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Abstract—
This paper presents novel methods for generative, discrimina-

tive, and hybrid sequence classification for segmentation of Turk-
ish utterances into sentences. In the literature, this taskis gen-
erally solved using statistical models that take advantageof lexi-
cal information among others. However, Turkish has a productive
morphology that generates an exponential vocabulary size,harm-
ing language models such as the established hidden event language
model (HELM). We extend this model as a factored hidden event
language model (fHELM) in order to take advantage of morpho-
logically informed features in addition to the word sequence. Our
results indicate that fHELMs result in a 26% reduction in err or
rate for Turkish broadcast news. Combining lexical, morphologi-
cal, and prosodic information using these new models and discrim-
inative classifiers (boosting and conditional random fields) results
in significant performance improvements over any of the classifiers
alone.

I. I NTRODUCTION

Many useful results have been obtained by applying statisti-
cal language modeling techniques to English (and similar lan-
guages) – in speech recognition, parsing, word sense disam-
biguation, part-of-speech (POS) tagging, etc. However, lan-
guages that display a substantially different behavior than En-
glish, like Turkish, Czech, Hungarian (in that, they have agglu-
tinative or inflective morphology and relatively free constituent
order) have not been studied extensively using statisticalap-
proaches. In these languages, due to their richer morphology,
the vocabulary size for a given corpus size is much larger than
other languages [1], [2]. While this causes a data sparseness
problem for these languages, the statistical models that look
at only words are also blind to the information encoded in the
morphology. Usually, the combined effect of these problems
is reduction in language processing performance for these lan-
guages.

Similarly, in spite of all the advances in discriminative clas-
sification techniques in the machine learning community, dis-
criminative sequence classification is still a challenge. Re-
searchers have proposed various techniques such as maximum
entropy Markov models [3] or conditional random fields [4],
[5]. However these techniques are typically not very suc-
cessful in handling continuous valued features. On the other
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hand, for generative sequence modeling, hidden Markov mod-
els (HMMs) still dominate the field; however usually only one
level of states is employed. For example, for automatic speech
recognition (ASR), typically word sequences are modeled for
the language model as part of joint modeling [6]. With the ad-
vances in graphical models, factored language models (FLMs)
handling bundles of features for each sample have been pro-
posed [7]. FLMs have been successfully used for ASR of in-
flectional languages such as Arabic [8].

In this paper, we address the problem of exploiting morpho-
logical information in statistical classification models for sen-
tence segmentation of Turkish speech. Our contributions are
four-fold: First, we extend the hidden event language models to
factored hidden event language models and combine them with
classification models. Second, we introduce a new set of mor-
phological features, extracted from words and their morpholog-
ical analyses. Third, we extract a set of prosodic features,which
are mainly motivated from our previous work for other lan-
guages, for the task of Turkish sentence segmentation. Fourth,
we propose a discretization method for using continuous-valued
features in CRF, that benefits from decision stumps as learned
by boosting.

In the next section we briefly summarize the related work
on sentence segmentation of speech. Then we present our ap-
proach, mainly the generative, discriminative, and hybridmod-
eling techniques. Then we describe the feature sets for seg-
menting Turkish speech into sentences. Finally, we provide
experimental results showing the effectiveness of the proposed
techniques for this morphologically rich language before con-
cluding.

II. SENTENCESEGMENTATION

Sentence segmentation for speech aims at finding sentential
unit boundaries in a stream of words, output by a speech rec-
ognizer. It is a preliminary step for many speech processing
applications, such as parsing, machine translation and informa-
tion extraction, which generally assume the presence of punc-
tuation. One typically leverages the word sequence generated
by a speech recognizer and prosodic cues such as pitch, energy
and pause duration in order to segment the audio in sentences.

Previous work on sentence segmentation has considered this
task as a word boundary classification problem, by determining
whether or not two consecutive words are separated by a sen-
tence boundary. The features used are mainly limited to words
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neighboring the boundary [9], [10], [11], with the exception
of [12], who included a reranking phase using sentence-level
features. [13] showed that for segmentation of speech into sen-
tences, prosodic and lexical cues provide complementary infor-
mation. [14] evaluated different modeling approaches (HMM,
maximum entropy, and conditional random fields) and various
prosodic and textual features, in both conversational telephone
speech and broadcast news speech.

