

!
!
!
!
!

COOPERATIVE DISRUPTION MANAGEMENT IN INDUSTRIAL SYSTEMS:
A MULTIAGENT APPROACH

!
!

Erwan TRANVOUEZ, Alain FERRARINI and Bernard ESPINASSE
!
!

LSIS UMR CNRS 6168, Université Paul Cézanne, Domaine Scientifique de Saint Jérôme,
Marseille, 13397 Cedex 20, France. {forename.name@lsis.org}

!
!
!

!
Abstract: This paper presents a cooperative repair method for disruption management in
industrial systems. Our method aims to enable industrial systems, and in particular
workshops, to minimize the consequences of disruptions in their forecasted schedule. In
order to define rescheduling measures proportional to a disruption importance, a set of
distributed repair strategies, ranging from isolated to cooperative solving process, are
defined. Agent based modelling is used to specify and operate these cooperative
processes. Agent-based simulation illustrates the application of this method on a
workshop where autonomous machines cooperate to manage disruptions. Copyright ©
2006 IFAC

Keywords: Disruption Management; Repair Scheduling; Distributed Artificial
Intelligence; Multi-agent Systems, Cooperative Problem Solving.

!
!
!
!

1. INTRODUCTION

Distributed Artificial Intelligence (DAI), and more
particularly MultiAgent Systems (MAS), proposes
innovative solutions to many industrial problems
(Müller and Parunak, 1998). A distributed approach
can improve the modelling and performances of
complex systems such as managing changes in a
schedule in a disrupted environment (Pendharkar,
1999). This paper presents a cooperative repair method
for industrial plans with a Cooperative Distributed
Problem Solving (CDPS) approach supported by a
MAS framework. This method proposes to minimize
the consequences of disrupting events on their
production scheduling. We aim at testing and validating
the systems agility through agent-based simulation.

The second section of the paper introduces the
disruption management problematic. The third section
presents a cooperative repair method for disruption
management based on distributed repair operations on
schedule organized in strategies. In section four, a
multi-agent modelling approach enabling the
cooperative repair method is introduced. The section
five develops the agent-based simulation of these
cooperative methods with some details on the
implementation. Simulation results are also presented
on an illustration case to validate the first steps of the
method. Finally, we conclude on the interests of these

methods and its perspective of application to the supply
chains management.

2. DISRUPTION MANAGEMENT PROBLEMATIC

In nowadays industrial context the intrinsic uncertainty
of the environment generates events that disrupt pre-
established plan controlling processes. The problem of
disruption management is present in most of industrial
areas and becomes a high interest topic (Gu and Qi,
2004). The main problem consists in dealing with these
unanticipated events that may disrupt the system and
get the plan deviate from its intended course and even
get it unfeasible. The problem becomes “how to reach
the plan goals while minimizing the effects "(negative
impact") of the disruption(s)”. A disruption is defined
as a situation during the operation's execution in which
the deviation from plan is sufficiently large that the
plan has to be changed substantially.

An usual solution, in industry, consists in pre-
producing a recovery plan that can be applied on the
day of the disruption and that integrates recovery
solution(s). But this approach often lacks reactivity and
decision-makers often stop after having generated a
single feasible option for recovery; (computation time
simply does not allow for several structurally different
alternatives generation) (Clausen et al., 2001).

Bernard-User
E. Tranvouez, A. Ferrarini, B. Espinasse (2006), « Cooperative Disruption Management in Industrial Systems: a Multiagent Approach »,
INCOM 2006, Special Track on Holonic and Multi-agent Technologies for Industrial Systems, Saint Etienne, 17-19 May 2006.�

Various works has relied upon distributed scheduling to
generate more efficiently these plans. We distinguish
four main classes of approaches among these works
(see (Tranvouez, 2001) for a detailed discussion and
more complete review): Resource allocation, Decision
support, Coordination and Cooperation. We have
considered a strict definition of cooperation that
excludes interaction between solving entities (or
agents) belonging to two different hierarchy levels.
These classes are described below.

Decision Support: the solving process focuses on
helping a human decision-maker as in (Grabot et al.
1999). Such works intend to integrate one or several
users in the solving process, taking into account their
individual objectives or preferences. Computation is
distributed between a scheduling software (distributed
or not) and one or more human decision makers.

