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Abstract: This paper presents a cooperative repair method for disruption management in 
industrial systems. Our method aims to enable industrial systems, and in particular 
workshops, to minimize the consequences of disruptions in their forecasted schedule. In 
order to define rescheduling measures proportional to a disruption importance, a set of 
distributed repair strategies, ranging from isolated to cooperative solving process, are 
defined. Agent based modelling is used to specify and operate these cooperative 
processes. Agent-based simulation illustrates the application of this method on a 
workshop where autonomous machines cooperate to manage disruptions.  Copyright © 
2006 IFAC 
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1. INTRODUCTION 

 

Distributed Artificial Intelligence (DAI), and more 
particularly MultiAgent Systems (MAS), proposes 
innovative solutions to many industrial problems 
(Müller and Parunak, 1998). A distributed approach 
can improve the modelling and performances of 
complex systems such as managing changes in a 
schedule in a disrupted environment (Pendharkar, 
1999). This paper presents a cooperative repair method 
for industrial plans with a Cooperative Distributed 
Problem Solving (CDPS) approach supported by a 
MAS framework. This method proposes to minimize 
the consequences of disrupting events on their 
production scheduling. We aim at testing and validating 
the systems agility through agent-based simulation. 
 

The second section of the paper introduces the 
disruption management problematic. The third section 
presents a cooperative repair method for disruption 
management based on distributed repair operations on 
schedule organized in strategies. In section four, a 
multi-agent modelling approach enabling the 
cooperative repair method is introduced. The section 
five develops the agent-based simulation of these 
cooperative methods with some details on the 
implementation. Simulation results are also presented 
on an illustration case to validate the first steps of the 
method. Finally, we conclude on the interests of these 

methods and its perspective of application to the supply 
chains management. 

 
 

2. DISRUPTION MANAGEMENT PROBLEMATIC 
 

In nowadays industrial context the intrinsic uncertainty 
of the environment generates events that disrupt pre-
established plan controlling processes. The problem of 
disruption management is present in most of industrial 
areas and becomes a high interest topic (Gu and Qi, 
2004). The main problem consists in dealing with these 
unanticipated events that may disrupt the system and 
get the plan deviate from its intended course and even 
get it unfeasible. The problem becomes “how to reach 
the plan goals while minimizing the effects "(negative 
impact") of the disruption(s)”. A disruption is defined 
as a situation during the operation's execution in which 
the deviation from plan is sufficiently large that the 
plan has to be changed substantially.  

 

An usual solution, in industry, consists in pre-
producing a recovery plan that can be applied on the 
day of the disruption and that integrates recovery 
solution(s). But this approach often lacks reactivity and 
decision-makers often stop after having generated a 
single feasible option for recovery; (computation time 
simply does not allow for several structurally different 
alternatives generation) (Clausen et al., 2001). 
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Various works has relied upon distributed scheduling to 
generate more efficiently these plans. We distinguish 
four main classes of approaches among these works 
(see (Tranvouez, 2001) for a detailed discussion and 
more complete review): Resource allocation, Decision 
support, Coordination and Cooperation. We have 
considered a strict definition of cooperation that 
excludes interaction between solving entities (or 
agents) belonging to two different hierarchy levels. 
These classes are described below. 
 

Decision Support: the solving process focuses on 
helping a human decision-maker as in (Grabot et al. 
1999). Such works intend to integrate one or several 
users in the solving process, taking into account their 
individual objectives or preferences. Computation is 
distributed between a scheduling software (distributed 
or not) and one or more human decision makers. 
 

Resource Allocation: the problem is to find the most 
efficient resource (see (Tharumarajah 2001) for a 
detailed review). This process is repeated for all the 
tasks to be scheduled and is usually based on a call for 
proposal mechanism. The allocation can be controlled 
by a manager agent (named once for all or regularly 
changed) as in (Rabelo and Camarhina-Matos, 1998), 
decentralised in (Ferrarini and Bertrand, 1997) or 
mixed. 
 

Coordination (centralised or decentralised), the 
scheduling problem is decomposed in several sub-
problems: how to maintain the coherence of the local 
solutions of each sub-problem while dealing with their 
dependencies. Then how to ensure an efficient global 
solution is reached by interacting agents. Strong 
hierarchical societies usually rely upon coordinators to 
control and enforce behaviour from subordinate agents. 
Other works propose decentralised societies with 
mutual adjustments mechanisms as in (Liu and Sycara, 
1998). 
 