There is also related work for sentence boundary detection
in languages other than English, for example, in Czech [15]
where an HMM approach was used, and in Chinese [16], [17]
where a maximum entropy classifier was used with mostly tex-
tual features. [11] used lexical and prosodic features withsev-
eral classifiers, including maximum entropy and boosting for
English and Mandarin. [18] investigated the use of the same
set of prosodic features and feature selection for English,Man-
darin, and Arabic. [19] used syntactic dependency structure
and support vector machines for sentence boundary detection
in Japanese. [20] is the first work that used morphological fea-
tures for sentence segmentation of Turkish; our work, in a way,
extends that work to also include prosodic features and more
sophisticated classification models.

Sentence segmentation has also been studied according to
various other aspects. [21] showed the benefits of speaker-
adapted models and [22] focused on domain adaptation. Sen-
tence segmentation can be optimized to improve downstream
tasks, such as speech translation [23], [24] or informationex-
traction [25].

III. A PPROACH

In the literature, typically sentence or dialog act segmenta-
tion is treated as a boundary classification problem where the
goal is finding the most likely boundary tag sequence,Y =
Y1 . . . Yn given the features,X = X1 . . .Xn:

argmaxY P (Y |X )

To this end mostly generative, discriminative, or hybrid mod-
els have been used. Below we summarize these approaches and
explain how we extend them to handle the speech input of mor-
phological languages.

A. Factored Hidden Event Language Models

We propose using factored language models with hidden
event language models. Below, first we describe HELM and
FLM and then describe how we combine them.

1) Hidden Event Language Models:The most popular gen-
erative model for sentence segmentation is the hidden eventlan-
guage model (HELM), as introduced by [26]. HELM was orig-
inally designed for speech disfluencies, such as deletion (DEL)
and repetition (REP). The approach was to treat such events as
extra meta-tokens. To ease the computation, an imaginary “no
disfluency” (NODF) token is inserted between two words where
there is no disfluency between them. The following example is
a conceptual representation of a sequence with disfluencies:

... she NODF got REP got NODF real NODF lucky ...
For sentence segmentation, sentence boundaries are simply

treated as hidden events, and the word sequence is augmented

Fig. 1. Conceptual hidden event language model for sentencesegmentation.

with fictitious sentence boundary tokens (S for sentence bound-
ary, N for else). So an example would be as follows:

.. real N lucky S he N was ...
Note that this is different from using an HMM as is typi-

cally done in similar tagging tasks, such as POS tagging [27]
or named entity extraction [28]. For sentence segmentation, the
conceptual model is depicted in Figure 1. In this model one
state is reserved for each of the boundary tokens,S andN , and
the rest of the states are for generating words. It has been shown
that HELM outperforms the conventional HMM approach, and
since it allows an explicit point to emit the boundary token,
hence can incorporate nonlexical information via combining
with other models as presented in the next subsection [13].

The Bayesian optimization is simply done by the Viterbi de-
coding using only lexical features, i.e., the language model, to
modelP (X , Y ), whereX andY represent all the words and
boundary tokens.

argmaxY P (Y |X ) = argmaxY P (X , Y )

2) Factored Language Models:Factored language models
aim to model a sequence of feature sets, extending the conven-
tional language modeling. In other words, the goal is building
probabilistic language models using the subsets of featuresets
(or factors).

Factored language models have been successfully used for
ASR [8] of inflectional languages, by defining factors or feature
sets consisting of surface forms, stems, morphological analy-
ses, etc. of the words.