Resource Allocation: the problem is to find the most
efficient resource (see (Tharumarajah 2001) for a
detailed review). This process is repeated for all the
tasks to be scheduled and is usually based on a call for
proposal mechanism. The allocation can be controlled
by a manager agent (named once for all or regularly
changed) as in (Rabelo and Camarhina-Matos, 1998),
decentralised in (Ferrarini and Bertrand, 1997) or
mixed.

Coordination (centralised or decentralised), the
scheduling problem is decomposed in several sub-
problems: how to maintain the coherence of the local
solutions of each sub-problem while dealing with their
dependencies. Then how to ensure an efficient global
solution is reached by interacting agents. Strong
hierarchical societies usually rely upon coordinators to
control and enforce behaviour from subordinate agents.
Other works propose decentralised societies with
mutual adjustments mechanisms as in (Liu and Sycara,
1998).

Cooperation, when autonomous problem-solving
entities jointly participate to the solving process as in
(Miyashita, 1998; Espinasse and Tranvouez, 1998).
Such works consider that pure hierarchical organisation
of production systems act as a brake on their reactivity.
On the opposite, they propose a decentralised approach
where autonomous decision centre cooperate in order to
solve resource conflicts.

This literature review reveals that few research works
use full cooperative interactions as a solving process.
Moreover, online generation of plans for dealing with
environment uncertainty does not usually take into
account the degree of impact of the new plans on the
organisation of the industrial system. Our aim is to
promote cooperation down to the lowest level of the
industrial system hierarchy, in order to tackle the
disruption the soonest possible as well as providing
means to react adequately to a disruption importance.
In other words, we propose a distributed problem
solving method allowing the lower levels' decisional
centers to autonomously seek to minimize the changes
in the pre-disruption plans (and so avoid frequent
complete computation and organisation modifications
when subsequent adjustment could be made). Thus

earlier time expensive computations are capitalized and
the solving process includes the human factor as all
these changes have strong consequences on how human
operators plan and work.

3. A COOPERATIVE REPAIR METHOD FOR RE-
SCHEDULING

This method is based on an organisational modelling of
an industrial system granting sufficient decisional
autonomy to the considered resources. As such,
application domains can range from production
workshops to supply chains (Dalmau, 2004). In this
paper, the method is tailored to a production workshop;
where the considered autonomous resources are the
production machines. This autonomy enables the
machines to cooperate in order to manage the effects of
a disruption (such as a machine or tool breakdown,
delays on production …) the soonest possible (Ounar et
al., 2002). To reach this objective, we have defined a
set of rescheduling strategies consisting in sequences of
repair scheduling operations which are detailed below.

3.1 Distributed Repair Operations on schedule

A repair scheduling operation can be defined as the
limited and local modification of a previously
computed scheduling (Zweben et al., 1993). These
modifications consist in task shift or tasks permutation
in one or several production plans. Repair scheduling is
particularly adapted to work with incomplete
scheduling (some tasks are not endowed) or partially
deficient (time constraints violation) resulting for
example from workshop disruptions.

Moreover, this approach has already been successfully
applied to distributed scheduling (Rabelo and
Camarinha-Matos, 1998). Repair solutions allow
confining rescheduling to a single production machine
while promoting negotiation or cooperation between
machines. As an example, Miyashita’s CAMPS
distributed scheduling system (Miyashita, 1998) is
based on a multiagent architecture composed of three
agent types: (i) a manager agent representing
costumers ; (ii) planner agent associated to a product
and (iii) scheduler agents associated to a resource.
Conflicts in the local scheduling computed by the
agents are sorted out through negotiations.

Such operations, when performed on a particular
machine scheduling, must comply with other machines
production plans. This constraint derives from the
distributed nature of the solving approach and thus
requires machines to know part of the other machines
plan. The temporal margin d_min and d_max are
defined in that purpose. d_min (resp d_max) constitutes
the earliest (resp. latest) beginning time of a task
execution. Thus all the constraints of a task are
summarized in these two variables enabling a machine
to know to what extend it can modify its plan without
jeopardizing other machines plans. Cooperation and
negotiation take place when such margins appear to be
insufficient to manage a disruption effect.

