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ABSTRACT

This paper proposes to learn a set of high-level feature representa-
tions through deep learning, referred to as Speaker Embeddings, for
speaker diarization. Speaker Embedding features are taken from the
hidden layer neuron activations of Deep Neural Networks (DNN),
when learned as classifiers to recognize a thousand speaker identities
in a training set. Although learned through identification, speaker
embeddings are shown to be effective for speaker verification in par-
ticular to recognize speakers unseen in the training set. In particular,
this approach is applied to speaker diarization. Experiments, con-
ducted on the corpus of French broadcast news ETAPE, show that
this new speaker modeling technique decreases DER by 1.67 points
(a relative improvement of about 8% DER).

Index Terms— Speaker Diarization, Deep Neural Network,
Speaker Embeddings, Speaker Clustering, i-vector

1. INTRODUCTION

The goal of speaker diarization is to annotate temporal regions of
audio recordings with speaker labels, in order to answer the question
“who spoke when”. A common approach to this task is to perform
two steps: namely segmentation of the input speech so that each
speech segment belongs to one speaker, and segment clustering in
order to regroup all segments of the same speaker. The challenge
of speaker clustering is increased by the fact that clustering is per-
formed without prior knowledge of the number of speakers nor their
identity.

In speaker diarization, state-of-the-art speaker modeling is based
on the i-vectors/PLDA pipeline [1]. Introduced in [2], the i-vector
approach provides an elegant way of reducing a large-dimensional
input vector (representing the speaker data) to a small-dimensional
feature vector, while at the same time retaining most of the relevant
information. During speaker clustering the metric used to verify
if two i-vectors correspond to the same speaker is based on Prob-
abilistic Linear Discriminant Analysis Scoring (PLDA). Although
this approach obtains considerable gains compared to GMM-UBM
(Gaussian Mixture Model-Universal Background Model), i-vectors
are very sensitive to segment duration.

Indeed, i-vectors are extracted on total variability space, no dis-
tinction is made between speaker and channel variation. PLDA scor-
ing is used to disentangle the channel and speaker effects [1]. But it
is now well established that the limitation of the i-vector represen-
tation of speech segments become apparent when processing short
segments, where it’s very difficult to disentangle the channel and
speaker effects [3, 4, 5, 6]. In order to tackle this problem, we pro-
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pose to directly estimate a high-level feature representation in the
speaker space using DNNs.

We propose to learn high-level speaker identity features with
deep models through speaker identification, i.e. classifying speech
segments into one of n speaker identities (n = 1.014 in this work). In
that context, the hidden layers of the Deep Neural Networks (DNN)
are learned to extract information relevant for discriminating be-
tween speakers. The main idea is to use one of the hidden layers as
the new feature representation. We call this representation a speaker
embedding.

The novel contributions in our work are the following:

• We propose an original estimatation a high-level feature repre-
sentation (called speaker embedding) that contains all speaker-
specific information, trained with DNNs.

• The new representation is built without Gaussian prior assump-
tions. We propose an analysis which shows that the PLDA pre-
ceded by a conditioning method, as done for i-vectors, can be
relevant for speaker embeddings.

• Speaker embeddings are leveraged for Speaker Diarization,
leading to a relative improvement of about 8% DER over the
baseline diarization system based on i-vector/PLDA.

Our experiments on the ETAPE corpus show that speaker di-
arization based on i-vectors obtains 20.92% Diarization Error Rate
(DER), whereas the proposed approach based on speaker embed-
dings obtains 19.25% DER (an absolute gain of 1.67 points).

After presenting the related work in Section 2, the speaker em-
bedding paradigm is presented in Section 3. Section 4 describes the
speaker verification methods used in speaker diarization. Then, in
Section 5, we present a conditioning algorithm to conform speaker
embeddings with PLDA’s asumptions. The corpus on which experi-
ments are carried and the results of our experiments are presented in
Section 6. Finally, we conclude with a discussion of possible direc-
tions for future works in Section 7.

2. RELATED WORK

Most methods used for extracting speaker-specific features in
speaker diarization come from the speaker verification community.

The i-vector framework [2] is considered as a state-of-the-art
method in speaker verification and identification. The idea of i-
vectors is to reduce a super-vector to a compact vector. This dimen-
sionality reduction has opened a wide range of perspectives such as
the use of Bayesian methods for removing channel variability in the
i-vector [1].

