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1. Introduction to Machine
Learning

= Machine Learning Problem

= Supervised & Unsupervised ML

= Structure Learning Vs Parameters Learning
* Input and output representations in ML

Introduction to ILP - Bernard ESPINASSE 4




Machine Learning: Definitions

Supervised & Unsupervised ML

= Machine Learning (ML) is:

= The process by which relatively permanent changes occur
in behavioural potential as a result of experience.
(Anderson)

= Learning is constructing or modifying representations of
what is being experienced. (Michalski)

= A computer program is said to learn from experience E
with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by
P, improves with experience E. (Mitchell)
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» Supervised ML (naive Bayes classifiers, SVM, Kernels, ILP, ...):

= task of inferring a function from a set of labeled training examples (x;,
Classe))
= each example is a pair of an input (a vector) and a desired oufput
= an supervised learning algorithm :
* analyzes the training data and produces an inferred function which
try to determine the class labels for training examples
* generalize from the training data to unseen examples
» according to a set of assumptions (inductive bias) to predict outputs
given inputs that it has not encountered.

» Unsupervised ML (clustering, neural networks, ...)

= task of inferring a function to describe hidden structure from a set of
unlabeled training examples (without desired output)

= there is no objective evaluation of the accuracy of the structure that is
output by the relevant algorithm
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Supervised Machine Learning Problem

= Suppose we want that a machine learns from a set of examples from a
certain domain, concerning specific features of this domain and ouiput
related,

= The task this machine have to do is to devise a mapping from these features
to the output (label of class) this mapping is also called model/,

= A machine learning system can learn a model using a learning algorithm
considering a fraining dataset, which consists of examples for which the
outputis already known:

“Machine learning is concerned with using the right features to build the right
models that achieve the right tasks” [Flach, 2012]
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Structure & Parameters Learning in ML

We distinguish 2 types of learning:
= Parameters Learning:

= Given the structure (the rules) of this learning model M and we just want
to infer the relevant parameters of M from a training set of
examples (Ex : parameters of a classifier or variables of a rule or a set
of rules, ...)

= Structure Learning:
= This learning consists to learn :

e The structure of the learning model M from a training set of
examples (Ex : a classifier, a rule or a set of rules, ...)

* The relevant parameters of M (Ex : parameters of a classifier,
variables of rule or a set of rules, ...)

Complexity of Structure learning > Complexity of Parameter
learning
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Input and Output Representations in ML

Representations and Learning in ML

» I[nput representation :

= The inputs in the learning process, training set examples, can be
represented as:

* A propositional representation (Ex : a vector, ...)

* A symbolic representation : (Ex : in First Order Logic, in Prolog, ..

= Output representation :

= The outputs of the learning process, a model (structure + parameters)
can be expressed in:

* A numerical value: probabilities : Ex: P(Xi /Classi ), regressions,

* A symbolic representation :
= a propositional rule (without variable), decision tree, ...
= a first order rule with variables (Prolog rules)

)
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Example Learning model . .
. . Structure learning | Parameters learning
representation representation
table
STATISTICAL . -
representations Probability NO YES
LEARNING .
(Propositional)
table
DEEP LEARNING |representations in Probability NO YES
hierarchical views
INDUCTIVE LOGIC
PROGRAMMING - Symbolic Symbolic Rules YES (Any kind of
NO (Not
ILP (ALEPH, GILPS, | (First Order Logic) | (First Order Logic) structure) (Not necessary)
...)
PROBABILISTIC
INDUCTIVE LOGIC . Probability
PROGRAMMING - (Firsts‘({)T:ec:'h:o ic) * ( robabi:\i‘tci’esﬂules) VES
PILP (KLog 8 (symbolic) P
/KLogNLP)
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2. Logical & Relational Learning

Forms of Reasoning

= Forms of reasoning
= Deduction Vs Induction
= Principle of Logical and Relational Learning
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= Deduction: From causes to effect (logic inference)

facta, rulea=>b
INFER b (*First-order logic*)

= Induction: From correlated observations to rules (Learning)
observe correlation between at, b1, ... an, bn
LEARN a ->b

= Abduction: From effects to possible causes (Explanation)

rule a =>b, observe b
AN EXPLANATION a

We will now consider only Deduction and Induction.
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Reasoning illustration: the “Rock-paper-scissors”
game

(from Joana Corte-Real et al.)
The game:

» v

rock \ paper scissors

Classical rules of the game:

= R1: The rock beats the scissors (the rock crushes the
scissors)

= R2: The scissors beats the paper (scissors cut the paper)
= R3: The paper beats the rock (the rock wrap the rock)
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Reasoning illustration: the “Rock-paper-scissors”
game

(from Joana Corte-Real et al.)