More formally, the factored language model aims to estimate
the probability of a feature set sequence,X1, ...,Xn instead of a
word sequenceW1, ..., Wn. Here we considerXt = (Wt, Mt)
whereMt is a morphological feature for wordWt. An exam-
ple factored language model can be seen in Figure 2. The cur-
rent word relies on not only the previous two words but also
the current and previous morphological analyses. Therefore, it
models:

P (Wt|Wt−1, Wt−2, Mt, Mt−1)

Even with lower-ordern-gram approximations, since it may
be possible to have unseenn-gram sequences, one important
issue with FLMs is how to back off to reliably estimate such
probabilities. A new generalized parallel back-off technique
was proposed to tackle this problem [7]. Basically, the system
is given a back-off graph, which denotes the paths for back-
off. Paths in this graph can be chosen manually. In the lit-
erature, with complex factors, methods based on genetic al-
gorithms have been proposed to choose the optimal back-off
graph [29]. The important point is that many back-off paths
can be proposed and the system can process them in parallel.
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Fig. 2. An example factored language model seen as a directedgraphical
model over wordsW and morphological factors,M . The arrows indicate the
factors used for estimating the probabilities.

3) From HELM to fHELM: The factored hidden event lan-
guage models are straightforward extensions of hidden event
language models and factored language models. They combine
the strength of factored language models for multi-featurese-
quence modeling with the classification power of hidden event
language models. Figure 3 presents the factored hidden event
language model topology employed in this paper. The bound-
ary states still exist to potentially build hybrid models (as ex-
plained below) and the boundary decision is made according to
the formula:

P (Yt|Wt, Mt, Yt−1, Wt−1, Mt−1)

whereYt indicates the boundary decision,S orN after the word
Wt with a morphological analysis ofMt.

The next step for building an fHELM is creating a back-off
graph indicating the possible back-off paths in case the statis-
tics for the desiredn-gram are not reliable. Factored language
models are supposed to process them in parallel. In this paper
we tried only linear graph back-off (i.e. dropping and forgetting
about one factor at a time) and fully connected graph back-off
(i.e. backing off to all possible subsets) starting from themost
distant feature. More formally, an example back-off dropping
the most distant word is defined as follows for factored hidden
event language models:

P (Yt|Ct) =

{

PML(Yt|Ct) if N(Ct, Yt) > τ

α(Ct) × PBO(Yt|Ĉt) otherwise.

whereCt = Wt, Mt, Yt−1, Wt−1, Mt−1 is the original context,
Ĉt = Wt, Mt, Yt−1, Mt−1 is the backed off context,PML is
the standard maximum likelihood estimate (with smoothing),
N(·) is the number of occurrences, andα is used to ensure that
the result is still a probability distribution.

Then the standard Viterbi decoding may be employed to find
the most probable state sequence, i.e. the boundary decisions
given the words and their other features, such as morphological
analysis. This results in a neat method for building a genera-
tive classifier when multiple features are used for each sample
position. Furthermore, similar to regular HELMs, it is possible
to combine the posterior probabilities obtained from otherclas-
sifiers (preferably discriminative) to improve the performance
even more. For example fHELM may exploit the lexical and
morphological information and then may be combined with a
classifier that uses only prosodic features.

In our experiments, the SRILM [30] toolkit is used for Viterbi
decoding and for building the conventional and factored hid-
den event language models with modified Kneser-Ney smooth-
ing [31].

Fig. 3. An example factored language model created for a hidden event lan-
guage model seen as a directed graphical model over word boundaries,Y , and
words,W , and morphological factors,M . The arrows indicate the factors used
for estimating the probabilities.

B. Discriminative Classification Models

One weakness of the hidden event language models is that
one can incorporate only a single stream of discrete features
such as words. To overcome this obstacle, various classifica-
tion methods have been used in the literature. In a pioneering
study, decision trees were used to build segmentation models to
improve the performance also by using additional prosodic fea-
tures [13]. With the advances in discriminative classification al-
gorithms, researchers tried using CRFs [32] and boosting [33],
and hybrid approaches using boosting and maximum entropy
classification algorithms [11].

Our system relies on boundary-wise posterior probabilities
P (Yt|Xt) provided by two classifiers that can be used inde-
pendently or jointly. The first component is an Adaboost [34]
classifier that generates posterior probability estimations out of
weighted decision stumps (one-level decision trees):

P (Yt|Xt) =

[

exp

(

−2m

m
∑

i=1

wisi(Xt)

)]−1

wheresi(·) is a decision stump (presence of a discrete feature
or position relative to a threshold of a continuous feature)over a
single feature,wi is the weight given to that decision stump, and
m is the number of decision stumps. Adaboost is trained by iter-
ating over the selection of the best decision stump and reweigh-
ing of examples where the overall classifier makes mistakes.
The implementation used in our experiments is icsiboost.1 In
all our experiments, we used boosting with 1,000 iterations.

