Jaber A. 1999. “Un système d’agents logiciels intelligents pour
favoriser la !epresentat entre des systèmes d’aide à la !epresen dédiés à
la !epresenta des risques naturels”. PhD thesis, Eco1e des Mines de
Paris, France.

JADE, JADE tutorial http://jade.tilab.com

Janssen R. 1992. “Multiobjective Decision Support for Environmental
Management”, Kluwer Publishers.

JESS, http://hezberg.casandia.gov/jess .

Maillé E., B. Espinasse. 2006. “Decision Support for Forest Fire Risk
Evaluation: Dynamic Modelling and Spatio-Temporal Integration”,
Proceedings of the IEEE 1st International Symposium on Environment,
Identities and Mediterannean Area (ISEIM 2006), Corte-Ajaccio,
France, July 2006.

Mowrer, H.T. 1997. “Decision support systems for ecosystem
management: an evaluation of existing systems”, General Technical
Report RM-GTR-296.

Müller, J. P. 2004. “MIMOSA : !epresentation des connaissances et
simulation”. http://lil.univ-littoral.fr/Mimosa

10

Nute D., Potter, W.D., Maier F., Wang J., Twery M., Rauscher H.M.,
Knopp P., Thomasma S., Dass M., Uchiyama H. and Glende A. 2003.
“NED-2: an agent-based decision support system for forest ecosystem
management” Environmental Modelling & Software, Elservier, 2003.
http://www.fs.fed.us/ne/burlington/ned/

Prasithsangaree P., J. Manojlovich, S. Hughes and M. Lewis, 2004.
“UTSAF: A Multi-Agent-Based Software Bridge for Interoperability
between Distributed Military and Commercial Gaming Simulation”,
SIMULATION, Vol. 80, Issue 12, December 2004, pp. 647-657.

Reynolds, K., Bjork, J., Rienmann, H.R., Schmoldt, D., Payne, J., King,
S., Moeur, M., DeCola, L. Twery, M. Cunningham, P., Lessard, G.
1999. “Decision Support For Ecosystem Management”, Ecological
Stewardship: A Common Reference for Ecosystem Management,
Elsevier Science Ltd., pp. 687-722.

Serment J., B. Espinasse, E. Tranvouez. 2006. “Environmental
Decision Support System for Hydraulic Management of the Camargue:
Functionalities and Software Architecture», Proceedings of the IEEE
1st International Symposium on Environment, Identities and
Mediterannean Area (ISEIM 2006), Corte-Ajaccio, France, juillet
2006.

Servat, D., Perrier E., Treuil J-P. and Drogoul A., 1998. When Agents
Emerge from Agents: Introducing Multi-Scale Viewpoints in Multi-
Agent Simulations. Proceedings of MABS’98, 183—198, LNAI n°
1534, Springer-Verlag, Berlin, Germany.

Tan G., Xu L., Moradi F., Zhang , 2000. “An Agent-Based DDM
Filtering Mechanism”, in proceedings of MASCOTS 2000, 8th

International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunications Systems, San Francisco, USA, pp.
374-381.

Taylor S. J. E., R. Sudra, 2002. “Modular HLA RTI Services: The
GRIDS Approach”, Sixth IEEE International Workshop on Distributed
Simulation and Real-Time Applications (DS-RT’02).

Wang F., S. J. Turner, L. Wang, 2005. “Agent Communication in
Distributed Simulations”, Lecture Notes in Computer Science, Volume
3415, Feb. 2005, pp. 11-24.

Wilson L. F., D. Burroughs, J. Sucharitaves, A. Kumar 2000. “An
Agent-Based Framework for Linking Distributed Simulations”.
Proceedings of the 2000 Winter Simulation Conference J. A. Joines, R.
R. Barton, K. Kang, and P. A. Fishwick, eds.

