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Abstract

This paper describes the system developed at
LIF for the SemEval-2016 evaluation cam-
paign. The goal of Task 4.A was to iden-
tify sentiment polarity in tweets. The system
extends the Convolutional Neural Networks
(CNN) state of the art approach. We ini-
tialize the input representations with embed-
dings trained on different units: lexical, part-
of-speech, and sentiment embeddings. Neural
networks for each input space are trained sep-
arately, and then the representations extracted
from their hidden layers are concatenated as
input of a fusion neural network. The system
ranked 2nd at SemEval-2016 and obtained an
average F1 of 63.0%.

1 Introduction

This paper describes the system developed at LIF
for the SemEval-2016 sentiment analysis evaluation
task (Nakov et al., 2016). The goal of our partic-
ipation was to apply approaches developed for the
European FP7 project SENSEI 1 based on the study
of human conversations according to feelings, opin-
ions, emotions of the participants, in corpora such as
transcripts of telephone speech and web comments.

We have participated in Subtask A: sentiment
analysis at the message level. It consists in deter-
mining the message polarity of each tweet in the test
set. The sentiment polarity classification task is set
as a three-class problem: positive, negative and neu-
tral.

The sentiment analysis task is often modeled as a
classification problem which relies on features ex-

1http://www.sensei-conversation.eu/

tracted from the text in order to feed a classifier.
Recent work has shown that Convolutional Neural
Networks (CNN) using word representations as in-
put are well suited for sentence classification prob-
lems (Kim, 2014) and have been shown to produce
state-of-the-art results for sentiment polarity classi-
fication (Tang et al., 2014a; Severyn and Moschitti,
2015). Pre-trained word embeddings are used to
initialize the word representations, which are then
taken as input of a text CNN.

Our approach consists in learning polarity clas-
sifiers for three types of embeddings, based on the
same CNN architecture. Each set of word embed-
ding models the tweet according to a different point
of view: lexical, part-of-speech and sentiment. A
final fusion step is applied, based on concatenating
the hidden layers of the CNNs and training a deep
neural network for the fusion.

Our contributions are as follows:

• We extend the deep CNN architecture proposed
in (Poria et al., 2015) and introduce lexical in-
formation similar to (Ebert et al., 2015).

• We introduce polarity embeddings, tweet rep-
resentations extracted from the hidden layer of
CNNs with different word embeddings as in-
put.

• We fuse polarity embeddings by concatenat-
ing them and feeding them to a neural network
trained on the final task.

• The source code of our system, the models
trained for the evaluation, and the corpus col-
lected for creating word embeddings are made
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available to the community to help future re-
search 2.

The paper is structured as follows. Section 2
presents the system architecture. Section 3 reviews
the implementation details. Then we detail the dif-
ferent word embeddings and other features used in
our system (Section 4). Results and discussion ap-
pear in Section 5.

2 Polarity embeddings

Deep learning models have been shown to produce
state-of-the-art performance in various domains (vi-
sion, speech, etc...). Convolutional Neural Net-
works (CNN) represent one of the most used deep
learning model in computer vision (LeCun and Ben-
gio, 1995). Recent work has shown that CNNs are
also well suited for sentence classification problems
and can produce state-of-the-art results (Tang et al.,
2014a; Severyn and Moschitti, 2015). The differ-
ence between CNNs applied to computer vision and
their equivalent in NLP lies in the input dimension-
ality and format. In computer vision, inputs are usu-
ally single-channel (eg. grayscale) or multi-channel
(eg. RGB) 2D or 3D matrices, usually of constant
dimension. In sentence classification, each input
consists of a sequence of words of variable length.
Each word w is represented with a n-dimensional
vector (word embedding) ew of constant size. All
the word representations are then concatenated in
their respective order and padded with zero-vectors
to a fixed length (maximum possible length of the
sentence).

