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Abstract
Appositions are grammatical constructs in which two noun
phrases are placed side-by-side, one modifying the other. De-
tecting them in speech can help extract semantic information
useful, for instance, for co-reference resolution and question
answering. We compare and combine three approaches: word-
level and phrase-level classifiers, and a syntactic parser trained
to generate appositions. On reference parses, the phrase-level
classifier outperforms the other approaches while on automatic
parses and ASR output, the combination of the apposition-
generating parser and the word-level classifier works best. An
analysis of the system errors reveals that parsing accuracy and
world knowledge are very important for this task.
Index Terms: Speech understanding, Punctuation, Apposition
detection.

1. Introduction
Appositions are grammatical constructions usually involving
two consecutive noun phrases, in which one of the phrases (the
attribute) defines or modifies the other (the head). The head
phrase forms a reference to an entity, and the attribute phrase
characterizes that entity.

Detecting that two consecutive noun phrases are involved
in an apposition relation is fundamental for language process-
ing applications, such as question answering, co-reference res-
olution and textual entailment, because these noun phrases give
a direct access to a semantic information between two entities,
such as is a relations. For example, we examined about 180
questions, querying biographic details of people (definition and
reverse definition questions), from the Linguistic Data Consor-
tium’s question corpus formed for the DARPA GALE project
(LDC2008E18). In a third of all the questions that have an-
swers in speech data (from broadcast news and conversations
shows), the answer were actually included in an apposition and
could be found easily if the apposition was detected.

In text, the relation between the head and the attribute is
usually marked by commas, which makes finding appositions
relatively easy. On the other hand, due to lack of punctuation
and capitalization in speech recognition output, it is more diffi-
cult to detect them in spoken documents. Without punctuation,
a sentence like “I suggested John a gardener” is ambiguous: Is
John the gardener? Or did I suggest him the name of a gardener?
Furthermore, the performance of all language processing tasks
that may help to detect appositions, such as parsing and part-
of-speech tagging, often degrades on speech recognizer output,
due to the lack of these punctuation marks, as well as ungram-
matical sentences and disfluencies.

Previous work on spoken language processing has mainly
focused on detecting commas on speech recognizer output [1,
2], and it was observed that finding commas in appositions was
made difficult by the absence of prosodic cues on one side of

the apposition. Comma detection (including commas in appo-
sitions) has been shown to help part-of-speech tagging [1] and
relation detection [3]. [4] has studied the resolution of comma
types (list, apposition, etc) in text and has shown positive ef-
fects on relation detection. However, neither those works, nor
the abundant literature on co-reference resolution in text has fo-
cused on directly detecting appositions in speech when commas
are not available.

In this paper, we explore apposition detection in news
broadcasts of the OntoNotes corpus (release 2.9) English data.
Specifically:

• We propose three methods for detecting appositions: the
training of a parser to generate apposition labels, a word-
level classifier on inside-outside-begin (IOB) labels, and
a phrase-level classifier. Both classifiers use richer fea-
tures than the parser, but the phrase-level approach re-
quires phrases from a parser or a chunker (Section 2).

• We explore the performance and limits of those methods
on various combinations of reference and automatically
generated words and parse trees (Section 3).

• We analyze the results and suggest directions for future
work on detecting appositions (Section 4).

2. Approach
We are interested in detecting not only the appositions but also
their constituents, the head and the attribute. The attribute more
often occurs before the head, but it can be after it as well. Oc-
casionally, multiple attribute phrases refer to the same head, or
multiple appositions are embedded in each other. In this paper,
the head of the apposition is represented by the label “HEAD”
and the attribute by the label “ATTR”.

The most natural approach to detect appositions is to pre-
dict a parse tree in which phrases are to be labeled as “HEAD”
and “ATTR”. Our first approach is to concatenate the apposi-
tion label to the constituency label of each node in the parse
tree and train the parser accordingly. Such an approach, how-
ever, depends highly on the quality of the parser, and cannot
include speech-related features if the parser has not been de-
signed for that purpose. Therefore, we contrast this approach
with two other approaches: the classification of word-level la-
bels using an IOB scheme and the classification of phrases from
the parse tree using extended features compared to those used
by the parser.

The word-level approach is implemented as a sequence
model over inside-outside-begin (IOB) labels for the “HEAD”
and “ATTR” classes. Figure 1 gives an example of IOB label-
ing. Since this model cannot represent embedded appositions,
we only generate labels for the outermost annotation (embed-
dings are rather rare).

While the IOB framework is independent of the parser, its
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Figure 1: Example IOB labels for the fragment “...in the capital
belgrade he...”.