Cooperation, when autonomous problem-solving 
entities jointly participate to the solving process as in 
(Miyashita, 1998; Espinasse and Tranvouez, 1998). 
Such works consider that pure hierarchical organisation 
of production systems act as a brake on their reactivity. 
On the opposite, they propose a decentralised approach 
where autonomous decision centre cooperate in order to 
solve resource conflicts. 
 

This literature review reveals that few research works 
use full cooperative interactions as a solving process. 
Moreover, online generation of plans for dealing with 
environment uncertainty does not usually take into 
account the degree of impact of the new plans on the 
organisation of the industrial system. Our aim is to 
promote cooperation down to the lowest level of the 
industrial system hierarchy, in order to tackle the 
disruption the soonest possible as well as providing 
means to react adequately to a disruption importance. 
In other words, we propose a distributed problem 
solving method allowing the lower levels' decisional 
centers to autonomously seek to minimize the changes 
in the pre-disruption plans (and so avoid frequent 
complete computation and organisation modifications 
when subsequent adjustment could be made). Thus 

earlier time expensive computations are capitalized and 
the solving process includes the human factor as all 
these changes have strong consequences on how human 
operators plan and work.  
 
 

3. A COOPERATIVE REPAIR METHOD FOR RE-
SCHEDULING  

 

This method is based on an organisational modelling of 
an industrial system granting sufficient decisional 
autonomy to the considered resources. As such, 
application domains can range from production 
workshops to supply chains (Dalmau, 2004). In this 
paper, the method is tailored to a production workshop; 
where the considered autonomous resources are the 
production machines. This autonomy enables the 
machines to cooperate in order to manage the effects of 
a disruption (such as a machine or tool breakdown, 
delays on production …) the soonest possible (Ounar et 
al., 2002). To reach this objective, we have defined a 
set of rescheduling strategies consisting in sequences of 
repair scheduling operations which are detailed below. 
 
 

3.1 Distributed Repair Operations on schedule 
 

A repair scheduling operation can be defined as the 
limited and local modification of a previously 
computed scheduling (Zweben et al., 1993). These 
modifications consist in task shift or tasks permutation 
in one or several production plans. Repair scheduling is 
particularly adapted to work with incomplete 
scheduling (some tasks are not endowed) or partially 
deficient (time constraints violation) resulting for 
example from workshop disruptions.  
 

Moreover, this approach has already been successfully 
applied to distributed scheduling (Rabelo and 
Camarinha-Matos, 1998). Repair solutions allow 
confining rescheduling to a single production machine 
while promoting negotiation or cooperation between 
machines. As an example, Miyashita’s CAMPS 
distributed scheduling system (Miyashita, 1998) is 
based on a multiagent architecture composed of three 
agent types: (i) a manager agent representing 
costumers ; (ii) planner agent associated to a product 
and (iii) scheduler agents associated to a resource. 
Conflicts in the local scheduling computed by the 
agents are sorted out through negotiations. 
 

Such operations, when performed on a particular 
machine scheduling, must comply with other machines 
production plans. This constraint derives from the 
distributed nature of the solving approach and thus 
requires machines to know part of the other machines 
plan. The temporal margin d_min and d_max are 
defined in that purpose. d_min (resp d_max) constitutes 
the earliest (resp. latest) beginning time of a task 
execution. Thus all the constraints of a task are 
summarized in these two variables enabling a machine 
to know to what extend it can modify its plan without 
jeopardizing other machines plans. Cooperation and 
negotiation take place when such margins appear to be 
insufficient to manage a disruption effect. 

 
 



3.2 Distributed Repair Strategies 
 

The disruption management process is organised in 6 
steps, each step implementing a particular repair 
strategy. When it cannot be handled at the step n, the 
disruption is passed on the step n+1 denoting its 
increasing threat (i.e. whether it involves one, two or 
several machines,) to the scheduling stability. Below a 
typical sequence of steps is illustrated in figure 1: 

 
This sequence begins with a disrupted machine, (i.e. the 
machine targeted by the disruption), trying to handle 
alone the disruption by modifying locally its scheduling 
(Step 1 - arrow 1 on figure 1). This is done with respect 
to other machine constraints. In case of failure Step 2 
requires the disrupted machine to engage unilateral 
cooperation (e.g. task transfer from one machine 
workload to another) (arrow 2a) or bilateral 
cooperation (tasks exchanges between two machines - 
arrow 2b). Confronted to a strong disruption, Step 3 
consists in extending the cooperation process to all 
machines of the workshop (arrow 3). If nothing can be 
done at this point, the disruption is said to pass from 
level 3 (the machine level) to level 2 (the workshop 
level) as indicated by arrow 4a. This emphasizes that 
the disruption impact now concerns the whole 
workshop. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Rescheduling Strategies 
 

