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Abstract
Deep neural networks (DNN) are currently very successful for
acoustic modeling in ASR systems. One of the main chal-
lenges with DNNs is unsupervised speaker adaptation from an
initial speaker clustering, because DNNs have a very large num-
ber of parameters. Recently, a method has been proposed to
adapt DNNs to speakers by combining speaker-specific infor-
mation (in the form of i-vectors computed at the speaker-cluster
level) with fMLLR-transformed acoustic features. In this pa-
per we try to gain insight on what kind of adaptation is per-
formed on DNNs when stacking i-vectors with acoustic fea-
tures and what information exactly is carried by i-vectors. We
observe on REPERE corpus that DNNs trained on i-vector fea-
tures concatenated with fMLLR-transformed acoustic features
lead to a gain of 0.7 points. The experiments shows that using i-
vector stacking in DNN acoustic models is not only performing
speaker adaptation, but also adaptation to acoustic conditions.

1. Introduction
In Automatic Speech Recognition (ASR), the adaptation of
acoustic models consists in creating new specialized acoustic
models from general models given homogeneous data (for in-
stance a speaker cluster). Adaptation tends to reduce the diver-
gence between the initial acoustic model and a corpus gener-
ally closer to the test corpus. In the literature, several adap-
tation methods have been proposed, either using a different
corpus (Maximum A Posteriori - MAP [1]), or from a sub-
corpus (Maximum Likelihood Linear Regression - MLLR [2]).
In a multi-pass transcription, other methods allow unsupervised
adaptation by using a first transcription.

Deep Neural Networks (DNN) have recently been success-
ful for acoustic modeling and have lead to significant improve-
ments over earlier state-of-the-art approaches such as Gaussian
Mixture Model (GMM) Hidden Markov Models (HMM) on
several ASR tasks [3, 4, 5]. Nevertheless, one of the main chal-
lenge with DNNs is unsupervied speaker adaptation within ho-
mogeneous speaker segments. Indeed, portability approaches,
such as MLLR or MAP which work very well for GMMs, can
not be applied to DNNs. Unlike GMMs, DNNs do not have
a clear and identifiable structure, and DNNs have significantly
more parameters due to large and deep hidden layers. There-
fore, adaptation of so many parameters to so few data is not
straightforward. Different methods have been proposed in the
literature for speaker adaptation. The methods fall into two cat-
egories : parameters adaptation of a DNN or stacking of addi-
tional speaker-dependent parameters in the input of the DNN.

In [6], the authors propose to adapt the bias of top layers
(the outputs of the final hidden layer) with an affine transforma-
tion. Another method in [7] proposes to adapt the DNN weights
conservatively by forcing the distribution estimated from the

adapted model to be close to that estimated from the weights
before adaptation. This constraint is implemented by adding
Kullback-Leibler Divergence (KLD) regularization to the adap-
tation criterion. In [8] the authors propose to stack i-vector fea-
tures with fMLLR features as the input in the DNN. I-vectors
are supposed to capture all the speaker-specific information in
a reduced number of features. They are commonly used in
speaker verification and speaker identification and yield state
of the art performance in these tasks. The main idea is to al-
low the DNN to learn from the speaker-specific information.
In a multi-pass system, the authors propose to extract i-vectors
from fMLLR-normalized acoustic features (estimated in the
first-pass of the ASR system).

Unfortunately, fMLLR is a technique supposed to remove
speaker variability. So the i-vectors extracted from the fMLLR-
normalized acoustic features should no longer contain informa-
tion related to the speaker. In our work, we try to gain insight on
what kind of adaptation is performed on DNNs when stacking
i-vectors with acoustic features and what information exactly is
carried by i-vectors. In a first experiment, we propose to use
different acoustic parameters focused on different areas of the
acoustic space. The i-vectors, used in conjunction with acoustic
features should therefore model different kind of information.
In a second experiment we try to get insight on the information
modeled by i-vectors by partitioning the i-vectors and checking
whether the partitions match natural classes of the data. The
third experiment is designed towards understanding the impact
of speaker diarization on adaptation. For this experiment, we
extract i-vectors according to the different clusterings (-only or
full diarization) and see how this impacts word error rate. Fi-
nally, we remove speaker-related information from the i-vectors
(by using surrogate i-vectors) to see if the DNN is adapting to
speakers or not.