Word Label
...in O
the B-ATTR
capital I-ATTR
belgrade B-HEAD
he... O

sequential structure is not very well suited for apposition anno-
tation because, in order to account for words at the end of the
apposition when predicting words at its beginning, either the
scope of the model or the quantity of features have to be pro-
hibitively extended. Additionally, a lot of classification power
has to be spent to model out-of-apposition words.

For those reasons, we also consider phrase-level labels
where each node of the parse tree is annotated with either
“HEAD” or “ATTR” if it is involved in an apposition, or “O”
if it’s neither a head nor an attribute. Figure 2 shows an exam-
ple annotation of a parse tree fragment with apposition labels.
In “my brother John”, the noun phrase “my brother” is anno-
tated with “ATTR” and “John” is annotated with “HEAD”. The
rest of the nodes in the tree (including nodes under the HEAD
and ATTR phrases) are annotated with “O”.

Figure 2: Illustration of phrase level labeling on top of a frag-
ment of the parse tree.

3. Experiments
3.1. Data

The OntoNotes corpus [5] provides apposition annotation
through its co-reference annotation effort. All noun phrases in
appositions are annotated with head and attribute labels with-
out being restricted to the Automatic Content Extraction (ACE)
semantic classes. The choice of the head and the attribute anno-
tation is guided by the genericness of the reference (for exam-
ple, “a man” is more generic than “John”). In all experiments,
we use news broadcasts from release 2.9 of the OntoNotes data
(LDC2009E05). Table 1 shows the number of words, number
of appositions and word error rate of the training, validation
and test subsets that we use. The Automatic Speech Recogni-
tion (ASR) output is supplied by SRI’s broadcast news speech
recognizer [6], retrained to exclude data contemporary to the
OntoNotes shows.

Table 1: Statistics on the OntoNotes BN corpus: number of
words and appositions, mean word error rate (WER).

Stat Train Dev Test
Words 162,246 16,530 18,945
No. Appositions 567 62 64
WER 20.6% 17.9% 19.4%

We had to “speechify” the reference transcriptions of the
OntoNotes corpus in order to match the ASR output. First, num-
bers are converted to words, punctuation marks are removed,
words are uppercased, and the tokenization is matched to the
ASR tokenization (for instance, possessive marks are attached
to the words and acronyms are split into individual letters).

Then, the reference words are aligned to the ASR output in
order to obtain timing information and reference apposition la-
bels for both conditions. The apposition reference annotations
are transferred at the word level using the IOB labels. Since
the ASR is not perfect, deleted words in the resulting align-
ment do not have time information (preventing the creation of
speech-related features for those words) and inserted words do
not have apposition labels. We apply simple rules to restore the
apposition labels for inserted words: (1) Inside labels are prop-
agated backwards to words without labels; (2) Unlabeled words
between two apposition spans are included inside the first span;
(3) All other unlabeled words get the outside label; (4) Spans
that begin with inside labels are changed to the begin label.

For the word-level classifier, we convert the apposition an-
notation to IOB labels in the final step above. In the case of
the phrase-level systems (the parser and the classifier), we align
the appositions to the closest phrases in term of boundaries and
length. Hence, the transfer is often approximate in the case of
automatically estimated parse trees.

3.2. Systems

In our experiments, we use the Berkeley Parser [7], a generative
constituency parser which automatically refines constituent la-
bels at training time for improved accuracy. This parser obtains
state-of-the-art results on English texts and therefore is expected
to give realistic performance on speech data. We did not mod-
ify the parser in order to support speech, but rather trained it on
“speechified” data from the OntoNotes corpus.

The classification experiments are run within a Conditional
Random Field (CRF) framework for the IOB model. CRFs
model the posterior probability of a sequence of labels (y =
y0 . . . yn) for the input (x = x0 . . . xn):

P (y|x) ∝ 1

Z(x)
exp

"X
i

X
k

λkfk(yi, yi−1, x)

#
(1)

where fk(·) is a feature function over a clique of labels (the
current and previous label) and the examples, λk is a parameter
of the model (the weight of the feature function), and Z(·) is a
normalization factor. We implement that model through a first-
order linear-chain CRF using the CRF++ toolkit [8].

Phrase-level decisions are made through an Adaboost [9]
classifier that generates posterior probability estimations from
weighted decision stumps (one-level decision trees):
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"
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where fk(·) is a decision stump (presence of a discrete feature
or position relative to a threshold of a continuous feature) over
a single feature, wk is the weight given to that decision stump,
andm is the number of decision stumps (or training iterations).
Adaboost is trained by iterating over the selection of the best de-
cision stump and the reweighing of examples on which the over-
all classifier at that iteration makes mistakes. The implementa-
tion used in our experiments is icsiboost [10]. We perform 1,000
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training iterations and determine a decision threshold for each
class in order to maximize F-score on the development set.