The second component of our system uses CRFs as proposed
by [4]. We use chain CRFs to estimate the probability of a
sequence of boundary events (Y = Y1 . . . Yn) given a sequence
of observations (X = X1 . . .Xn).

P (Y |X ) =
1

Z(X )
exp

(

n
∑

t=1

m
∑

i=1

λisi(Yt−1, Yt,Xt)

)

Z(X ) =
∑

Y

exp

(

n
∑

t=1

m
∑

i=1

λisi(Yt−1, Yt,Xt)

)

Here,si(·) are decision functions that depend on the exam-
ples and a clique of boundaries close toYt, λi is the weight
of si estimated on training data, andZ(X ) is a normalization
factor. Note that CRFs give the probability of the sequence of

1http://code.google.com/p/icsiboost
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boundary decisions. The forward-backward algorithm can be
used to get boundary-level posterior probability estimates.

For our experiments, we use the CRF++ toolkit,2 which al-
lows binary decision functions dependent on the current bound-
ary and the previous boundary. Features extracted fromX orig-
inate from a neighborhood of the boundary and match the fea-
tures used with Adaboost, though CRF++ does not handle con-
tinuous features and requires them to be quantized. After exper-
imenting with different types of quantization, we observedthat
using thresholds from the decision stumps learned by Adaboost
leads to improved performance, probably due to their ability to
embed the interaction between features (in Adaboost training,
classifiers are chosen in order to correct errors from previous
iterations).

C. Hybrid Modeling

One important observation is that nonsequential classifica-
tion algorithms typically ignore the context, which is critical
for the segmentation task. While one may add context as an
additional feature, or simply use CRFs, which inherently con-
sider context, these approaches are suboptimal when dealing
with real valued features, such as pause duration or pitch range.
Most of the previous studies simply tackled this problem by
binning the feature space either manually or automatically.

An alternative would be using a hybrid classification ap-
proach as suggested by Shriberget al. [13]. The main idea
would use the posterior probabilities,Pc, obtained from the
other classifiers, such as boosting or CRF, by simply convert-
ing them to state observation likelihoods by dividing to their
priors following the well-known Bayes rule:

argmaxY

Pc(Y |X )

P (Y )
= argmaxY Pc(X|Y )

Applying the Viterbi algorithm to the HMM will then re-
turns the most likely segmentation. In order to handle dynamic
ranges of state transition probabilities and observation likeli-
hoods, we apply a weighting scheme as is usually done in the
literature

argmaxY Pc(X|Y )α × P (Y )β

whereP (Y ) is estimated by the fHELM,α andβ are optimized
using a held-out set.

IV. FEATURES

Three types of features - lexical, prosodic and morphological
- are used in the classification models.

A. Lexical Features

The lexical features used in this work consist of six wordn-
gram features for each word boundary that were also used in our
previous work for English [35]: three unigrams, two bigrams,
and a trigram. Naming the word preceding the word boundary
of interest as thecurrentword, and the preceding and following

2http://crfpp.sourceforge.net/

words as thepreviousandnextword respectively, the six lexical
features are as follows:

• unigrams:{previous}, {current}, {next},
• bigrams:{current, next}, {previous, current}
• trigram:{previous, current, next}

B. Prosodic Features

The prosodic features are also transferred from the ICSI+
sentence segmentation system [11]. We use about 200 prosodic
features, defined for and extracted from the regions around each
inter-word boundary. The features include the pause duration at
the boundary, normalized phone durations of the word preced-
ing the boundary, and a variety of speaker-normalized pitchfea-
tures and energy features preceding, following, and acrossthe
boundary. These features are an extension of similar features
described in [13]. The extraction region around the boundary
focuses on either the single words or brief time windows around
the boundary. Measures include the maximum, the minimum or
the average value in this range. Pitch features are normalized
by speaker, using the method to estimate a speaker’s baseline
pitch values described in [13].

