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ABSTRACT
This paper proposes to investigate speaker embeddings, a rep-

resentation extracted from hidden layers of deep neural networks
trained on a speaker identification task, on cross-show diarization.
The new representation brings an improvement over i-vectors, and
we show that while shallow hidden layers give best results on the
single-show condition, deeper layers yield better performance on
cross-show diarization. This confirms that deep representations
model higher level features which help generalizing to different
acoustic conditions. Experiments, conducted on the French corpus
of REPERE, show that the deep speaker embeddings technique
decreases DER by 0.82 points.

Index Terms— Speaker Diarization, Deep Neural Network,
Speaker Embeddings, Speaker Clustering, i-vectors

1. INTRODUCTION

The goal of speaker diarization is to annotate temporal regions of
audio recordings with speaker labels in order to answer the ques-
tion “who spoke when?” A common approach to this task is to per-
form two steps: segmentation of the input speech so that each speech
segment belongs to one speaker, and segment clustering in order to
regroup all segments of the same speaker. In the typical setting,
speaker diarization is applied to each recording, without a priori
knowledge about the speakers or the structure of the show.

Until recently, most speaker diarization systems followed the
task proposed by NIST, ie. each show is processed and evaluated
independently. The major drawback of this approach is that it does
not take into account the fact that some of the speakers attend mul-
tiple shows and it would be interesting to predict these events. This
situation is very common in broadcast news and TV programs where
hosts, anchors and other guests may appear recurrently. The notion
of cross-show diarization on a collection has recently been intro-
duced to deal with this kind of situation [1]. Thus, a speaker involved
in several shows is always identified by the same anonymous label
in each of the recordings. The approaches proposed to tackle this
problem are mostly based on variants of speaker clustering [1, 2].

One key challenge in cross-show speaker clustering is how to
model speakers, i.e. extract robust speaker-specific features from
speech data. The classical approach in speaker modeling is based
on the i-vectors/PLDA pipeline [3]. Introduced in [4], the i-vector
approach provides an elegant way of reducing a large-dimensional
input vector (representing the speaker data) to a small-dimensional
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feature vector, while at the same time retaining most of the rele-
vant information. Probabilistic Linear Discriminant Analysis Scor-
ing (PLDA) is used as metric to verify if two i-vectors correspond to
the same speaker during speaker clustering.

It is now well established that the limitations of the i-vector rep-
resentation become apparent when processing short segments for
which it is very difficult to disentangle useful information from back-
ground noise (the channel and speaker effects) [5, 6, 7, 8]. In order
to tackle this problem, a novel speaker modeling framework, called
speaker embedding, has been proposed in [9]. The main idea is
to learn a high-level speaker representation from supervectors with
deep neural network (DNN) models trained on a speaker identifica-
tion task (classifying speech segments into one of n speaker identi-
ties). The assumption is that hidden layers of the DNN can extract
relevant information for discriminating between speakers regardless
of speaker identities. Speaker embeddings are extracted by passing
supervectors through the DNN, and extracting the activations at a
hidden layer to form a new feature vector representing the speaker.
Unlike i-vectors this approach has the advantage to directly estimate
a high-level feature representation in the speaker space using DNNs.

This paper extends the work presented in [9] with the following
contributions:

• We investigate whether speaker embeddings extracted from dif-
ferent hidden layers of a DNN can be effective for cross-show
diarization.

• We also look at the difference in term of optimal hidden layer
between the single-show and the cross-show settings, discover-
ing interesting insight on the working of deep neural networks
with speech.

Our experiments on the REPERE corpus show that cross-show
speaker diarization based on i-vectors obtains 17.10% Diarization
Error Rate (DER), whereas the proposed approach based on speaker
embeddings obtains a DER of 16.28% (an absolute gain of 0.82
points).

After presenting the speaker embedding paradigm in Section 2.
Section 3 describes the speaker verification and conditioning meth-
ods used for speaker diarization. The corpus on which experiments
are carried and the results of our experiments are presented in Sec-
tion 4. Results are discussed in Section 5. Section 6 lists related
work. Finally, we conclude with a discussion of possible directions
for future work in Section 7.