Step 4 to 6 are used when the disruption is too 
important and requires global rescheduling, first tried 
by the workshop coordinator on the machines under his 
responsibility (arrow 4b). If this fails, cooperation with 
other workshops is engaged with mechanisms similar to 
those of step 2 and 3 (step 5). Finally, the workshop 
coordinator transmits information on the disruption, to 
the production manager (level 3) in order to relax some 
of the constraints (step 6). 
 

These 6 steps intend to tackle the disruption effects 
with actions gradually increasing in complexity. First 
one machine then two are concerned to finally extend 
the disruption impact to the whole workshop or 
production facility.  
 
 
 

3.3 Solution Evaluation 
 

The evaluation of solution s is based on a multicriteria 
function measuring its efficiency (how successfully the 
disruption is absorbed), its complexity (the range of 
scheduling modifications the disruption caused) and its 
manoeuvrability (how the solution affects the 
scheduling liberty margin). These three pragmatic 
criteria enable considering solutions that solve 
efficiently a disruption with limited plan modifications 
as well as preserving the plan potential reactivity to 
future disruptions. Some examples on how such criteria 
can be measured are proposed. 
 

Efficiency, noted E(s), is measured by the mean delay 
of the production tasks computed as described below. It 
can either be optimistic (delay and advance are 
compensable) or pessimistic (only delays are 
considered) and as well be computed locally for a 
machine or globally. Of course, other criteria can be 
included through a mulcriteria function. 
 

Complexity, noted C(s), is defined as a weighted sum 
of the type and number of repair operations used (how 
many shift, permutation …) as well as the strategy used 
(internal solving, cooperative rescheduling …). For 
example shift operations can be seen as more easily to 
put in place (in the operator point of view) instead of 
permutations. The same logic is applied to weight 
repair strategies: task transfer for example involves 
only one machine whereas tasks exchange between two 
machine results in two workload modifications. Note 
that this complexity definition is also a measure of the 
disruption magnitude.  
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with 
- s : a repair solution 
- Ss : weight of the strategy used to obtain s. 
- op : number of repair operations used to obtain s. 
- opi : weight of the repair operation type i (e.g. shift). 
- ni : number of repair operation type i used to obtain s 

 

Manoeuvrability, noted M(s), is computed as an 
average of the tasks margins. This avoids selecting 
solution resulting in over constrained plans which may 
jeopardize the plan stability if other disruptions occur. 
Individual manoeuvrability (Mm) is computed locally 
by each machine. 
 

The solving process follows a contract net protocol 
(Smith and Davis (1998) where the disrupted machine 
plays the coordinator role. This role is attributed 
according to the disruption context and is not 
previously decided once for all. For example, in the 
task transfer strategy (unilateral cooperation of step 2), 
the disrupted machine sends a call for proposal to the 
machines able to carry out one of its tasks. If a machine 
finds a feasible solution, it is proposed to the disrupted 
machine. The latter can evaluate order and select the 
best solution. 
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4. MULTIAGENT MODELLING 
 

Multiagent modelling enables defining the organisation 
of the agent society as well as the agent internal 
structure. Because of space limits, it is briefly exposed 
here (interactions will not be studied). However, it is 
interesting to note that multi-agent modelling conveyed 
the concepts needed to describe more precisely how the 
method could be undertaken in a workshop. Therefore, 
multi-agent modelling participates to the definition of 
the cooperative disruption management method. 
 
 

4.1 Multi-agent Organisation 
 

The multiagent organisation (figure 2) is composed of 
two main agent types: service agents and scheduling 
agents. 
 

 
 

Figure 2. Multiagent Organisation 
 

The service agent manages the MAS operations 
independently of the MAS application domain. For 
example, the ANS and R-agent agents can be defined as 
white and yellow directories maintaining information 
on names, physical address and competencies of all the 
agents. The interface agent allows interacting directly 
with the MAS either to feed the MAS with data or to 
probe agents’ knowledge or running state.  
 