The papers is organized as follows: Section 2 summarizes
the i-vector approach. Section 3 presents the methods used for
integrated i-vectors in DNN-based ASR. The results of our ex-
periments are explained in Section 4. Section 5 concludes with
a discussion of possible directions for future works.

2. I-Vectors
The i-vector is a low-dimensional feature that characterizes
speakers. Our goal is to extract an i-vector for each speaker
and stack this feature with acoustic features in the input of a
DNN performing acoustic modeling in an ASR system.

2.1. Extraction

I-vector approaches have become the state-of-the-art in the
speaker verification field. They provide an elegant way of re-
ducing a large-dimensional input data to a small-dimensional
feature vector, while at the same time retaining most of the rel-



evant information. The technique was originally inspired by the
Joint Factor Analysis (JFA) framework introduced in [9].

Given a GMM, the corresponding mean super-vector M
can be approximated by:

M = m+ Tw (1)

where m is the mean super-vector taken from a GMM-UBM
trained on a large number of speakers; T is a low-rank rectangu-
lar matrix spanning the subspace covering the relevant variabil-
ity; w is a low-dimensional vector with a normally distributed
priorN(0, I). After iteratively estimating matrix T over a train-
ing corpus, equation 1 allows to use the lower-dimensional vec-
tor w as a speaker model in place of a large GMM. w is re-
ferred to as an i-vector. The i-vector algorithm is fully described
in [10].

2.2. Normalization

I-vectors are extracted on records that are treated as being sta-
tistically independent (regardless of the association between all
variability sources). The i-vectors are projected on a total vari-
ability space, no distinction is made between the sources of vari-
ability.

At this step the i-vectors contain both useless and useful in-
formation. Some normalization techniques have been proposed
in order to remove useless information [11, 12]. We propose
to use the Eigen Factor Radial (EFR) algorithm that is a gen-
eralization of length normalization. This method is an iterative
process with two goals:

1. Ensure that the i-vectors are distributed among N(0, I).
One consequence of that constraint is that the vector di-
mensions of i-vectors are mutually independent.

2. Apply length normalization to the i-vectors to make the
test and trial i-vector distributions more similar and more
Gaussian shaped.

In the training corpus, for each speaker we extract an i-
vector. The goal of the normalization algorithm is to compute
parameters for the i-vectors present in the training corpus and
apply these parameters to the i-vectors present in the test corpus.

Algorithm 1 describes the training method for the i-vector
normalizing parameters. The parameters (the mean µi and the
covariance matrix Σi) of the i-vectors present in the training
corpus are saved at each iteration i (step 0). Next, the i-vectors
are conditioned using the parameters of the current iteration:
step 1 is the classical data standardization, and step 2 is length
normalization.

Algorithm 1: Normalization algorithm of i-vectors on
the training corpus

for i = 1 to nb of iterations do
Step 0: Compute the mean µi and the covariance
matrix Σi on the training corpus;
for each w in the training corpus: do

Step 1: w = Σ
− 1

2
i (w − µi);

Step 2: w = w
‖w‖ ;

end
end

On the test corpus, after BIC (Bayesian Information Crite-
rion) clustering, an i-vector is computed for each cluster. The
i-vectors are then normalized iteratively, in a manner similar to

that used during the training phase, as explained in algorithm 2.
The difference lies in the absence of step 0: the mean µi and co-
variance matrix Σi used for each iteration in this phase are the
ones saved during the training phase. As in the training phase,
step 1 is the data standardization, and step 2 is length normal-
ization.

Algorithm 2: Normalization algorithm for the test phase

for i = 1 to nb of iterations do
Step 1: w = Σ

− 1
2

i (w − µi);
Step 2: w = w

‖w‖ ;
end

3. Integrating i-vectors with DNN
In ASR, a DNN is used as acoustic model instead of GMMs.
DNN is a neural network with several hidden layers. In our
experiments, the DNN has 4 hidden layers. The output layer
is a soft-max layer, and the outputs represent the log-posterior
of the output labels, which are context-dependent HMM states
(there are about 7,000 states in our experiments). The number
of neurons in the hidden layer is the same for all hidden layers:
1536 neurons. The nonlinearities in the hidden layers are tanh
functions. The objective function is the cross-entropy criterion,
i.e. for each frame, the log-probability of the correct class. The
weights are updated using mini-batches of size 256 frames.