2. SPEAKER EMBEDDINGS

In this section, we summarize the recipe for extracting speaker em-
beddings. Refer to [9] for details.
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Outlined in Figure 3, the proposed method learns high-level
speaker features with DNN models trained to achieve a speaker
identification task. When learning a classifier to recognize speaker
identities, DNNs compact relevant features in the hidden layers.
Speaker embeddings are feature vectors extracted from hidden layer
neuron activations. Although learned through identification, speaker
embeddings are shown to be effective for speaker verification, in
particular to recognize speakers unseen in the training set. The main
idea is to use one of the hidden layers as the new feature representa-
tion. We note that the number of neurons in the hidden layer is the
same for all hidden layers: 1024 neurons, except for the layer from
which we extract embeddings, in order to create a bottleneck and
force the network to extract high-level speaker features.

Output%Hidden%

Input%Hidden%61440%

1024%

1024%

Speaker%Embedding%500%

1014%

Fig. 1. An illustration of the feature extraction process. Arrows
indicate forward propagation direction. The number of neurons in
each layer of the deep neural network is labeled besides each layer.
Speaker Embedding features are taken from the central hidden layer
(this topology obtains the best results on the development corpus).

To construct speaker embeddings, we first extract 60-dimensional
acoustic features for each turn (19 MFCC, log energy and first and
second-Order deltas). Then, First-Order statistics, centred and nor-
malized, are obtained from a Universal Background Model (UBM).
For each Gaussian c of the UBM, the statistics are computed as:
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c

∑
t

γt
c(o
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where ot is the feature vector at frame t and γt
c is the occupation

probability of the Gaussian c for frame t. The complete First-Order
statistic is Fi = (F

(1)
i , . . . , F

(c)
i ). Fi is used as input of a DNN.

The aim of the model is to be able to compute features for speak-
ers which are not involved in the identification task, and therefore,
at test time, a representation can be computed for any speech, and
compared to other speaker models in a verification setting.

Figure 2 shows 500-dimensional Speaker Embeddings extracted
from the test corpus for select speakers. This figure illustrates how
speech segments from the same speaker tend to have more activated
neurons in common.

3. SPEAKER CONDITIONING AND VERIFICATION

In speaker diarization, the clustering step requires to compute the
similarity between pairs of speech segments. This speaker verifica-
tion step has been successfully performed with PLDA in previous
work [3].

PLDA is a probabilistic version of Linear Discriminant Analy-
sis (LDA). This technique projects the input data into a much lower
dimensional space with minimal loss of discriminative ability, as
the ratio of between-speaker and within-speaker variation is maxi-
mized [10].
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tains the voice of only one speaker. The goal of speaker cluster-
ing consists to group the segments into clusters, where each cluster
contains segments of only one speaker. The challenge of speaker
clustering is augmented by the fact that the clustering is performed
without knowledge of the number of speakers or their identity.

The success of speaker clustering generally depends on features
(speaker modeling) on which they are applied. For that reason, much
of the actual effort in deploying machine learning algorithm goes
into the design of preprocessing pipeline and data transformation
that result in a representation of the data that can support effective
machine learning. In this paper we focus on speaker modeling. The
speaker modeling consist in extracting speaker-specific information.

The proposed system differs from the majority of contributions
in the field in that it uses the deep learning framework in lieu of well
i-vector features. Deep Learning is especially suitable for dealing
with large training sets, with many recent successes in diverse do-
mains such as vision, speech and language modeling.

Among the various ways of learning representations, this pa-
per focuses on deep learning methods: those that are formed by the
composition of multiple non-linear transformations, with the goal of
yielding more abstract and ultimately more useful representations.

2. RELATED WORK

En modlisation de locuteur,

3. I-VECTOR

3.1. Front-end

Recent work in speaker verification have done in an effort to enhance
the classical method of modeling speakers using GMM. One such
approach is i-vectors which have becom the state-of-the-art in the
SV field. They provide an elevant way of reducing large-dimensional
input data to a small-dimensional feature vector. The technique was
originally inspired by the Joint Factor Analysis (JFA) framework in-
troduced in [Kenny˙Boulianne˙Ouellet˙Dumouchel˙2007].