C. Morphological Features

Turkish is also a free-constituent-order language, in which
constituents at certain phrase levels can change order rather
freely according to the discourse context or text flow. How-
ever, the typical order of the constituents, especially forthe
news genre, is subject-object-verb (SOV).

Let us consider a simple complete sentence, “çocuk yemek
yedi” in Turkish, which means “the child ate the meal” in En-
glish. The correct morphological analyses are as follows:

çocuk: Noun+A3sg+Pnon+Nom (the child)
yemek: Noun+A3sg+Pnon+Nom (the meal)
yedi: Verb+Pos(+dH)+Past+A3sg (ate)

Turkish has agglutinative morphology with productive inflec-
tional and derivational suffixations [36]. The number of word
forms one can derive from a Turkish root form may be in the
millions [37]. For example, [38] shows that one can obtain
thousands of new word forms from any noun, a verb, and an
adjective root form by suffixing only three morphemes. As
an example, let us consider the Turkish word “yapabilecĕgim”,
which consists of the morphemes “(yap)+(abil)+(ecek)+(im)”
which roughly corresponds to “(do)+(able to)+(will)+(I)”in
English. It has three potential morphological analyses:

• (yap)yap+Verb+Pos(+yAbil)∧DB+Verb+Able(+yAcAk)+
Fut(+yHm)+A1sg (I’ll be able to do it)

• (yap)yap+Verb+Pos(+yAbil)∧DB+Verb+Able(+yAcAk)
∧DB+Adj+FutPart(+Hm)+P1sg (The (thing that) I’ll be
able to do)

• (yap)yap+Verb+Pos(+yAbil)∧DB+Verb+Able(+yAcAk)
∧DB+Noun+FutPart+A3sg(+Hm)+P1sg+Nom (The one
I’ll be able to do)

In this representation, the inflectional groups (IGs) denote
the derivational boundaries and are marked with “∧DB”. In this
example, the root is a verb but the final IGs have three readings,
that are verb, adjective, and noun, respectively.
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Turkish presents an interesting problem for statistical models
since the potential POS tag set size (that is, the number of possi-
ble morphological parses) is very large because of the produc-
tive derivational morphology. Following previous work [39],
[2], our approach handles this by breaking up the morphosyn-
tactic tags into inflectional groups, each of which containsthe
inflectional features for each (intermediate) derived form. To
simplify our models further, we only extract morphologicalfea-
tures from the final inflectional group of every word, which
marks its final category in a sentence.

The morphological features used in this work are obtained
using a morphological analyzer for Turkish [36], which outputs
all possible morphological parses for all the words. We include
the final inflectional group of every word as well as its POS tag,
without resolving the ambiguity. For factored HELM, we arbi-
trarily chose one parse since fHELMs cannot handle multiple
parses. With CRF and boosting we used all the possible parses
as features. Boosting also exploited parse subsequences asad-
ditional features. For the POS tag, we mark the value of the fea-
ture as unknown when the word has multiple parses. We also
include a single binary feature that checks if any of the possible
morphological parses of a word is a Verb according to its final
category. We hope, with this, to take advantage of the SOV na-
ture of Turkish. To compare this approach, we also performed
experiments with pseudo-morphological features, using the last
three letters of each word. Like the “ed” suffix in English, in
Turkish certain suffixes may indicate Verb categories.

V. EXPERIMENTS AND RESULTS

A. Data Sets

In our experiments, we use the VOA (Voice of America)
Turkish Section3 part of the Turkish broadcast news (BN)
speech corpus collected at the Bogazici University BUSIM
Laboratory.4 The VOA part of the corpus contains approx-
imately 21 hours of single-channel Turkish broadcast news
speech data recorded at a 16 bit, 32KHz sampling rate. For
sentence segmentation experiments 42 Turkish broadcast news
programs (30 minutes each) are used. These 42 files are split
into a training set (22 files, 97,330 words), a development set
(5 files, 14,897 words), and a test set (5 files, 15,688 words).
The development set is used to optimize the parameters, suchas
probability thresholds and combination weightsα andβ. The
vocabulary size of the training set is 19,328 words, and 33.5%
of the words in the development set vocabulary and 35.8% of
the test set vocabulary are not observed in the training data
(these correspond to 14.8% and 17.3% of the development and
test set words, respectively).