We do not restrict the phrase-level classifier to noun phrases
so that it can be trained on erroneous parse trees and ASR output
(all phrases are candidates). Additionally, we ensure that a head
is always in the vicinity of an attribute by post-processing the
output, which increases precision.

3.3. Features

The Features for word-level classification are summarized here:
• Word and part-of-speech n-grams (from 1- to 3-gram)
from two words before and after the current word.

• Quantified pause duration before and after the word.
• Syntactic label of the highest node in the parse tree be-
ginning/ending on the previous, current and next word.

• IOB named-entity label of the word (persons, organiza-
tions, geo-political entities, locations, dates, and time).

These features are used for both zero- order (current label) and
first order (previous and current label) predictions. All features
occurring fewer than 5 times in the training data are dropped.

Features for the phrase-level model are as follows:
• Positional and non-positional n-gram of words and part-
of-speech tags for the node (from 1- to 4-gram).

• Quantified pause duration before and after the phrase.
• Syntactic labels of the node, its previous and next sib-
lings, and its parent.

• Word and part-of-speech n-grams for the words before
and after the constituent.

• Labels of the named entities found in the node and the
named-entity label of the node itself.

For named-entity annotation, we train an IOB classifier
(CRF++ toolkit) on the OntoNotes corpus training data (mono-
case, no punctuation) using the same features as in [11], result-
ing in an F-score of 74.25% on the test set. The Berkeley Parser
is also trained on the OntoNotes speechified data, resulting in a
bracketing F-score of 84.14% and a part-of-speech tagging ac-
curacy of 95.28%. For experiments on automatically generated
parse trees and ASR output, we first process the training data
with the parser and the named-entity tagger in order to repro-
duce the kind of errors that are seen at test time. Normally, one
would train those components on different data but, given the
low quantity of in-domain data available, we prefer to reuse the
OntoNotes training set.

3.4. Results

We first look at baselines and oracles. A simple baseline anno-
tates all consecutive pairs of noun phrases as “HEAD, ATTR”
(the most frequent form of apposition). The oracle result looks
at whether the phrase boundaries of both the head and the at-
tribute are found accurately in the parse tree. We also com-
pare the oracle from the parser to an oracle from a noun phrase
chunker trained on CoNLL data (mono-cased, no punctuation)
with the same classifier and features as for named entity extrac-
tion. That chunker performs at 91.07% (F-score) on the CoNLL
test set when case information and punctuation are removed
(93.44% otherwise). Table 2 lists the corresponding results for
the baseline and the oracle. We observe that the baseline per-
forms poorly, even on reference parses, showing the difficulty
of finding appositions. By looking at the oracle results, we see

that the parser is a big hit to the performance ceiling, if we com-
pletely rely on its phrase boundaries. Additionally, it seems in-
adequate to use a chunker to hypothesize appositions.

Table 2: Baseline and oracle F-score on reference words (REF)
and (ASR) for the gold parses, the parser and the chunker.
System Words Ref. Parses Parser Chunker
Baseline REF 17.33 7.66 -
Oracle REF 100.00 76.74 48.83
Baseline ASR - 1.95 -
Oracle ASR - 65.78 27.63

The next set of results concerns the use of classifiers for de-
tecting appositions. Table 3 presents F-scores on the “HEAD”
and “ATTR” classes for three conditions: reference words with
reference parses (REF-manual), reference words with auto-
matic parses (REF-auto), and ASR words with automatic parses
(ASR-auto). Our first system (BP) is the parser trained with
apposition labels concatenated to syntactic labels (if the head
is a noun phrase, it is labeled NP-HEAD). The second system
(IOB) is the word-level classifier, and the third system (PH) is
the phrase-level classifier. The results show that the parser is
very competitive at finding appositions, especially on ASR out-
put (it has a better precision than the classifiers). The word-level
classifier, though, consistently performs more poorly than the
phrase-based classifier, on reference parses, automatic parses
and ASR output.

Table 3: F-score (on HEAD and ATTR) for various systems. BP
is the Berkeley Parser trained to generate appositions; IOB is
the word-level classifier and PH is the phrase-level classifier.