Given a speaker- and channel-independent UBM, the corre-
sponding mean super-vector M can approximated by:

M = m + Tw + ✏ (1)

where m is the mean super-vector taken from a UBM, with C Gaus-
sian components of dimension F . T is a low-rank rectangular matrix
spanning the subspace covering the important variability that we call
total variability space, of C ⇥ F rows and M columns; w is a low-
dimensional vector with a normally distributed prior N(0, I) of size
M . w is referred to as an i-vector. The T matrix is estimated using
an EM (Expectation-Maximization) algorithm.
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Fig. 2. Examples of the learned 500-dimensional Speaker Embed-
dings. The figure shows three test pairs from the test corpus. We
rearrange them as 10 × 50 for the convenience of illustration, the
ordering of the feature vector is the same for all examples. Feature
values are non-negative since they are taken from ReLUs. Approxi-
mately 67% of features have non-null values. Brighter squares indi-
cate higher values.

But PLDA assumes that the class distribution of the data is Gaus-
sian. Unfortunately, the class distribution of speaker embeddings
has a radial shape [9]. In order to tackle this problem we propose to
normalize the data by applying the LW-normalization introduced
in [11]. This normalization consists in iterating standardization
according to the within-class covariance and length-normalization.
Thus this normalization moves the data towards a high Gaussian
density surface, and helps to fit the PLDA model to the training set.

Finally, given two speaker embedding wi and wj , the speaker
verification score can be computed in the PLDA model as:

d(wi, wj) = wᵀ
iQwi + wᵀ

jQwj + 2wᵀ
i Pwj (2)

with
P = Σ−1

tot − (Σtot − ΣacΣ
−1
totΣac)

−1

Q = Σ−1
totΣac(Σtot − ΣacΣ

−1
totΣac)

−1
(3)

where Σtot = V V ᵀ + ΣPLDA and Σac = V V ᵀ. Here, V and ΣPLDA

are obtained from the PLDA estimation algorithm which is detailed
in [3].

4. EXPERIMENTS

4.1. Cross-show diarization architecture

The cross-show diarization system used in these experiments is the
LIUM Speaker Diarization system [12]1. This system obtained the
best results during the ETAPE 2012 and REPERE 2012 French eval-
uation campaigns.

The cross-show diarization system is based on a two-level archi-
tecture. We first process the shows separately (individual processing)

1Freely distributed at http://www-lium.univ-lemans.fr/diarization/
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and then recluster speakers on the whole collection (overall process-
ing).

Show%1% Show%2% Show%N%

BIC$ BIC$ BIC$

ILP$ ILP$ ILP$

ILP$

Individual$
processing$

Overall$
processing$

…

Output$

Fig. 3. The cross-show diarization architecture.

The first level relies on two major steps: segmentation and
speaker clustering. The purpose of this segmentation is to produce
homogeneous segments that can be exploited in the next steps (i.e.,
a segment must match a single speaker). Segmentation is performed
using a Generalized Likelihood Ratio (GLR) criterion based on
GMMs. The next step aims at regrouping all segments that be-
long to the same speaker. Speaker clustering is performed in two
steps: BIC clustering based on GMMs followed by Integer Linear
Programming (ILP) clustering based on speaker embeddings [13].

The second level relies on ILP clustering with i-vectors. In this
work, we propose to substitute i-vectors for speaker embeddings dur-
ing the ILP Clustering.

4.2. Data

In the following experiments, we use the REPERE 2013 data [14].
The dataset consists in 9 TV shows recorded on French TV chan-
nels BFM and LCP, split according to the official train, development
and test sets. The development corpus corresponds to 27 shows (3
hours) and is employed to determine the various hyper-parameters
of the systems. The evaluation corpus contains 62 recordings (10
hours) and is employed to evaluate model performance. For training,
we use french broadcast news training corpora: ESTER 1 [15], ES-
TER 2 [16], EPAC [17], REPERE [14] and ETAPE [18]. I-vectors,
speaker embeddings and GMM-UBM models are all learned from
the training corpus.