Word embeddings are an approach for distribu-
tional semantics which represents words as vec-
tors of real numbers. Such representation has use-
ful clustering properties, since it groups together
words that are semantically and syntactically simi-
lar (Mikolov et al., 2013). For example, the word
“coffee” and “tea” will be very close in the created
space. The goal is to use these features as input
to a CNN classifier. However, with the sentiment
analysis task in mind, typical word embeddings ex-
tracted from lexical context might not be the most
accurate because antonyms tend to be placed at the
same location in the created space. As exemplified
in Table 1, “good” and “bad” occur in similar con-

2http://www.github.com/mrouvier/SemEval2016

texts, and therefore obtain very similar representa-
tions. In addition, the model does not differentiate
the senses of a word and creates a representation
close to the most used sense in the training data. In
order to tackle the representation robustness prob-
lem, we propose to extract word embeddings with
different training regimes, and fuse their contribu-
tion to the system.
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Sen-ment%
embeddings%
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Figure 1: Overview of the sentiment embedding fusion ap-
proach. In a first level, different word representations are used
to train CNNs to predict sentiment polarity, in the second level,
representations extracted at hidden layers are concatenated and
fed to a final classifier.

There are two approaches commonly used for fu-
sion: early and late fusion. Late fusion considers
that the different systems are independent by first ap-
plying classification separately on each system and
then merging the output using a high-level classi-
fier. Unfortunately, the classifier cannot model the
correlations among modalities. The early fusion ap-
proach tackles this problem by learning features and
class relationships to model the interaction between
modalities. While late fusion cannot benefit from
different system feature correlations, early fusion re-
quires lots of training data.

In previous work (Rouvier et al., 2015), we have
proposed a new fusion framework called embedding
fusion which consists in concatenating hidden layers
of subsystems trained independently, and input them
to an other classifier trained to the actual task targets.
This embedding fusion approach goes beyond late
fusion and overcomes most of the problems linked
to early fusion.

In this paper, we apply the embedding fusion to
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Lexical Part-of-speech Sentiment
good bad good bad good bad
great good great good great terrible
bad terrible bad terrible goid horrible
goid baaad nice horrible nice shitty
gpod horrible gd shitty goood crappy
gud lousy goid crappy gpod sucky

decent shitty decent baaaad gd lousy
agood crappy goos lousy fantastic horrid
goood sucky grest sucky wonderful stupid
terrible horible guid fickle-minded gud :/

gr8 horrid goo baaaaad bad sucks
Table 1: Closest words to “good” and “bad” according to different regimes for creating word embeddings: lexical, part-of-speech
and sentiment (described later in the paper).

the sentiment polarity prediction task, with a two-
level architecture (Figure 1). Given a tweet, the first
level extracts input representations based different
word embeddings. These embeddings are fed to a
CNN with n-gram filters (from 1 to 5). The CNN is
followed by a series of fully connected hidden lay-
ers which are trained to predict the target (sentiment
polarity). Three different sets of word embeddings
are used: lexical embeddings, joint lexical-part-of-
speech embeddings, and joint lexical-sentiment em-
beddings. The training procedure for the embed-
dings is explained in the following sections.

The second level inputs the concatenation of the
last hidden layer resulting from each input represen-
tation, which we call polarity embeddings. This
representation is fed to fully connected hidden lay-
ers, and also trained to predict the polarity target.
This method allows us to take advantage of both
early and late fusion at the same time, which brings
an improvement in term of performance over merg-
ing the decisions of the independent neural net-
works.

3 Implementation details

The proposed architecture relies on word embed-
dings as word representation as well as sentiment
polarity lexicon features, concatenated to the word
representation. An alternative to word-level features
captured by CNNs is to extract sentence-level fea-
tures in order to model global evidence in the tweet.
In order to incorporate this source of information
into the system, a classical MLP with one hidden
layer is trained to predict sentiment polarity from a
set of sentence-level features and its hidden layer is

concatenated to the other polarity embeddings and
fed to the second-level MLP. The CNN and MLP
are trained jointly.