The acoustic features used are derived by processing the
conventional 13-dimensional PLP. The features are stacked
across ±4 frames to produce 117 dimensional vectors. A Linear
Discriminant Analysis (LDA) is used to reduce the dimension-
ality to 40. Context-dependent HMM states are used as classes
for the LDA estimation. A fMLLR is applied to normalize
inter-speaker variability. Then the features are stacked across
±4 frames to produce 360 dimensional vectors. The procedure
for integrating i-vector with DNNs is as follows. First, we ex-
tract for each speaker cluster an i-vector (the notion of speaker
cluster is defined in Section 4.2). Then, the i-vector is concate-
nated to every acoustic frame of the cluster in order to form the
input of the DNN.

4. Experiments and results
4.1. Corpus

The data used for the experiments are those of the REPERE
2013 evaluation campaign [13]. The data is composed of a sub-
set from 68 TV shows recorded from French TV channels BFM
and LCP. The corpus contains broadcast news videos, political
discussions and street interviews. Only a part of the recordings
are annotated, giving a total duration of 10 hours.

4.2. Speaker Diarization

Speaker diarization is carried out using the LIUM open-source
speaker diarization toolkit [14]. First a speaker segmentation is
performed to detect fine-grained speaker changes using Gener-
alized Likelihood Ratio (GLR). Then a hierarchical agglomer-
ative clustering is used to group the segments belonging to the
same speakers using the BIC distance.



4.3. ASR

In our experiments we used the Kaldi ASR toolkit [15]. The
speech transcription process is carried in two passes (additional
gains can be obtained by performing more passes, but our ex-
periments are restricted to those passes for the sake of clarity):

1. The first pass: A first automatic transcription is per-
formed with a GMM-HMM model. The model is com-
posed of 7,000 states and 150,000 Gaussians.

2. The second pass: The word-graphs output by the first
pass are used to compute a fMLLR transform on each
cluster given by the speaker diarization. Then, the sec-
ond pass is performed using a DNN trained on acoustic
feature on which we apply fMLLR transformation [2].

The acoustic models are trained using a set of data from
distinct sources. The training corpus is composed of 227 hours
of wide-band recordings (167h from ESTER 1 and 2 campaign
and 60h from EPAC [16, 17]). The language-model is based
on trigram models and is composed of 95k words. Different
textual data from multiple sources are used to train language-
model : the audio corpus transcript, the french gigaword [18]
and additional data collected from the Web. To estimate and
interpolate these models, the SRILM [19] toolkit is employed
using modified Knser-Ney discounting without cut-off.

4.4. i-vector

Matrix T of equation 1 is estimated over the training corpus.
The matrix is iteratively estimated using the Expectation Maxi-
mization (EM) algorithm. We have chosen a dimension of 100
for the i-vectors. The GMM-UBM is composed of 512 Gaus-
sians computed using the ALIZE speaker recognition toolkit1.
We propose to extract different kinds of i-vectors, that differ
with respect to acoustic features they model:

• i-vector ∆∆: the acoustic feature is a 13-dimension PLP,
augmented by first and second derivatives. This configu-
ration is the one that is closest to what is used in speaker
verification.

• i-vector LDA: the 13-dimension PLP are staked across
±4 frames to produce 117 dimensional vectors. Then
LDA is applied to reduce the dimensionality to 40. The
context-dependent HMM states are used as classes for
the LDA estimation.

• i-vector LDA+fMLLR: is based on LDA features as de-
scribed previously with an additional fMLLR transform
applied to normalize inter-speaker variability. The fM-
LLR is estimated using the first pass of our speech tran-
scription system.

The different features proposed focus on different zones
of the acoustic space. The i-vectors will therefore model dif-
ferent kind of information. The i-vector ∆∆ system focuses
on speaker-information, whereas i-vector LDA and i-vector
LDA+fMLLR systems should focus more on additional infor-
mation.

4.5. Speaker adaptation or not?

In this section, we describe experiments exploring the speaker-
adaptation effects of stacking i-vectors with acoustic features as
input of the DNN.

Acoustic features
1http://alize.univ-avignon.fr/

Table 1 shows the results obtained on the REPERE corpus
using the different kinds of i-vectors. All i-vectors were normal-
ized with three iterations of the EFR algorithm. The baseline
consists in not stacking i-vectors for speaker adaptation.