4.3. Evaluation Metrics

Diarization Error Rate (DER) is the metric used to measure perfor-
mance in speaker diarization. DER is the fraction of speaking time
which is not attributed to the correct speaker, using the best matching
between references and hypothesis speaker labels.

DER =
#Spk + #Miss+ #FA

#Total
(4)

where #Spk, #Miss and #FA are respectively speaker error,
missed speech and false alarm speech. The scoring tool we used
was developed by LNE as part of the REPERE campaign [19]. This
tool supports the computation of cross-show DER. The cross-show
DER takes into account multiple occurrences of a speaker in several
shows, as if all shows were merged into a single show.

4.4. I-vectors and Speaker embeddings

Throughout the experiments, speaker embeddings and i-vectors are
extracted using 60-dimensional acoustic features, with a 10ms frame
rate, composed of 19 MFCCs plus log energy and augmented by the
first and second-order deltas. The UBM used for the features is a
gender- and channel-independent GMM composed of 1024 diagonal
gaussians computed with the Kaldi toolkit [20].

The dimension of i-vectors is fixed to 200 (determined on the
development corpus by searching values between 50 and 600). The
i-vectors are conditioned with two iterations of LW-normalization.

The DNN used for extracting the speaker embedding is com-
posed of 3 hidden layers (one hidden layer is used for the embed-
ding). The number of neurons in the hidden layer is the same for all
hidden layers: 1024 neurons, except for the layer from which we ex-
tract embeddings. The activation function of the DNN is ReLu. The
learning rate was initialized at 0.01 and reduced at the end to 0.001.
The weights are updated using mini-batches of size 128 frames and
the model is trained over 6 iterations. The DNN implementation is
that of the Kaldi toolkit. Finally the speaker embeddings are condi-
tioned with one iteration of LW-normalization.

Note that when we vary the hidden layer from which embed-
dings are extracted, we always set the size of the embedding layer to
500 and the size of the other layers to 1024.

4.5. Results

In a first experiment we look at which hidden layer has the most
potential for being extracted as representation in a single-show di-
arization system. These results are reported in Figure 4 where we
plot DER according to the distance metric threshold (Factor) used in
the ILP constraints. The distance metric threshold is a stopping cri-
terion of the clustering process. The point on the curves corresponds
to the systems obtained by using the thresholds determined using the
development corpus.
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Fig. 4. Results in DER obtained by using the representation ex-
tracted from the different hidden layers in single-show diarization.

The dashed purple curve corresponds to the baseline system in
which we use the i-vector paradigm. This system, for which thresh-
olds are tuned on the development corpus, obtains a DER of 12.03%.
The red, green and blue curves correspond to the systems by using
the representation extracted from the first, second and third hidden
layer. These systems are called Embedding-1, Embedding-2 and
Embedding-3. The Embedding-2 system gives better results com-
pared to the baseline and obtains 11.84% DER (an absolute gain of
0.19 points)
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Show name i-vector Embedding-1 Embedding-2 Embedding-3
BFMStory 10.46 10.37 10.22 10.72
CultureEtVous 35.03 34.28 34.83 34.50
RuthElkrief 14.35 12.59 12.59 12.59
CaVousRegarde 13.56 14.38 13.57 13.57
EntreLesLignes 11.55 11.84 11.84 11.84
LCP Actu 5.95 7.93 6.02 7.93
LCP Info 9.22 8.86 8.56 8.56
PileEtFace 8.80 11.54 8.89 8.89
TopQuestions 10.62 10.36 11.18 11.67
Overall 12.03 12.32 11.84 12.14

Table 1. Results in DER obtained by i-vector, embedding-1,
embedding-2 and embedding-3 systems.

We observe that on the development corpus the best performance
is obtained by using the second hidden layer. But on the test corpus
the best configuration would be to use the first hidden layer, resulting
in 11.53% DER. Table 1 shows results obtained on each system by
TV show.