V- V4

rock paper scissors
Facts (Background plays(1, ines , rock)
Knowledge - BK) plays(1, joana , scissors)
‘ Examples ‘ ‘ beats(1, ines , joana)

» Rules : rule(s) to win the game
» Facts (BK) : who and what each player plays at each round
= Example : who win at each round
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Deduction illustration in “Rock-paper-scissors” game

= Deductive Reasoning: derives new rules or facts from a pre-defined
set of rules (and other Background Knowledge):

+
lays(1, ines , rock
Facts (BK) eI, 4
plays(1, joana , scissors)
Examples ‘ ‘ beats(1, ines , joana)
Introduction to ILP - Bernard ESPINASSE 1 5

Induction illustration in “Rock-paper-scissors » game

= Inductive Reasoning :can learn a rule from examples and a set of
facts which describe the example (or Background Knowledge - BK)

lays(1, ines , rock
Facts (BK) plays(1, )
plays(1, joana, scissors)
+
Examples ‘ ’ beats(1, ines , joana)
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Predictive versus Descriptive

Induction

(Source Lavrac)

Predictive induction: Inducing
classifiers, aimed at solving
classification/prediction tasks

* Classification rule learning, Decision tree,
learning, ...

» Bayesian classifier, ANN, SVM, ...

-> Data analysis through hypothesis
generation and testing

Logical and Relational Learning

Descriptive induction: Discovering
regularities, uncovering patterns, aimed at
solving KDD tasks

* Symbolic clustering, Association rule
learning, Subgroup discovery, ...

-> Exploratory data analysis
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Goal: to find a hypothesis h, i.e., a logic program, from
a set of positive & negative examples:
= Given:
* aset of training examples T expressed in a language
chosen for representing the examples Lg,
* abackground knowledge B,

* ahypothesis language Ly that specifies the clauses that are
allowed in the hypotheses set H,

* arelation covers(e, H, B) which determines the
classification of an example e with respect to Hand B,

= Find a hypothesis h € Hthat:
* covers all positive training examples and
* none of the negative ones
with respect to background theory B.
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Logical and Relational Learning: learning settings

= Specific learning setting is determined by L g language together with the

covers relation [De Raedt, 1997]

= Most popular learning settings are:

= Learning from entailment [Plotkin 1970]: the examples are

definite clauses :

- An hypothesis h covers an example e with respect to the background

knowledge B if and only if B U H ~ e
- An example can consist of just a single fact.

= Learning from interpretations [De Raedt and Dzeroski,
1994]: the examples are Herbrand interpretations:

- An hypothesis h covers an example e with respect to the background

knowledge B if and only if e is a model of B U H
- All facts that hold in the example are known, more information is

available to the learner.
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3. Inductive Logic Programming
(ILP)

» Definition of Inductive Logic programming

* Predictive ILP and Descriptive ILP

* ILP interests: multiples relations and structured data
= Rule learning in ILP: global process

» ILP Systems Strategies for Hypothesis Search

= ILP Applications
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Inductive Logic Programming — ILP

* ILP is a technique related to Logical and Relational Learning:
= At the intersect of Machine Learning & Logic Programming

domains
Machine Logic
Learning Programming

= Which learns logic rules from examples and background
knowledge (BK)

Ex : learn the rule for grand parents, given background knowledge
of parents and examples of grandparents

= Induces rules which explain examples and BK
= based on Logic Programming (Prolog)
= ILP can be used for :
= Classification and Prediction
= to interface with experts of other areas of knowledge