Modeling a speaker in the acoustic space has been tackled by
many works in the literature. In [7, 8], the authors propose to in-
troduce the technique of anchor modeling. The basic concept of
anchor modeling is the representation of a target speech utterance



with information gained from a set of models pre-trained from a de-
fined set of speakers. Segments of speech are scored against a set of
pretrained anchor models. Each of the anchor models yields a like-
lihood score and the collection of scores is used to form the char-
acterization vector. The characterization vector can be considered a
projection of the target utterance into a speaker space defined by the
anchor models. Similarly, our approach trains a model to recognize a
predetermined set of speakers and extracts features for new speakers
through the activations of that model. However, we take advantage
of hidden layers in DNNs to leverage a more general representation.

Representation learning has led to interesting improvements in
various domains, such as face recognition [9], text modeling [10]
or speech recognition [11]. In particular, it relieve researchers of
designing features by automatically learning the relevant structure
of the input space. As will be shown in the next sections, we strive
to take advantage of such advances in order to structure the acoustic
space towards relevant features for discrimnating between speakers.

3. SPEAKER EMBEDDINGS

The proposed method differs from the majority of contributions in
the field: it learns high-level speaker features with deep models
trained to achieve a speaker identification task. When learning a
classifier to recognize speaker identities, DNNs compact relevant
features in the hidden layers. We propose to create a feature vec-
tor from the hidden layer neuron activations, which we call Speaker
embedding. Although learned through identification, speaker em-
beddings are shown to be effective for speaker verification, in partic-
ular to recognize speakers unseen in the training set. The main idea
is to use one of the hidden layers as the new feature representation.
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Fig. 1. An illustration of the feature extraction process. Arrows
indicate forward propagation direction. The number of neurons in
each layer of the deep neural network is labeled besides each layer.
Speaker Embedding features are taken from the central hidden layer
(this topology obtains the best results on the development corpus).

In our experiments, the DNN is made of five layers from which
three are hidden. The output layer is a soft-max layer, and the outputs
represent speaker identity classes (there are 1.014 states in our exper-
iments). The number of neurons in the hidden layer is the same for
all hidden layers: 1024 neurons (except for the speaker embedding
layer). The nonlinearities in the hidden layers are Rectified Linear
Unit (ReLu) functions. The objective function is the cross-entropy
criterion, i.e. for each frame, the log-probability of the correct class.
The weights are updated using mini-batches of size 128 frames. All
these parameters are determined on the development corpus in order
to obtain the best results.

The input vector is the super-vector obtained from the GMM-
UBM of dimension 61440, computed as:

sg =
1∑

t γg(t)

∑
t

γg(t)(xt − µg) (1)

where γg(t) is the posterior probability estimated on the g-th Gaus-
sian component on the frame t, xt corresponds to the frame t and µg

is the mean of the GMM-UBM.
Figure 2 shows 500-dimensional Speaker Embeddings extracted

from the test corpus for selected speakers. This figure illustrates how
speech segments from the same speaker tend to have more activated
neurons in common.
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detecting homogeneous audio segments, which each segments con-
tains the voice of only one speaker. The goal of speaker cluster-
ing consists to group the segments into clusters, where each cluster
contains segments of only one speaker. The challenge of speaker
clustering is augmented by the fact that the clustering is performed
without knowledge of the number of speakers or their identity.

The success of speaker clustering generally depends on features
(speaker modeling) on which they are applied. For that reason, much
of the actual effort in deploying machine learning algorithm goes
into the design of preprocessing pipeline and data transformation
that result in a representation of the data that can support effective
machine learning. In this paper we focus on speaker modeling. The
speaker modeling consist in extracting speaker-specific information.

The proposed system differs from the majority of contributions
in the field in that it uses the deep learning framework in lieu of well
i-vector features. Deep Learning is especially suitable for dealing
with large training sets, with many recent successes in diverse do-
mains such as vision, speech and language modeling.

Among the various ways of learning representations, this pa-
per focuses on deep learning methods: those that are formed by the
composition of multiple non-linear transformations, with the goal of
yielding more abstract and ultimately more useful representations.

2. RELATED WORK

En modlisation de locuteur,

3. I-VECTOR

3.1. Front-end

Recent work in speaker verification have done in an effort to enhance
the classical method of modeling speakers using GMM. One such
approach is i-vectors which have becom the state-of-the-art in the
SV field. They provide an elevant way of reducing large-dimensional
input data to a small-dimensional feature vector. The technique was
originally inspired by the Joint Factor Analysis (JFA) framework in-
troduced in [Kenny˙Boulianne˙Ouellet˙Dumouchel˙2007].