3.2 Distributed Repair Strategies

The disruption management process is organised in 6
steps, each step implementing a particular repair
strategy. When it cannot be handled at the step n, the
disruption is passed on the step n+1 denoting its
increasing threat (i.e. whether it involves one, two or
several machines,) to the scheduling stability. Below a
typical sequence of steps is illustrated in figure 1:

This sequence begins with a disrupted machine, (i.e. the
machine targeted by the disruption), trying to handle
alone the disruption by modifying locally its scheduling
(Step 1 - arrow 1 on figure 1). This is done with respect
to other machine constraints. In case of failure Step 2
requires the disrupted machine to engage unilateral
cooperation (e.g. task transfer from one machine
workload to another) (arrow 2a) or bilateral
cooperation (tasks exchanges between two machines -
arrow 2b). Confronted to a strong disruption, Step 3
consists in extending the cooperation process to all
machines of the workshop (arrow 3). If nothing can be
done at this point, the disruption is said to pass from
level 3 (the machine level) to level 2 (the workshop
level) as indicated by arrow 4a. This emphasizes that
the disruption impact now concerns the whole
workshop.

Figure 1. Rescheduling Strategies

Step 4 to 6 are used when the disruption is too
important and requires global rescheduling, first tried
by the workshop coordinator on the machines under his
responsibility (arrow 4b). If this fails, cooperation with
other workshops is engaged with mechanisms similar to
those of step 2 and 3 (step 5). Finally, the workshop
coordinator transmits information on the disruption, to
the production manager (level 3) in order to relax some
of the constraints (step 6).

These 6 steps intend to tackle the disruption effects
with actions gradually increasing in complexity. First
one machine then two are concerned to finally extend
the disruption impact to the whole workshop or
production facility.

3.3 Solution Evaluation

The evaluation of solution s is based on a multicriteria
function measuring its efficiency (how successfully the
disruption is absorbed), its complexity (the range of
scheduling modifications the disruption caused) and its
manoeuvrability (how the solution affects the
scheduling liberty margin). These three pragmatic
criteria enable considering solutions that solve
efficiently a disruption with limited plan modifications
as well as preserving the plan potential reactivity to
future disruptions. Some examples on how such criteria
can be measured are proposed.

Efficiency, noted E(s), is measured by the mean delay
of the production tasks computed as described below. It
can either be optimistic (delay and advance are
compensable) or pessimistic (only delays are
considered) and as well be computed locally for a
machine or globally. Of course, other criteria can be
included through a mulcriteria function.

Complexity, noted C(s), is defined as a weighted sum
of the type and number of repair operations used (how
many shift, permutation …) as well as the strategy used
(internal solving, cooperative rescheduling …). For
example shift operations can be seen as more easily to
put in place (in the operator point of view) instead of
permutations. The same logic is applied to weight
repair strategies: task transfer for example involves
only one machine whereas tasks exchange between two
machine results in two workload modifications. Note
that this complexity definition is also a measure of the
disruption magnitude.

"
#

$$#
op

i
iis opnSsC

1

)((1)

with
- s : a repair solution
- Ss : weight of the strategy used to obtain s.
- op : number of repair operations used to obtain s.
- opi : weight of the repair operation type i (e.g. shift).
- ni : number of repair operation type i used to obtain s

Manoeuvrability, noted M(s), is computed as an
average of the tasks margins. This avoids selecting
solution resulting in over constrained plans which may
jeopardize the plan stability if other disruptions occur.
Individual manoeuvrability (Mm) is computed locally
by each machine.

The solving process follows a contract net protocol
(Smith and Davis (1998) where the disrupted machine
plays the coordinator role. This role is attributed
according to the disruption context and is not
previously decided once for all. For example, in the
task transfer strategy (unilateral cooperation of step 2),
the disrupted machine sends a call for proposal to the
machines able to carry out one of its tasks. If a machine
finds a feasible solution, it is proposed to the disrupted
machine. The latter can evaluate order and select the
best solution.

M1
M4

M3

M2

3

3

3

3 2b

2a

C

1

4b

4a
Disruption !

Disruption
handled by
M4 only

Engage cooperation
with other workshops

Transmission
of informations
on the disruption

S

6

5

Local rescheduling of
the workshop activities

Workshop

4. MULTIAGENT MODELLING

Multiagent modelling enables defining the organisation
of the agent society as well as the agent internal
structure. Because of space limits, it is briefly exposed
here (interactions will not be studied). However, it is
interesting to note that multi-agent modelling conveyed
the concepts needed to describe more precisely how the
method could be undertaken in a workshop. Therefore,
multi-agent modelling participates to the definition of
the cooperative disruption management method.