Predictive ILP: Classification (1)
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(Source N. Lavrac)
= Given :
= A set of observations:
* a set of positive examples E+
* a set of negative examples E-
= A Background Knowledge B
= An hypothesis language Ly
= A covers relation
= Find an hypothesis H € Ly such that (given B) H covers
ALL positive and NO negative examples

* In logic, find H such that:
e Ve€ E+: BUHFEe (Hiscomplete)

- Vee€ E-: BUHFe (His consistent)

* In ILP, E are ground fact, B and H are (set of) definite
clauses.
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Predictive ILP: Classification (2)

(Source N. Lavrac)
= Given :
= A set of observations:
* a set of positive examples E+
* a set of negative examples E-
» A Background Knowledge B
» An hypothesis language Ly
= A covers relation
= A quality criterion

* Find an hypothesis H € L, such that (given B) H is optimal
w.r.t. some quality criterion : max. predictive accuracy A(H)
(instead find a hypothesis H € Ly such that (given B) H covers
ALL positive and NO negative examples)

Descriptive ILP: Discovery
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(Source Lavrac)

= Given :
= A set of observations:
* a set of positive examples E+

= A Background Knowledge B
= An hypothesis language Ly
= A covers relation

* Find : Maximally specific hypothesis H € Ly such that
(given B) H covers ALL positive examples

* In logic, find Hsuch that Vc € H, c is true in some preferred
model of B U E (e.g. least Herbrand model M (B U E))

* In ILP, E are ground fact, B and H are (set of) general
clauses.
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A Sample Problem: Learning of Family Relations (1)

(Source Lavrac)
Observations:

E + = {daughter(mary,ann), daughter(eve,tom)}
E - = {daughter(tom,ann), daughter(eve,ann)}
Background Knowledge:

B = {mother(ann,mary), mother(ann,tom), father(tom,eve), father(tom,ian),
female(ann), female(mary), female(eve), male(pat), male(tom),
parent(X,Y) «— mother(X,Y),
parent(X,Y) «— father(X,Y)}

ann

N

mary tom

N\

eve ian

A Sample Problem: Learning of Family Relations (2)
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(Source Lavrac)

E + = {daughter(mary,ann), daughter(eve,tom)}

E - = {daughter(tom,ann), daughter(eve,ann)}

B = {mother(ann,mary), mother(ann,tom), father(tom,eve), father(tom,ian),
female(ann), female(mary), female(eve), male(pat), male(tom),
parent(X,Y) — mother(X,Y), parent(X,Y) «— father(X,Y)}

Predictive ILP:
induce a definite clause:
daughter(X,Y) — female(X), parent(Y,X)
or a set of definite clauses:

daughter(X,Y) — female(X), mother(Y,X)

daughter(X,Y) «— female(X), father(Y,X)

Descriptive ILP: induce a set of (general) clauses:

<« daughter(X,Y), mother(X,Y)

female(X) «— daughter(X,Y)

mother(X,Y)

father(X,Y) «— parent(X,Y)
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ILP interest: Multiples relations

= Most ML techniques cannot use more than one
relation:

= e.g., decision trees, neural networks, ...

= ILP technique permit to use multiple relations:
= Ex:

* Given known relations :
father(Old, Young) and mother(Old, Young)
male(Somebody) and female(Somebody)

* ILP can learn new relations :
parent(X,Y) :- father(X,Y)
parent(X,Y) :- mother(X,Y)
brother(X,Y) :- male(X), father(Z,X), father(Z,Y).

ILP interest: Structured Data (1)
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= Example of East-West trains (Michalski) :

1. TRAINS GOING EAST 2. TRAINS GOING WEST
1 |o = A Hooo Y 1A i
= Eolale ) 2 [T e o )
; o - a
RPNVl ¢ \eHEHES AT,
: Lo G ===y 1

Question : What makes a train to go eastward ?
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ILP interest: Structured Data (2)

» Structured data = multiple relations:

has_car relation

ILP interest: Structured Data (3)