In a second experiments, we look, as reported in Figure 5, at
which hidden layer has the most potential for being extracted as rep-
resentation for cross-show diarization. As previously, the point on
the curves corresponds to the systems obtained by using the thresh-
olds determined using the REPERE development corpus.
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Fig. 5. Results in DER obtained by using the representation ex-
tracted from the different hidden layer in cross-show diarization.

We observe that the i-vector system obtains 17.10% DER,
while the Embedding-1, Embedding-2 and Embedding-3 obtain re-
spectively 17.42%, 16.50% and 16.28% DER. The representation
extracted from the third hidden layer obtains the bests results.

5. DISCUSSION

In the artificial vision community, it is hypothesized that deeper hid-
den layers extract higher-level features from input pixels. Shown
through activation maximization or sampling [21], deeper units tend
to be sensitive to more complex shapes and semantic primitives. This
phenomenon remains to be explored when speech is used as input of
deep neural networks. The fact that deeper hidden layers yield bet-
ter performance on cross-show diarization while shallow layers are
more effective for single-show diarization tends to confirm the hy-
pothesis that deeper layers convey higher-level features. Indeed, in
the cross-show task, the model has to account for variability between
recording conditions among the shows, while on the single-show
task, it benefits from overtraining on low-level acoustic conditions

which might not be speaker-specific but which correlate with speak-
ers.

One of the biases of our experimental setting is that some speak-
ers appear both in the training data for the DNN identification task
and in the test data where we apply diarization. In fact, 32.04% of
speakers are in both sets2 and it might very well be that the embed-
ding system allocates more generalization power to model them than
unknown speakers. We performed an extra evaluation where we re-
move all known speakers from scoring. In that setting, the i-vector
approach results in a DER of 18.33% and the speaker embedding
approach results in 18.30%. On those speakers, it seems that the two
approaches are not significantly different. Evidently, future work
should investigate how to create representations that clearly outper-
form i-vectors on all conditions.

6. RELATED WORK

In [22, 23], the authors propose to introduce the technique of anchor
modeling. The basic concept of anchor modeling is the representa-
tion of a target speech utterance with information gained from a set
of models pre-trained from a defined set of speakers. Segments of
speech are scored against a set of pre-trained anchor models. Each
of the anchor models yields a likelihood score and the collection of
scores is used to form the representation vector. This vector can be
considered as a projection of the target utterance into a speaker space
defined by the anchor models.

Similarly, our approach trains a model to recognize a predeter-
mined set of speakers and extracts features for new speakers through
the activations of that model. However, we take advantage of hidden
layers in DNNs to leverage a more general representation.

Representation learning has led to interesting improvements in
various domains, such as face recognition [24], text modeling [25]
or speech recognition [26]. In particular, it is supposed to relieve
researchers of designing features by automatically learning the rele-
vant structure of the input space.

Concerning cross-show speaker diarization, most efforts have
focused on reducing computation time. In [27], the authors propose
to consider clustering as a connected graph in order to simplify the
problem. In [28], the authors propose to extract speaker features
with binary key speakers. The main advantage is that this approach
provides very competitive time performance.

7. CONCLUSION

This paper investigates the speaker embedding modeling framework
on a cross-show diarization task. In place of i-vectors, speaker em-
beddings obtain a DER decrease of 0.82 absolute points on the test
corpus of the REPERE evaluation campaign. We observe that the
best performance is obtained by using the third hidden layer of a
DNN trained on a speaker identification task. This could be ex-
plained by the fact that relevant information is promoted more and
more by each hidden layer so that the last hidden layer contains only
speaker-specific information. Speaker embeddings give more robust
models than i-vectors for this task.

For future work, we will investigate the use of different super-
vectors for training the representation. An interesting possibility is
the DNN/i-vector paradigm proposed in [29]. This paradigm pro-
poses to estimate the i-vector statistics by using DNN trained for
ASR. We also plan on extensively testing speaker embeddings on
the speaker identification and ASR adaptation tasks.

2It is also the case on other publications with the REPERE corpus.
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