4.1 Multi-agent Organisation

The multiagent organisation (figure 2) is composed of
two main agent types: service agents and scheduling
agents.

Figure 2. Multiagent Organisation

The service agent manages the MAS operations
independently of the MAS application domain. For
example, the ANS and R-agent agents can be defined as
white and yellow directories maintaining information
on names, physical address and competencies of all the
agents. The interface agent allows interacting directly
with the MAS either to feed the MAS with data or to
probe agents’ knowledge or running state.

The scheduling agents mirror the actual workshop
organisation the MAS represent. The C-agent
(representing the workshop coordinator) can access all
the information from the M-agents it supervises. This
role is minor until step 4; and thus we have stressed the
modelling effort on the M-agent. However, it may
intervene to translate external disruption into one or
several internal disruptions. The solving process is
presently mainly carried on by the M-agent (step 1 to
3). This agent can compute local rescheduling as well
as cooperate with other M-agents to solve the
disruption.

4.2 Agent Model

The proposed agent model defines the structure of the
agent help specifying its individual and social
behaviour. Each agent is built upon four modules as
illustrated in figure 3.

The Communication Module manages message sending
and receiving to and from other agent(s). It also insures
messages are correctly expressed (ie follows ACL

syntax), and understandable (i.e. referring to known
cooperation abilities) as well as pertinent (i.e. not
referring to old conversations).

Figure 3. M-agent Model

The Knowledge Module contains the agent self and
social knowledge. Self-knowledge defines what the
agent knows about itself and its associated production
machine. This includes its physical competencies (e.g.
machine production technical properties), cognitive
competencies (possible cooperation, expertise…),
domain knowledge (machine state or current activities)
and work memory (current working plans). Social
knowledge defines what the agent knows about other
agents i.e. their names and parts of their self-
knowledge.

The Decision Module controls the actions undertaken
by an agent. This implies the management of the
Behaviour Plans execution as well as decision making
support such as solution evaluation function. The agent
model proposed here can thus be related to a Belief
Desire Intention (BDI) approach (Fisher et al., 1996),
as agents behaviour are explained and designed by
plans denoted Behaviour Plans (BP). Whereas the
expertise in the Knowledge Module describes what the
agents can do, the Expertise Module states how to carry
out these actions. Thus, this module contains the BP
specifying the agent behaviour schemes it can follow
during its execution (disruption management, answers
to queries...). The distributed algorithm, globally
described in section 3.2, benefits from agent concepts
(autonomy, communication protocol, behaviour
definition through plans…). Therefore, multiagent
modelling is a part of the cooperative repair method
definition.

5. MULTIAGENT SIMULATION

A software prototype called MACSS has been
developed to test and validate rescheduling strategies
by simulation. Multiagent simulation with MACSS
consists in providing each agent with the production
plan of its associated machine. The platform is first
introduced, before presenting and analyzing a
simulation case.

5.1 An Agent based simulation platform

MACSS implementation is based on Java and Jess (see
http://herzberg.ca.sandia.gov/jess/docs/index.html).
Java is widely used in agent technology because of its
APIs and intrinsic properties. Jess is a free CLIPS
Expert System building shell developed in Java [21]
providing rule-based, object-oriented, and procedural
programming. MACSS actually consists of several Jess
Console instances connected through a TCP/IP
network. Agents’ communication follows the Agent
Communication Language standard proposed by the
Foundation for Intelligent and Physical Agent
(http://www.fipa.org).

Concerning scheduler agents, only the M-agent has
been developed as only strategies from step 1 to 3 are
currently studied. Its architecture follows the agent
model defined previously in Figure 4 and reflects the
Communication, Decision, Expertise and Knowledge
modules. Behaviour Plan (BP) representations in Jess
associate each state and transition to a rule. State
activation is then simulated by asserting and retracting
facts which are in turn used by the Jess inference
engine to activate transition rules. Java is preferred for
procedural programming and when fast computation is
required. Thus, message transport, agent network
connectivity and scheduling repair computations are
implemented in Java.

The agent architecture isolates domain dependent
information or computations in the Knowledge and
Expertise module. Therefore, to reuse this agent for
another application, the MAS programmer only has to
specify the agents knowledge through facts, write the
adequate BP and if necessary the corresponding Java
code. Thus, MACSS has already been used to design
and implement a multiagent ecosystem management
support system (Franchesquin et al., 2003) and a supply
chain management system (Ferrarini et al., 2001).