Train | Car car_properties relations
t1 cli Car | Length | Shape | Axle | Roof
t c12 and c11 | short |rectangle| 2 none
1 ci13 c12 | long |rectangle| 3 none
8l cl4 c13 | short |rectangle| 2 | peaked
t2 c21 cl4 | long |rectangle| 2 none
c21 | short |rectangle| 2 flat
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Induction of a classifier for the East-West trains example :
= BK:
= relation has_car
Ex : has_car(t1, c11), ...
= relation car_properties (length, roof, shape, axle, roof, ...)
Ex : lenght(c11, short), ...
= Examples:
the trains t1 to t10
» Classes:
east, west
= Possible Hypothesis (Theory):

east(T) :- has_car(T,C), length(C,short),
roof(C,_)
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Rule learning in ILP: global process (1)

Problem: learn grandparent rule:

= Background knowledge BK :

parent_of(charles, george)
parent_of(george, diana)
parent_of(bob, harry)
parent_of(harry, elizabeth).

= Positive examples E+ :

grandparent_of(charles, diana)
grandparent_of(bob, elizabeth).

» Generate hypothesis H :

grandparent_of(X,Y) :- parent_of(X,Z), parent_of(Z,Y).

Rule Learning in ILP: global process (2)
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How to come up with a rule for grandparent_of(X,Y)?
1.Take the example grandparent _of(bob,elizabeth).

2. Find the subset of Background Knowledge (BK) relevant to this
example:

parent_of(bob,harry)
parent_of(harry,elizabeth) .
3. Form a rule from these facts :
grandparent_of(bob,elizabeth) :-
parent_of(bob,harry), parent_of(harry,elizabeth).
4. Generalize the rule :
grandparent_of(X,Y) :- parent_of(X,Z), parent_of(Z,Y).

5. Check if this rule is valid for the positive and not valid for the negative
examples

=> Elaboration and Exploitation of the Hypothesis Space
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Rule Learning in ILP: global process (3)

Subtasks performed by an ILP implementation
regarding ILP as a search problem in the Hypothesis
Space:

1. Structuring the Hypothesis Space,
2. Searching the Hypothesis Space,
3. Bounding the Search,

4. Evaluating the Hypotheses.

Rule Learning in ILP: global process (4)
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Procedure: traverses the hypothesis space, generating and testing the
candidate hypothesis implemented by a covering algorithm which
construct iteratively a set of clauses :

= Starting with a empty set of rules (Line 1), the

Covering (E .
overing (E) algorithm then generates and evaluates a clause
Input: set of examples E on the positive examples (Line 4),
Output: a set of consistent rules = if this clause satisfies some criteria, it adds the

clause to the hypothesis (Line 5) and

- Learmed Rules =0 = removes the positive examples covered by the

1

§ EvhﬂeP Efli‘gs(E) clause (Line 6). _ -

i R = learn_rule(E) = These steps are repeated until all positive

5 Learned Rules = Learned Rules U R examples have been covered (loop while Line 3).
6.  E'=E'- {examples covered by R} = The learn_rule(e) procedure in Line 4 constructs
7. end while individual clauses by (heuristically) searching the
g return Learned_Rules space of possible clauses, structured by a

specialization or generalization operator.

1. Search starts with a very general rule (clause with no conditions in the body),
2. Proceeds to add literals (conditions) to this clause until it only covers positive
examples, i.e., the clause is consistent.
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ILP Systems Strategies for Hypothesis Search (1)

» Progol [Muggleton, 1995] : an iterative top-down ILP system that
performs batch learning : all of the examples and the BK must be defined
before starting the algorithm.

= ALEPH [Srinivasan ] uses functionalities from various ILP systems like:
Progol, FOIL, FORS, Indlog, MIDOS, SRT, Tilde and WARMR ...

= GILPS [Santos 2010] : implements TopLog, ProGolem, The BK and mode
declarations definitions of GILPS are identical to Aleph and Progol.

» Golem [Muggleton & Feng, 1990]: a bottom-up ILP system, which
constraints the search space with the relative least general generalization
(rlgg) [Plotkin, 1971].

= Progolem (Muggleton et al., 2010): Combine Golem and Progol
strategies .