The final complete architecture including CNNs
and the sentence-level MLP, presented in Figure 2,
is based on a single convolutional layer followed
by a max-over-time pooling layer (Collobert et al.,
2011) and two fully-connected layers. In order to
learn this kind of model there are two soft-max fully
connected layers. The first one is connected to the
pooling layer and the second one at the end of fully-
connected layer.

Word%embeddings%
Feature%Lexicon%@%Word%level%

Feature%Lexicon%
@%Sentence%level%w1# w2# w3# wi'1# wi#

CNN#

Output'

Word%Representa-on%

Sentence%Composi-on%

Sentence%Representa-on%

Figure 2: Actual CNN architecture: word representations are
concatenated with lexicon features, and sentence-level lexicon
features are concatenated with the polarity embeddings, and
also trained to predict polarity targets on its own.

The parameters of our model were chosen so as to
maximize performance on the development set: the
width of the convolution filters is set to 5 and the
number of convolutional feature maps is 500. We
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use ReLU activation functions and a simple max-
pooling. The two fully connected hidden-layers are
of size 512. For each layer, a standard dropout of
0.4 (40 % of the neurons are disabled in each itera-
tion) is used. The back-propagation algorithm used
for training is Adadelta. In our experiments we ob-
served that the weight initialization of the convolu-
tion layer can lead to high variation in term of per-
formance. Therefore, we trained 20 models and se-
lected the one that obtained the best results on the
development corpus.

In the second part of the system which inputs po-
larity embeddings and predicts polarity targets, the
DNN is composed of two 512-dimensional hidden
layers. The non-linearity of the hidden layers is cor-
rected by a ReLU function.

4 Input features

4.1 Word embeddings
We propose to make use of word embeddings trained
under different regimes, in order to capture different
aspects of the relation between words so that it might
benefit the polarity classifier. Three representations
are explored.
Lexical embeddings: these embeddings are
obtained with the classical skipgram model
from (Mikolov et al., 2013). The representation
is created by using the hidden layer of a linear
neural network to predict a context window from
a central word. For a given context wi−2 . . . wi+2,
the input to the model is wi, and the output could
be wi−2, wi−1, wi+1, wi+2. This method typically
extracts a representation which both covers syntax
and semantics, to some extent.
Part-of-speech embeddings: as stated earlier, the
lexical model cannot distinguish between the senses
of words and creates a single representation per
word form. For example, the word “apple” re-
ceives an embedding that is a mixture of its dif-
ferent contextual senses: fruit, company... A lot
of sophisticated approaches have been proposed to
tackle the problem (Guo et al., 2014; Neelakan-
tan et al., 2015; Huang et al., 2012), by consider-
ing senses as latent variables during training, or by
conditionning the training documents on topic dis-
tributions. In our system we follow a very sim-
ple approach which creates joint embeddings for
words and their part of speech. Thus, for con-

text wi−2 . . . wi+2 tagged with the part-of-speech
sequence pi−2 . . . pi+2 the input to the model is
(wi, pi) and the output is (wi−2, pi−2), (wi−1, pi−1),
(wi+1 : pi+1), (wi+2, pi+2).
Sentiment embeddings: another problem with the
basic skipgram approach (lexical embeddings) is
that the model ignores the sentiment polarity of the
words. As a result, words with opposite polarity,
such as “good” and “bad”, are mapped into close
vectors. In (Tang et al., 2014b), the authors pro-
pose to tackle this problem so that sentiment in-
formation is encoded in the continuous represen-
tation of words. They propose to create a neu-
ral network that predicts two tasks: the context
of the word and the sentiment label of the whole
sentence. Since it is expensive to manually label
sentences with a polarity label, the authors pro-
pose to use tweets that contain emoticons and rely
on the polarity of the emoticon to label the sen-
tences. As they report that best performance is
obtained by weighting both tasks equivalently, the
model is the same as for lexical embeddings, except
that the predicted context is formed of (word, senti-
ment) couples. For example, if s is the polarity of
the sentence where the context wi−2 . . . wi+2 is ex-
tracted, the model gets wi as input and has to predict
(wi−2, s), (wi−1, s), (wi+1, s), (wi+2, s).