There are in total 128,005 words in the training, test, and
development sets. 6.76% of these were not parsed by the mor-
phological analyzer, mainly because of foreign person and city
names and typos in the data. The remaining words that were
parsed have on average 1.95 parse. This drops down to on av-
erage 1.83 analyses per word if only the last inflectional group
of each word is considered, and to 1.30 if only the POS tag
category of the last IG is considered. Table I lists the average

3http://www.voanews.com/turkish/
4http://www.busim.ee.boun.edu.tr/

Morphological Feature Avg. Parse/Word % of Unamb
Full Morph. Analysis 1.95 37.0
Last IG 1.83 39.5
POS of Last IG 1.30 62.9

TABLE I
AMBIGUITY STATISTICS FOR DIFFERENT LEVELS OF MORPHOLOGICAL

FEATURES: AVERAGE NUMBER OF PARSES PER WORD FOR EVERY WORD

THAT WAS PARSED BY THE MORPHOLOGICAL ANALYZER AND

PERCENTAGE OF WORDS THAT HAVE A SINGLE PARSE(I .E.,

UNAMBIGUOUS WORDS).

Classifier F NIST
Boosting 0.749 44.0%
CRF 0.756 43.3%
HELM 0.782 36.7%

TABLE II
F-MEASURE AND NIST ERROR RATES WITH BOOSTING, CRF,AND HELM

USING ONLY LEXICAL FEATURES.

number of parses per word as well as the percentage of words
that have a single parse in the overall data set with these differ-
ent conditions.

B. Evaluation Methods

For performance evaluation, we report NIST error rate and
F-measure on forced alignment output of an automatic speech
recognizer [40]. The NIST error rate is the number of mis-
classified word boundaries divided by the number of reference
sentence boundaries. F-measure is the harmonic mean of preci-
sion and recall. The NIST error rate is explained in detail with
examples in [41].

C. Experiments with Lexical and Morphological Features

We compare our results with a baseline of using only lex-
ical features for all classification methods. Table II presents
results using boosting, CRF, and HELM with only lexical fea-
tures. HELM outperforms other methods probably because of
the large number of lexical features they must tackle due to the
agglutinative nature of Turkish.

When we add morphological and pseudo-morphological (last
three letters of words) to the feature sets, we observe significant
improvements in the performance with all classifiers. This is
intuitive because of the morphological characteristics and SOV
sentence order of Turkish. One interesting observation is that
with boosting the performance degrades when both morpholog-
ical and pseudo-morphological features are employed instead
of only one of them. CRF consistently performs a little better
than boosting. The error rate of fHELM is reduced by 26% rel-
ative compared to HELM when only lexical features are used.
This shows the effectiveness of factored hidden event language
models for generative sequence classification. Furthermore, the
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Features L+M L+PM L+M+PM
F NIST F NIST F NIST

Boosting 0.884 24.7% 0.853 30.0% 0.869 26.5%
CRF 0.887 24.0% 0.864 26.0% 0.891 21.7%
fHELM 0.865 25.9% 0.862 27.1% - -

TABLE III
F-MEASURE AND NIST ERROR RATES WITH BOOSTING, CRFAND HELM USING LEXICAL (L), MORPHOLOGICAL(M), AND /OR

PSEUDO-MORPHOLOGICAL FEATURES.

Classifier F NIST
Boosting(L+M)+fHELM(L+M) 0.879 23.8%
CRF(L+M)+fHELM(L+M) 0.890 21.5%

TABLE IV
F-MEASURE AND NIST ERROR RATES WHEN COMBINING BOOSTING AND

CRFWITH FHELM WITH LEXICAL (L) AND MORPHOLOGICAL (M)

FEATURES.