System REF-manual REF-auto ASR-auto
BP - 41.38 39.73
IOB 48.09 32.76 17.39
PH 61.54 40.41 26.67

Next, we look at combining the apposition annotation of
the parser with the other systems, by using the parse trees with
HEAD and ATTR labels in place of the original parse trees. All
features that make use of the syntactic labels now benefit from
the hypothesized apposition labels. The results displayed in Ta-
ble 4 show that an improvement can be obtained for both classi-
fiers with even higher results for the word-level systems. These
results are not surprising because the word-level information is
complementary to the information used by the parser while the
overlap is higher at the phrase level. The fact that combining
the parser with the phrase-level classifier results in lower scores
than the uncombined version can be explained by the process-
ing of the training data with a parser trained on the same data
(it has a bracketing F-score of 94.30% on the training set). The
classifier probably over-relies on the parser’s decisions and does
not correct them as much as the IOB model. On ASR output,
even on the training set, the parser has a lower accuracy which
minimizes the mismatch with the test set.

Table 4: F-scores for combined systems from Table 3.
System REF-auto ASR-auto
BP+IOB 42.31 42.59
BP+PH 34.22 40.35

2713



4. Discussion
We performed an analysis of the errors of the phrase-level clas-
sifier on the test set. Results are reported in Table 5. For
this analysis, we disabled decision post-processing (removal of
lonely heads and attributes), which decreases precision, but is
expected to give better insight into the errors of the system. A
lot of insertions and misses in both ASR and REF are due to a
poor choice of the decision thresholds on the development set.
The use of a larger set could probably improve the situation.
Decisions to label spurious heads or attributes often come from
the presence of proper names in the vicinity of the phrase, and
misses seem to originate from totally unseen conditions where
either the named entity tagger missed an entity or only common
nouns are used in the references. Errors in the parse tree, in-
cluding phrase segmentation issues, have the strongest effect on
the ASR side, but even when using reference trees (REF), the
classifier can be confused by structures that look just like appo-
sitions due to the absence of punctuation, such as lists or when
a comma is expected. As already observed in the results of the
system, word error rate does not dominate the source of apposi-
tion errors. Finally, a share of the mistakes comes from labeling
errors and alignment problems, when the phrase structure does
not match the apposition annotation. Some candidates, such as
“[syria’s president] [bashar al assad]”, are ambiguous and can
be interpreted either as an apposition or as the use of a nominal
modifier. Only the acoustics might tell the intent of the speaker.
Some appositions also seem very difficult to find without world
knowledge: In “[the son of milosevic] [marko]”, one must know
that two people are referred to instead of one (if milosevic can
be a first name, and marko a family name).

The small size of the training corpus seems to be a big fac-
tor in the errors made by the system. We presume that apply-
ing unsupervised learning and introducing some world knowl-
edge in the approach could help spot possible relations between
noun phrases (for example, “the president” followed by a per-
son name is a likely relation while “the book” followed by the
same name is unlikely).

Table 5: Analysis of the errors by type and by expected reason
(when one was found), for the phrase-level system on reference
text with manual parses (REF) and ASR output with automatic
parses (ASR).
Error REF ASR Reason REF ASR
Del. apposition 48% 42% Unseen words 10% 3%
Del. attribute 2% 0% Labeling 4% 5%
Del. head 24% 9% Parse tree 8% 30%
Ins. apposition 10% 9% Proper name 12% 12%
Ins. attribute 16% 30% Alignment 2% 7%
Ins. head 10% 0% Segmentation 2% 5%
Swapped appos. 2% 1% ASR errors 0% 9%

It is also obvious that improving parsing would greatly im-
prove apposition detection, thanks to the phrase model, even
though the apposition generating parser is unlikely to be im-
proved unless more training data is available. We performed an
extra experiment where we train a parser with extra symbols in
the word sequence to mark the beginnings and ends of apposi-
tions. The performance of this parser on sentences containing
appositions increases from 79.50% to 85.95% compared to a
parser that does not know about appositions. Even if this looks
like a chicken-and-egg problem, a system accurate enough to
generate appositions without using parse trees would be able to
help parsing by a large amount.

Finally, in the phrase-level approach, annotating the head
and the attribute separately seems inadequate. Predicting prop-
erly the whole apposition is a structure prediction problem that
follows neither a sequence nor a tree (especially when the parse
tree is not accurate). We might have to turn to general graph
learning models so that each phrase is treated in function of the
phrases before and after it, independent of the parse tree.

5. Conclusion
This work presents approaches for identifying appositions
in speech. We show that on reference parses, a phrase-level
classifier performs much better than predicting labels at the
word level. This trend is also true on automatic parses and ASR
output if no other information is available. We propose training
the parser so that it generates apposition labels, resulting
in higher performance. The best performance, though, is
obtained by combining the apposition-generating parser with
the word-level model because they have different scopes. The
phrase-level approach seems to be more affected by parsing
errors and requires more training data to be effective. As future
work, we plan to apply unsupervised learning to enrich the
coverage of our models (by self-training the parser on ASR
output, for instance), and to work towards a structured model
where the decisions taken for a phrase affect the decisions on
the neighboring phrases.
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