5.2 Simulation Case and results

To illustrate how the system works, this section
presents a simulation case where a workshop is
composed of three machines. Each machine has a
specific tool gear with different physical constraints
thus restricting the set of possible cooperations. Each
M-agent is named by its associated machine
identification (i.e. Mx).

(1,1)

20 35

3

(3,2) (4,2)

(2,1)

4

(3,1)

(4,1)

5

5 6

(5,2)

(1,2)

(2,3)

(5,3)

(1,3)

(3,4)

(2,4)

10 30

5

7 7 3 4

65

5 8

(4,3)

(4,4)

4

(5,1)

(2,2)

3

(5,4)

6

5

(3,3)

4

Figure 4. Disrupted Workshop Schedule

The simulation case states that agent M3 is informed of
a disruption delaying task (2,2) end by 3 seconds
(doubling its duration). Figure 4 shows the workshop

initial state when the disruption occurs. The numbers
above tasks represent their execution duration.

Because of lacks of margin, agent M3 tries a transfer
cooperation consisting in requesting other machines to
process task (5,4) in order to free sufficient space to
absorb the disruption. In this case, only M2 owns the
tool required. After verifying it can physically process
the operation, M2 engages repair scheduling
computations to see if it can respect task (5,4)
constraints. Dotted arrows on figures 4 delimit the time
window when the task must start in order to respect
constraints from job 4.

M2 then computes that left shifting tasks (5,2) and (2,3)
enable to add task (4,3) to its workload. After
confirmation from M2, M3 in turn right shift tasks (1,2)
and (3,3). Finally, both agents update their tasks
margins value (as some beginning dates have been
modified) and inform the other agents of these
modifications. As shown in figure 5, each solution
stores the criteria value, the sequence of repair
operations used and the resulting plan.

Solution 1

 >> C = 8.0, R = 0.5, M = -0.5 => E = 8.0

Repair Scheduling Operations :

Left_Shift of Task (3)=(5,2) .
Left_Shift of Task (4)=(2,3) .
Insert Task (5)=(4,3) .

Resulting Plan from : <INSERTION>

[...]
 Task (2)=(4,1) Start 4 for 5sec.
 Task (3)=(5,2) Start 9 for 5sec.
 Task (4)=(2,3) Start 14 for 5sec.
 Task (5)=(4,3) Start 19 for 3sec.
[...]

Figure 5. Solution representation in MACSS

5.3 Discussion on results

Experimentations (limited at the moment to two
strategies) confirm the feasibility of a cooperative
repair scheduling approach. Even if these results only
partially validate this method, the cooperation
processes did manage the disruption. The solving
process can appear strongly dependant of sufficient
margins (i.e. gap between d_min and d_max) in the
workload. This is particularly true for the task transfer
cooperation. However, different cooperation types such
as task exchange cooperation (i.e. reciprocal transfer
cooperation) or parallel modification of two agents plan
this can lessen this margin dependence. This
cooperation depends less on shifting repair operations
but rather on permutation operations (within a machine
workload or between two machines).

The simulation also shows MACSS ability to simulate
complex interactions between cooperative agents, and
so allows to validate this multi-agent approach for
being the core of a future Decision Support System
such a platform could either be a simulation based
decision aid system to evaluate the impact of this
disruption management method on industrial systems,
or be a frame for a distributed control system.

M1

M2

M3

6. CONCLUSION

This paper has presented a cooperative repair method
aiming at minimizing the disruption effects on a
workshop activity. This method is based on repair
operations and strategies extending progressively the
impact zone of the rescheduling process. Production
machines are granted autonomy and local decision
abilities in order to enable those machines absorbing
disruptions through different cooperation modes.
Applying this autonomy, each machine may use
particular criteria and/or formula in order to adapt to
the workshop heterogeneity. The disruption
consequences are thus limited with the least
modifications possible of the forecasted schedule.

If autonomy and cooperation are considered as
unavoidable for agile manufacturing, industrial reality
tempers this objective. Therefore distributed
cooperative disruption management may not easily be
undertaken in industrial workshop. Interestingly, as
much as autonomy is needed at a micro level, it is
compulsory at a macro level. Supply chain management
for example is based on the assumptions that companies
keep there autonomy, do not necessarily share all their
information, are distributed (in all meanings) but try
nevertheless to coordinate their activities to improve
global behaviour. In such condition, our cooperative
method does fit the objectives and constraints of supply
chain management. Small adjustment are needed
(machines are companies, tasks are products or lots)
and the cooperative behaviours remain relevant.
Current work (Dalmau, 2004) explores these
opportunities.