4.2 Sentiment lexicon features

Word representations are learned from distributional
information of words in large corpora. Although
such statistics are semantically informative, they dis-
regard the valuable information that is contained in
manually curated sentiment lexicons. In (Ebert et
al., 2015), the authors propose to incorporate knowl-
edge from semantic lexicons at the word level. The
goal is to extract features based on the overlap be-
tween words in the input and sentiment lexicons, and
stack these features to the word embedding.

We create two such features per word per lexicon.
Both are binary indicators of positive and negative
polarity of that word in the lexicons. The lexicons
for this feature type are MPQA (Wiebe et al., 2005),
Opinion lexicon (Hu and Liu, 2004), and NRC Emo-
tion lexicon (Mohammad and Turney, 2013). The
NRC lexicons provide a score for each word instead
of just a label. We replace the binary indicators by
the scores.
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4.3 Sentence-level features

The following features are extracted at sentence
level and used for training the sentence-level MLP:

• Lexicons: frequency of lemmas that are
matched in MPQA (Wiebe et al., 2005), Opin-
ion Lexicon (Hu and Liu, 2004) and NRC Emo-
tion lexicon (Mohammad and Turney, 2013).

• Emoticons: number of emoticons that are
grouped in positive, negative and neutral cat-
egories.

• All-caps: number of words in all-caps
• Elongated units: number of words in which

characters are repeated more than twice (for ex-
ample: looooool)

• Punctuation: number of contiguous sequences
of period, exclamation mark and question
mark.

5 Experiments

5.1 Pre-processing

A step of pre-processing is applied to every tweet in
the corpus:

• Character encoding: every tweet is encoded
in UTF-8

• XML Entities: all the XML entities are con-
verted back to characters

• Lowercase: all the characters are converted in
lowercase

• Lengthening: character lengthening consists
in repeating several times a character in a word.
It is used in social media as a method to empha-
size a fact. This extension is often correlated
with the expression of sentiment. If a character
is repeated more than three times, we reduce it
to three characters. For example, “looool” is
replaced by “loool”.

• Tokenization: tokenization is performed
by splitting a sentence in pre-lexical units.
We used the tokenizer from the macaon
toolchain (Nasr et al., 2011). It is based on
a regular grammar that defines a set of types
of atoms. A lexical analyzer detects the char-
acter sequences (in terms of the grammar) and
combines them as a type. We added the atoms
for detecting smileys, hashtags and users names
(atoms specific to tweets).

• Map generic words: The hashtags, numbers
and usertags are mapped to generic tokens.

5.2 Corpus
We use the train and dev corpora from Twitter’13
to 16 for training and Twitter’16-dev as a develop-
ment set. Note that we were unable to download
all the training and development data because some
tweets were deleted or not available due to modified
authorization status. The datasets are summarized in
Table 3:

Corpus Positive Negative Neutral Total
Train 7.727 2.916 7.837 18.480
Dev 884 279 616 1.779

Table 3: Statistics of the successfully downloaded part of the
SemEval 2016 Twitter sentiment classification dataset.

5.3 Word embedding training
To train the word embeddings, we have created a
unannotated corpus of sentiment bearing tweets in
English. These tweets were recovered on the Twitter
platform by searching for emotion keywords (from
the sentiment lexicons) and unigrams, bigrams and
trigrams extracted from the SemEval training cor-
pus. This corpus consists of about 90 million tweets.
A sub-corpus of about 20 million tweets containing
at least one emoticon is used for training the sen-
timent embeddings. Both corpora are made avail-
able 3.

In our experiments, lexical embeddings and
part-of-speech embeddings are estimated using the
word2vec toolkit (Mikolov et al., 2013). Sentiment
embeddings are estimated using word2vecf. This
toolkit allows to replace linear bag-of-word contexts
with arbitrary features. The embeddings are trained
using the skipgram approach with a window of size
3 and 5 iterations. The dimension of the embeddings
is fixed to 100. Part-of-speech tagging is performed
with Tweet NLP (Owoputi et al., 2013; Gimpel et
al., 2011).