» Toplog (Muggleton et al., 2008): uses a declarative bias called Top-
Directed Hypothesis Derivation (TDHD), where each clause issued as a
candidate hypothesis must be derived from a precise logical program called
top theory T.

Some ILP systems (2)
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= FOIL [Quinlan93] learns multiple predicates from a non-interactive and non-
incremental mode, realizing a top-down search in the hypothesis space

= MIS [xxx] : an interactive system and theory reviewer. It learns a definition of
multiple predicates in a incremental way. Realize top-down search and it was
the first ILP system that accept background knowledge from an intentional
and extensional way.

Tilde [xxx] : it’s a learning system based on decision trees. These trees can
be used to classify new examples or transformed in a logical program.

» LINUS [xxx] : an empirical ILP system, non-interactive and non-incremental.
It transforms ILP systems to a attribute-value representation.
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Characteristics of various ILP systems

(Source : [Conceigao 2008])

System T B Predictive Descriptive Inc N-Tnc Int N-Int Mult-Pred
Aleph N s I
Cligol ~ s ~
Claudien s s s s
Clint ' ~
FOIL ~ + s ~
FORS ~ ¥ v ¥
CGOLEM I s i
LINUS Il Il
MMARVIN e ./
MIS s s s s
MOBAL " I e " "
Progol ~ ' v ' "
Tilde s
WARMR s

TD: if the system uses a top-down search

BU: if the system uses a bottom-up search

Predictive: if the finding task of knowledge is predictive : then classification rules can be
generated

* Descriptive: if the finding task of knowledge is descriptive : then only true properties from the
examples are observed

Inc and N-Inc: if the system uses incremental or non-incremental learning, respectively

Int and N-Int: if the system is the type interactive or non-interactive, respectively
Mult-Pred: if the system can learn multiple predicates.

Applications of ILP (1)
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= Application in NLP (Natural Language Processing)
= Information extraction from text (Named Entity Recognition, Relation
Extraction, ...)
= Constructing Biological Knowledge Bases by Extracting Information
from Text Sources
= Applications to Chemoinformatics and Bioinformatics
= Learning drug structure-activity rules:
= Learning rules for predicting mutagenesis, carcinogenesis
= Learning to identify pharmacophores on small molecules (with Pfizer
UK and Prolifix Ltd. Made available soon)
= Learning rules for predicting protein secondary structure
= Learning qualitative models for functional genomics (with the
Computational Biology Group, Aberystwyth)
= Learning to identify neuropeptide precursors (with the Machine
Learning Group, University of York and the Bioinformatics Group,
SmithKline-Beecham. Made available soon)
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Applications of ILP (2)

= Applications to Medicine
= Learning rules for selecting the best embryos for transfer in In Vitro
fertilisation
= Learning to identify diabetics susceptible to renal disease
= Learning qualitative models of the human lung
= Applications to other areas
= Learning rules from chess databases
= |Inductive Learning of Chess Rules Using Progol
= Learning rules for finite element mesh design
= Learning diagnostic rules for qualitative models of satellite power
supplies
= Learning qualitative models of the U-tube system
= Learning to identify over-performing stocks
= Learning simplified civil-service procedures
= More from UT-ML group (Ray Mooney)
http://www.cs.utexas.edu/~ml/publication/ilp.html

ILP and Natural Language Processing (NLP)
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Application of ILP to NLP led to the research domain of Learning Language
in Logic (LLL), intersection of Machine Learning (ML), NLP and
Computational Logic (CLo) :

Source [Dzeroski et al., 1999]
(with CLo = computational logic, ML = machine learning, DDNLP = data-driven NLP, LG = logic
grammars, NLP = natural language processing, ILP = inductive logic programming.)

A contribution : OntolLPER [Lima el al., 2013] using GIPS
ILP system [Santos 2010]
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ILP: Some Limitations ...

= Limitation related to Prolog language:
» Specification of a finite set ensemble of constants,
= Numerical domains have to be borned.
IfD ={0, 1, 2, 3}, what is value of succ(3, ?)
» Inadequate representation of numerical data.
* Time processing:
= Parallel Prolog, Map Reduce, ...
* Unable to treat uncertainty:
= PILP (Probabilistic ILP)
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