The scheduling agents mirror the actual workshop 
organisation the MAS represent. The C-agent 
(representing the workshop coordinator) can access all 
the information from the M-agents it supervises. This 
role is minor until step 4; and thus we have stressed the 
modelling effort on the M-agent. However, it may 
intervene to translate external disruption into one or 
several internal disruptions. The solving process is 
presently mainly carried on by the M-agent (step 1 to 
3). This agent can compute local rescheduling as well 
as cooperate with other M-agents to solve the 
disruption.  
 
 

4.2 Agent Model 
 

The proposed agent model defines the structure of the 
agent help specifying its individual and social 
behaviour. Each agent is built upon four modules as 
illustrated in figure 3. 
 

The Communication Module manages message sending 
and receiving to and from other agent(s). It also insures 
messages are correctly expressed (ie follows ACL 

syntax), and understandable (i.e. referring to known 
cooperation abilities) as well as pertinent (i.e. not 
referring to old conversations). 
 

 
 

Figure 3. M-agent Model 
 

The Knowledge Module contains the agent self and 
social knowledge. Self-knowledge defines what the 
agent knows about itself and its associated production 
machine. This includes its physical competencies (e.g. 
machine production technical properties), cognitive 
competencies (possible cooperation, expertise…), 
domain knowledge (machine state or current activities) 
and work memory (current working plans). Social 
knowledge defines what the agent knows about other 
agents i.e. their names and parts of their self-
knowledge. 
 

The Decision Module controls the actions undertaken 
by an agent. This implies the management of the 
Behaviour Plans execution as well as decision making 
support such as solution evaluation function. The agent 
model proposed here can thus be related to a Belief 
Desire Intention (BDI) approach (Fisher et al., 1996), 
as agents behaviour are explained and designed by 
plans denoted Behaviour Plans (BP). Whereas the 
expertise in the Knowledge Module describes what the 
agents can do, the Expertise Module states how to carry 
out these actions. Thus, this module contains the BP 
specifying the agent behaviour schemes it can follow 
during its execution (disruption management, answers 
to queries...). The distributed algorithm, globally 
described in section 3.2, benefits from agent concepts 
(autonomy, communication protocol, behaviour 
definition through plans…). Therefore, multiagent 
modelling is a part of the cooperative repair method 
definition. 
 
 

5. MULTIAGENT SIMULATION 
 

A software prototype called MACSS has been 
developed to test and validate rescheduling strategies 
by simulation. Multiagent simulation with MACSS 
consists in providing each agent with the production 
plan of its associated machine. The platform is first 
introduced, before presenting and analyzing a 
simulation case. 
 
 



5.1 An Agent based simulation platform 
 

MACSS implementation is based on Java and Jess (see 
http://herzberg.ca.sandia.gov/jess/docs/index.html). 
Java is widely used in agent technology because of its 
APIs and intrinsic properties. Jess is a free CLIPS 
Expert System building shell developed in Java [21] 
providing rule-based, object-oriented, and procedural 
programming. MACSS actually consists of several Jess 
Console instances connected through a TCP/IP 
network. Agents’ communication follows the Agent 
Communication Language standard proposed by the 
Foundation for Intelligent and Physical Agent 
(http://www.fipa.org).  
 

Concerning scheduler agents, only the M-agent has 
been developed as only strategies from step 1 to 3 are 
currently studied. Its architecture follows the agent 
model defined previously in Figure 4 and reflects the 
Communication, Decision, Expertise and Knowledge 
modules. Behaviour Plan (BP) representations in Jess 
associate each state and transition to a rule. State 
activation is then simulated by asserting and retracting 
facts which are in turn used by the Jess inference 
engine to activate transition rules. Java is preferred for 
procedural programming and when fast computation is 
required. Thus, message transport, agent network 
connectivity and scheduling repair computations are 
implemented in Java. 
 

The agent architecture isolates domain dependent 
information or computations in the Knowledge and 
Expertise module. Therefore, to reuse this agent for 
another application, the MAS programmer only has to 
specify the agents knowledge through facts, write the 
adequate BP and if necessary the corresponding Java 
code. Thus, MACSS has already been used to design 
and implement a multiagent ecosystem management 
support system (Franchesquin et al., 2003) and a supply 
chain management system (Ferrarini et al., 2001). 
 