5.4 Results
Overall performance: The evaluation metric used
in the competition is the macro-averaged F-measure
calculated over the positive and negative categories.
Table 4 presents the overall performance of our sys-
tem. It achieved the second rank on the Twitter 2016

3http://www.github.com/mrouvier/SemEval2016
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Feature set Lexical Part-of-speech Sentiment SENSEI-LIF
all features 61.3 62.0 62.3 63.0
w/o word level lexicon 61.7 (+0.4) 62.4 (+0.4) 61.6 (-0.7) 63.2 (+0.2)
w/o sentence level lexicon 60.7 (-0.6) 61.1 (-0.9) 62.0 (-0.3) 62.6 (-0.4)
w/o both lexicon 61.0 (-0.3) 61.4 (-0.6) 61.8 (-0.5) 62.8 (-0.2)
w/o word embeddings 58.4 (-2.9) 59.1 (-2.9) 59.6 (-2.7) 59.6 (-3.4)

Table 2: Ablation experiment: macro-averaged F-scores obtained on the Twitter 2016 test sets with each of the feature groups
removed.

data among 34 teams. The system proved to gener-
alize well to other types of short informal texts; it
ranked first and third respectively on the two out-of-
domain datasets: Live Journal 2014 and SMS 2013.

Corpus SENSEI-LIF Rank
Twt2013 70.6 3
SMS2013 63.4 3
Twt2014 74.4 1
TwtSarc2014 46.7 8
LvJn2014 74.1 1
Twt2015 66.2 2
Twt2016 63.0 2

Table 4: Overall performance of the SENSEI-LIF sentiment
analysis systems.

Contribution of features: Table 2 presents the re-
sults of ablation experiments on the Twitter 2016
test set. SENSEI-LIF is the system which partici-
pated to the evaluation campaign. We present the
results of three contrastive systems: Lexical, Part-
of-speech and Sentiment. These systems are based
on the CNN classifier prior to the concatenation of
the hidden layers. They use only one set of word
embeddings without any kind of fusion.

The different features used in our system are: lex-
icon features and word embeddings. The ablation
of lexicon features removes the lexicon features at
the word and sentence level. The ablation of word
embeddings feature consists in randomly initializing
the word representations.

We observe that the most influential features are
word embeddings. They provide a gain of 3.4 points.
The main advantage of word embeddings is to learn
unsupervised representations on very large corpora
which capture general semantic properties. The last
most important features are lexicon features. We ob-
serve that word level lexicon features are not rel-
evant and tend to degrade the performance of the
SENSEI-LIF system on the Twitter 2016 dataset.
Impact of fusion: Table 5 presents the results us-

ing different kinds of fusion: early, late and embed-
ding fusion. We observe that early fusion obtains the
worse results. We think that is due to the small train-
ing corpus used. Embedding fusion obtains the bests
results on the Twitter 2016 dataset, but more gener-
ally late and embedding fusions obtain very close
results on the other datasets.

Corpus Early Late Embedding
Twt2013 69.4 70.4 70.6
SMS2013 62.6 63.7 63.4
Twt2014 73.4 74.3 74.4
TwtSarc2014 46.2 44.7 46.7
LvJn2014 74.3 74.4 74.1
Twt2015 64.1 66.8 66.2
Twt2016 61.6 62.8 63.0

Table 5: Overall performance using different methods of fu-
sion: early, late and embedding fusion.

6 Conclusions

This paper describes the LIF participation at Se-
mEval 2016. Our approach consists in learning
polarity classifiers for three types of embeddings,
based on the same CNN architecture. Each set of
word embeddings models the tweet according to a
different point of view: lexical, part-of-speech and
sentiment. A final fusion step is applied, based on
concatenating the hidden layers of the CNNs and
training a deep neural network for the fusion. The
fusion system ranked 2nd at the SemEval-2016 eval-
uation campaign.
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