Sub Del Ins WER
Baseline 11.63 6.61 2.77 21.01

i-vector ∆∆ 11.26 6.33 2.89 20.48
i-vector LDA 11.17 6.27 2.88 20.32

i-vector LDA+fMLLR 11.19 6.24 2.89 20.31

Table 1: Results obtained on the REPERE corpus using differ-
ent kinds of i-vectors.

The baseline system (corresponding to pass-2) obtains
21.01% of Word Error Rate (WER). The best configuration is
the i-vector LDA+fMLLR system that corresponds to extracting
i-vectors from acoustic features normalized by LDA and fM-
LLR. We observe that the i-vectors which follow the speaker
verification reciepe (i-vectors ∆∆) do not obtain the best re-
sults. The System using i-vectors focused on more than just
speaker information obtains the best results therefore the DNN
is adapting to something else than just speaker information.

Bi-partition criteria
We want to check if i-vectors extracted on different acoustic

features model different (or similar) information. We propose to
bi-partition i-vectors extracted from the training corpus (ie 5908
i-vectors) and see which data criteria (acoustic classes) best par-
tition them compared to an automatic bi-partition. The auto-
matic bi-partition is performed using the K-Means algorithm
(with K = 2) and the cosine distance. For each criterion we
compute a correct classification rate according to the criterion
on the automatic bi-partition given by K-means.

We define three criteria: (1) Gender: male or female; (2)
Music: musical background or not (3) Noise: presence of var-
ious noises annotated in the transcript, or not. We remind the
reader that an i-vector is extracted on every speaker-cluster.
Table 2 shows the correct classification rate obtained accord-
ing different criteria (Gender, Music and Noise). We observe
that the Gender criterion obtains the best correct classification
rate on the i-vectors extracted from standard acoustic features
∆∆ (77.27%). The correct classification rate decreases when
the acoustic features are normalized by LDA (65.46%) and
LDA+fMLLR (54.39%). These results confirms that LDA and
fMLLR methods reduce speaker variability which is not cap-
tured anymore by i-vectors.

Gender Music Noise
i-vector ∆∆ 77.27 47.15 46.70
i-vector LDA 65.46 49.42 45.70
i-vector LDA+fMLLR 54.39 52.50 51.83

Table 2: Correct classification rate according to acoustic
classes.

We observe the opposite effect on Music and Noise. The
correct classification rate increases by stacking LDA and fM-
LLR transforms. These results can be explained by the fact
that Music and Noise (and more generally the acoustic condi-
tion) tend to be the most discriminant criteria. The acoustic
condition is a difficult variability to compensate for in DNNs.
I-vectors are extracted from the cluster and seem to yield more
acoustic context to be used by the DNN.



Speaker-clustering
Traditionally, in speaker diarization for ASR systems a first

clustering is performed with the BIC distance while complete
diarization systems typically include additional grouping steps.
The BIC clustering allows to group segments belonging to simi-
lar acoustic conditions, generally containing the speech of a sin-
gle speaker. In order to merge the multiple clusters of the same
speaker, Diarization systems perform an additional pass with a
Normalized Cross Likelihood Ratio (NCLR) based on bottom-
up clustering. The NCLR bottom-up clustering is performed on
the clusters obtained after BIC segmentation.

We propose to analyze three differents systems: (1) i-vector
Segment : there is no clustering (this system obtained a Di-
arization Error Rate (DER) of 84.41%), (2) i-vector BIC : the
segments are grouped according to acoustic closeness (this sys-
tem obtained a DER of 27.21%) and (3) i-vector BIC+NCLR
: the segments are grouped according to speakers (this system
obtained a DER of 16.14%). For all theses systems we use i-
vectors extracted from acoustic features normalized by LDA
and fMLLR. Table 3 summarizes the WER of the ASR sys-
tem according to the clusters used for computing i-vectors. We
observe that the system i-vector BIC obtains the best results
20.31% WER whereas the system i-vector BIC+NCLR obtains
20.40% WER. Theses results suggest that clusters modeling the
acoustic condition provide most information to the DNN.