 

5.2 Simulation Case and results 
 

To illustrate how the system works, this section 
presents a simulation case where a workshop is 
composed of three machines. Each machine has a 
specific tool gear with different physical constraints 
thus restricting the set of possible cooperations. Each 
M-agent is named by its associated machine 
identification (i.e. Mx).  
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Figure 4. Disrupted Workshop Schedule 
 

The simulation case states that agent M3 is informed of 
a disruption delaying task (2,2) end by 3 seconds 
(doubling its duration). Figure 4 shows the workshop 

initial state when the disruption occurs. The numbers 
above tasks represent their execution duration. 
 

Because of lacks of margin, agent M3 tries a transfer 
cooperation consisting in requesting other machines to 
process task (5,4) in order to free sufficient space to 
absorb the disruption. In this case, only M2 owns the 
tool required. After verifying it can physically process 
the operation, M2 engages repair scheduling 
computations to see if it can respect task (5,4) 
constraints. Dotted arrows on figures 4 delimit the time 
window when the task must start in order to respect 
constraints from job 4. 
 

M2 then computes that left shifting tasks (5,2) and (2,3) 
enable to add task (4,3) to its workload. After 
confirmation from M2, M3 in turn right shift tasks (1,2) 
and (3,3). Finally, both agents update their tasks 
margins value (as some beginning dates have been 
modified) and inform the other agents of these 
modifications. As shown in figure 5, each solution 
stores the criteria value, the sequence of repair 
operations used and the resulting plan. 
 
Solution 1   
 

 >> C = 8.0, R = 0.5, M = -0.5 => E = 8.0 
  

Repair Scheduling Operations :  
 

Left_Shift of Task ( 3 )=( 5,2 ) . 
Left_Shift of Task ( 4 )=( 2,3 ) . 
Insert        Task ( 5 )=( 4,3 ) . 
 

Resulting Plan from : <INSERTION> 

[...] 
 Task ( 2 )=( 4,1 ) Start 4 for 5sec. 
 Task ( 3 )=( 5,2 ) Start 9 for 5sec. 
 Task ( 4 )=( 2,3 ) Start 14 for 5sec. 
 Task ( 5 )=( 4,3 ) Start 19 for 3sec. 
[...] 

 

Figure 5. Solution representation in MACSS 
 
 

5.3 Discussion on results 
 

Experimentations (limited at the moment to two 
strategies) confirm the feasibility of a cooperative 
repair scheduling approach. Even if these results only 
partially validate this method, the cooperation 
processes did manage the disruption. The solving 
process can appear strongly dependant of sufficient 
margins (i.e. gap between d_min and d_max) in the 
workload. This is particularly true for the task transfer 
cooperation. However, different cooperation types such 
as task exchange cooperation (i.e. reciprocal transfer 
cooperation) or parallel modification of two agents plan 
this can lessen this margin dependence. This 
cooperation depends less on shifting repair operations 
but rather on permutation operations (within a machine 
workload or between two machines). 
 

The simulation also shows MACSS ability to simulate 
complex interactions between cooperative agents, and 
so allows to validate this multi-agent approach for 
being the core of a future Decision Support System 
such a platform could either be a simulation based 
decision aid system to evaluate the impact of this 
disruption management method on industrial systems, 
or be a frame for a distributed control system. 
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6. CONCLUSION  
 

This paper has presented a cooperative repair method 
aiming at minimizing the disruption effects on a 
workshop activity. This method is based on repair 
operations and strategies extending progressively the 
impact zone of the rescheduling process. Production 
machines are granted autonomy and local decision 
abilities in order to enable those machines absorbing 
disruptions through different cooperation modes. 
Applying this autonomy, each machine may use 
particular criteria and/or formula in order to adapt to 
the workshop heterogeneity. The disruption 
consequences are thus limited with the least 
modifications possible of the forecasted schedule. 
 

If autonomy and cooperation are considered as 
unavoidable for agile manufacturing, industrial reality 
tempers this objective. Therefore distributed 
cooperative disruption management may not easily be 
undertaken in industrial workshop. Interestingly, as 
much as autonomy is needed at a micro level, it is 
compulsory at a macro level. Supply chain management 
for example is based on the assumptions that companies 
keep there autonomy, do not necessarily share all their 
information, are distributed (in all meanings) but try 
nevertheless to coordinate their activities to improve 
global behaviour. In such condition, our cooperative 
method does fit the objectives and constraints of supply 
chain management. Small adjustment are needed 
(machines are companies, tasks are products or lots) 
and the cooperative behaviours remain relevant. 
Current work (Dalmau, 2004) explores these 
opportunities. 
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