Classifier F NIST
Boosting(P) 0.862 27.2%
Boosting(P)+fHELM(L+M) 0.919 15.8%

TABLE V
F-MEASURE AND NIST ERROR RATES WHEN USING ONLY PROSODIC(P)

INFORMATION WITH BOOSTING AND COMBINING WITH FHELM USING

LEXICAL (L) AND MORPHOLOGICAL (M) INFORMATION.

relative NIST error rate reductions are even more with boost-
ing (44%) and CRF (50%) with morphological features. These
results are shown in Table III.

Table IV presents results with the combination of discrimina-
tive and generative sequence classification methods when both
lexical and morphological features are used. The performance
is more or less the same as using only the discriminative clas-
sifiers, suggesting that they already incorporate the information
coming with hidden event models.

D. Experiments with Prosodic Features

Since we expect the prosody to provide orthogonal infor-
mation for sentence segmentation, we first combined boosting
trained with only prosodic features with factored HELMs. Ta-
ble V presents these results. Note that, before combination,
boosting and fHELMs have comparable performance. This
shows the utility of the prosodic features that were originally
designed for English. Furthermore, this hybrid model reduces
the NIST error rate by 39% relative. This demonstrates the
power of the model combination with complementary informa-
tion provided by two different sets.

Then we exploited the prosodic features along with lexical
and morphological information with boosting and CRF. Ta-
ble VI presents these results. As seen, for both classifiers,per-
formance improved significantly. This is in part due to the na-
ture of the data, i.e., broadcast news, in which the reporters

and anchor people explicitly mark sentence boundaries with
prosody.

As the final set of experiments, we tried combining fHELM
with boosting and CRF using all the features. Table VII
presents these results. With this final combination, the model
including boosting did not improve. The CRF model improved,
however only slightly.

VI. D ISCUSSION ANDCONCLUSIONS

We have presented generative, discriminative, and hy-
brid classification methods using lexical, morphological,and
prosodic information for Turkish sentence segmentation. We
have shown significant improvements over a lexical baseline.

While CRF results in better performance with prosodic and
lexical features only, boosting benefits more from the morpho-
logical features. This is probably due to the ability of boost-
ing to handle unknown feature values. For example, one of
the morphological features is set to unknown in case the word
is morphologically ambiguous. This requires further investiga-
tion, but a prior morphological disambiguation step may pro-
vide benefits.

The prosodic features are mainly transferred from English
and model only word-level phenomena. They can also be im-
proved by modeling at subword level. For example, the mor-
phological ambiguity for the sentence final words may be re-
solved using morpheme-level prosodic features.

One significant benefit of using fHELMs is that they can be
trained using millions of examples, also benefiting from thetex-
tual data that can be found easily (such as from the WWW),
whereas the discriminative models are more limited for that
case. In this work, we have used the same data for training
all models, and investigating the use of more data for fHELMs
is part of our future work, in addition to experimenting withreal
ASR output.

fHELMs can be used for other language processing tasks re-
quiring sequence classification such as POS tagging and named
entity extraction and can easily be combined with state-of-the-
art discriminative models.
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Features L+P L+M+P L+PM+P L+M+PM+P
F NIST F NIST F NIST F NIST

Boosting 0.894 20.4% 0.922 16.5% 0.918 15.8% 0.927 14.7%
CRF 0.895 20.2% 0.921 14.6% 0.916 16.9% 0.923 15.3%

TABLE VI
F-MEASURE AND NIST ERROR RATES WITH BOOSTING ANDCRFUSING LEXICAL (L), PROSODIC(P),MORPHOLOGICAL(M), AND /OR

PSEUDO-MORPHOLOGICAL(PM) FEATURES.

Classifier F NIST
Boosting(L+P+M+PM)+fHELM(L+M) 0.925 14.8%
CRF(L+P+M+PM)+fHELM(L+M) 0.926 14.9%

TABLE VII
F-MEASURE AND NIST ERROR RATES WHEN COMBINING FHELM WITH

BOOSTING AND CRFUSING LEXICAL (L), MORPHOLOGICAL(M+PM),

AND PROSODIC(P) INFORMATION.
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REER Project No: 107E182, Extracting and Using Prosodic
Information for Turkish Spoken Language), and the Isik Uni-
versity Research Fund (Project No:05B304). Any opinions,
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material are those of the authors and do not necessarily reflect
the views of the funding agencies.
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