Sub Del Ins WER
i-vector Segment 12.23 7.12 3.78 23.13
i-vector BIC 11.19 6.24 2.89 20.31
i-vector BIC+NCLR 11.11 6.65 2.63 20.40

Table 3: Results obtained on the REPERE corpus using differ-
ent clustering methods.

Remove speaker information
In this experiment, our goal is to completely remove

speaker-related information from the i-vectors in order to under-
stand whether the DNN is being adapted or not to the speaker.
We propose for each i-vector present in the test corpus to re-
place it with the nearest i-vector present in the training corpus
which does not belong to that speaker (effectively, the i-vector
is carying a different identity). The distance used is a cosine
distance between i-vectors. Then, we propose to decode the test
set using i-vectors replaced by those i-vectors from the training
corpus (i-vector Train). In table 4, we observe that the i-vector
Train system has a gain of 0.32 compare to the Baseline system.
Although the cosine distance finds a similar speaker, most of the
speaker identity is removed. We believe that the gains obtained
are mostly due to the similar acoustic conditions.

Sub Del Ins WER
Baseline 11.63 6.61 2.77 21.01
i-vector Train 11.45 6.29 2.95 20.69
i-vector Test 11.19 6.24 2.89 20.31

Table 4: Results obtained on the REPERE corpus using i-
vectors transplanted from a different speaker.

Discussion
We observed in the bi-parition criteria experiment, that i-

vectors extracted on acoustic features normalized by LDA and
fMLLR contained less speaker variability than i-vectors ex-
tracted from standard parametrization. We also observed that

the information related to acoustics conditions is more im-
portant on normalized acoustic features than on a standard
parametrisation. In the speaker-clustering experiment, using
different clustering algorithms, we observed that the best re-
sults are obtained using i-vectors extracted according to the
acoustic condition (i-vector BIC) rather than i-vectors extracted
on speaker clusters (i-vector BIC+NCLR). In addition, we ob-
served, in the experiment where we remove speaker informa-
tion, that a gain can be obtained by using i-vectors of the train-
ing corpus i-vector Train compared to Baseline. All of these
experiments show that using i-vector stacking with DNNs is
not only performing speaker adaptation, but also adaptation
to acoustic conditions. Understanding how to model speaker
and acoustic conditions seems to be critical in improving ASR
performance, and more work is necessary in order to lever-
age all the techniques developed in the speaker verification
community. Indeed, relevant information is different in ASR,
where the objective is to obtain speaker-independent models,
than it is for speaker identification which focuses on speaker-
specific traits. For example, some techniques have been pro-
posed in speaker recognition to tackle irrelevant information in
i-vectors [20, 21, 22]. It is now well established that the lim-
itations of the i-vector representation of speech segments have
started to become apparent. The sensitivity of i-vectors to seg-
ment durations is an obvious case and different approaches have
been proposed to take it into account [23]. Therefore, it seems
very interesting to study the approaches proposed by the speaker
recognition community in order to adapt them in ASR.

4.6. Impact of i-vector normalization

Table 5 shows the results obtained with i-vectors with differ-
ent levels of normalization. All the results are reported using
i-vectors extracted on acoustic features normalized by a LDA
and a fMLLR. We observe that disabling i-vector normalization
does not significantly improve the results relative to the baseline
system (20.96% WER - i-vector no-norm.). A first iteration of
the algorithm allows to improve the results by about 0.6 points
(i-vector EFR iter1). And the others iterations do not improve
nor deteriorate the results. In speaker verification, in [20], the
best results are obtained in using two iterations. We think that
a first iteration is necessary for the DNN in order to decorre-
late the feature space. But the other iterations are not necessary
because the DNN can decorrelate by itself.

Sub Del Ins WER
i-vector no-norm. 11.55 6.61 2.81 20.96
i-vector EFR iter1 11.16 6.31 2.81 20.30
i-vector EFR iter2 11.15 6.27 2.88 20.30
i-vector EFR iter3 11.19 6.24 2.89 20.31

Table 5: Results obtained on the REPERE corpus using or not
EFR normalization.

5. Conclusions
In this paper we study speaker adaptation in DNNs by stacking
i-vectors with acoustic features as input to the model. I-vectors
extracted from acoustic feature are complementary and provide
additional gains when used in conjunction with acoustic fea-
tures as input to the DNN. In the experiments we observe that
the DNN is not only performing speaker adaptation, but also
adaptation to acoustic conditions.
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