REFERENCES

Clausen J., Hansen J., Larsen J. and Larsen A. (2001).
Disruption Management. OR/MS Today.

Dalmau M. (2004). Résolution Coopérative et
Distribuée de Problème : application à la gestion
des perturbations dans les chaînes logistiques.
Master of Research MCAO, University of Aix-
Marseilles.

Denkena B., H. K. Tönshoff, M. Zwick, P.-O. Woelk
(2002). Process Planning and Scheduling with
Multiagent Systems. Proceedings of BASYS 2002.
Kluwer Academic Pbs, 339-348.

Espinasse B. and E. Tranvouez (1998).
Ordonnancement d'atelier coopératif et réactif : une
approche multi-agent. Journal of Decision Systems,
Vol 7, Special Issue, 215-237.

Ferrarini A., and J.C. Bertrand (1997). Distributed
control of a flexible manufacturing line: the way of
leading product. Proc. IFAC-CIS'97, Conference
on Control of Industrial Systems, 366-371.

Ferrarini A., O. Labarthe and B. Espinasse (2001).
Modelling and simulation of supply chains with a
multiagent system. Proceedings of ESS’01,
Workshop on Multiagent Modelling and
Simulation, 893-897.

Fisher K., J.P. Müller, M. Pischel (1996). Cooperative
transportation scheduling: an application domain
for DAI. Applied Artificial Intelligence. Vol. 10, 1-
33.

Franchesquin N., B. Espinasse, J. Serment (2003).
Coordination for contract realisation in the
hydraulic management of the Camargue.
Proceedings of ABS4, Agent Based Simulations,
Montpellier, France, April 21-23.

Grabot B., C. Berard and C. Nguyen (1999). An
implementation of man-software cooperative
scheduling: the IO Software. Production Planning
and Control, Vol. 10 N°3, 238-250.

Liu J-S and K. Sycara (1998). Multiagent Coordination
in Tightly coupled Task Scheduling, Readings in
agents, M.N. Huhns and M.P. Singh Eds, Morgan
Kaufmann Pbs., 164-171.

Miyashita K. (1998). CAMPS: a Constraint-Based
Architecture for Multiagent Scheduling, Journal of
Intelligent Manufacturing, Vol 9, 145-154.

Müller J-P. and H. V. D. Parunak (1998). Multi-Agent
Systems and Manufacturing. Proceedings of
INCOM'98, Nancy-Metz, France, June 24-26, 65-
170.

Ounar F., E. Tranvouez, B. Espinasse and P. Ladet
(2002). Pilotage par tentative d’ajustement du plan
prévisionnel. In: Méthodes du pilotage des
systèmes de production, Chap. 1, P. Pujo & J.-P.
Kieffer Ed., Hermès-Lavoisier Pbs., pp. 27-60.

Pendharkar P.C. (1999). A computational study on
design and performance issues of multi-agent
intelligent systems for dynamic scheduling
environments. Expert Systems with Applications,
Vol. 16, 121-133.

Rabelo R.J. and L.M. Camarinha-Matos (1998).
Generic Framework for conflict resolution in
negociation-based agile scheduling systems.
Proceedings of 5th IFAC Workshop on Intelligent
Sheduling/IMS'98, 43-48.

Smith R.G. and R. Davis (1998). Frameworks for
Cooperation in Distributed Problem Solving.
Readings in Distributed Artificial Intelligence,
Bond et Gasser (eds), Morgan Kaufmann, pp. 61-
70.

Tharumarajah, A. (2001). Survey of resource allocation
methods for distributed manufacturing systems.
Production, Planning & Control, Vol. 12, N°1, 58-
68.

Tranvouez E. (2001). IAD et Ordonnancement : une
approche coopérative du réordonnancement
d’atelier. PhD Thesis, University of Aix-Marseille.

Yu G., Qi X. (2004). Disruption management :
framework, models and applications. Ed. World
Scientific.

Zweben M., E. Davis, Daun B. and Deale M. (1993).
Scheduling and Rescheduling with Iterative
Repair. IEEE Transactions on Man and
Cybernetics. Vol. 23, n°6, 1588-1596.