Given a speaker- and channel-independent UBM, the corre-
sponding mean super-vector M can approximated by:

M = m + Tw + ✏ (1)

where m is the mean super-vector taken from a UBM, with C Gaus-
sian components of dimension F . T is a low-rank rectangular matrix
spanning the subspace covering the important variability that we call
total variability space, of C ⇥ F rows and M columns; w is a low-
dimensional vector with a normally distributed prior N(0, I) of size
M . w is referred to as an i-vector. The T matrix is estimated using
an EM (Expectation-Maximization) algorithm.
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Fig. 2. Examples of the learned 500-dimensional Speaker Embed-
dings. The figure shows three test pairs from the test corpus. We
rearrange them as 10 × 50 for the convenience of illustration, the
ordering of the feature vector is the same for all examples. Feature
values are non-negative since they are taken from ReLUs. Approxi-
mately 67% of features have non-null values. Brighter squares indi-
cate higher values.

4. SPEAKER VERIFICATION

In speaker diarization, the cluster step requires computing the sim-
ilarity between pairs of speech segments. This speaker verifica-
tion step has been successfully performed with PLDA in previous
work [1]. PLDA is a probabilistic version of Linear Discriminant
Analysis (LDA). This technique projects the input data into a much
lower dimensional space with minimal loss of discriminative abil-
ity, as the ratio of between-speaker and within-speaker variation is
maximized [12].

Speaker verification scoring can be computed as a log-likelihood
ratio: Given two speaker embeddings wi and wj , the more likely
hypothesis is that (Htar) wi and wj comes from the same speaker,
or that (Hnon) the speaker embedding come from different speakers.
The speaker verification score can be computed as:

d(wi, wj) = log
p(w1, w2|Htar)

p(w1, w2|Hnon)
(2)

In the PLDA model this equation can be written as:

d(wi, wj) = wᵀ
iQwi + wᵀ

jQwj + 2wᵀ
i Pwj (3)

with
P = Σ−1

tot − (Σtot − ΣacΣ
−1
totΣac)

−1

Q = Σ−1
totΣac(Σtot − ΣacΣ

−1
totΣac)

−1
(4)



where Σtot = V V ᵀ + ΣPLDA and Σac = V V ᵀ. Here, V and ΣPLDA

are obtained from the PLDA estimation algorithm which is detailed
in [1].

5. SPEAKER CONDITIONING

The main issue still to be addressed is to determine the speaker
model and detector to be applied to the new representation. Fig-
ure 5 shows the 2D projection of four speakers in the training cor-
pus, using the Principal Component Analysis (PCA) dimensionality
reduction.

Fig. 3. 2D projection of four speaker embedding in the training cor-
pus, using PCA. Each color represents a speaker and each point rep-
resents a segment.

Two comments can be made from this figure. First, the speaker-
class distribution has a radial shape. Speaker-class means tend to lie
in separate directions. Secondly, there are severe within-class dis-
tortions. Figure shows a marked dilatation of the vectors for each
speaker from the origin of the space. These observations lead to pro-
pose the cosine distance scoring [13] as the final decision score. This
metric only focuses on directional proximity, ignoring the length of
vectors. But they also suggest that the (standardization / length-
normalization / PLDA) solution used for i-vectors may be relevant
for the new representation. Length-normalization ignores the vector
length and is also known to improve Gaussianity of vectors [14]. By
moving data towards a high Gaussian density surface, this technique
helps to fit PLDA model to the training set.

We propose to carry out experiments on speaker embeddings
based on cosine scoring, then on PLDA modeling preceded by
LW-normalization. Introduced in [15]1, this transformation iterates
standardization according to the within-class covariance and length-
normalization, in order to move data to an isotropic model. Figure 5
shows the spectral graph of our training set before (0 iteration) and
after two iterations of LW-normalization. Also introduced in the
field in [15], this graph displays the variances of the 500 speaker
embedding dimensions (total), then the proportion of variance due
to the between-class (speaker, gray line) and within-class (session,
dashed line) variabilities. As shown in the upper graph, between
and within-class variances are initially correlated. After 2 iterations
of the transformation, within-class variability is close to isotropy,
revealing around 200 dimensions on which the major proportion of
variance is due to between-class variability. In view of this graph,
applying PLDA with a 200 eigenvoice-rank seems relevant.

1and referred to as Spherical nuisance normalization in the original paper.
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Fig. 4. Spectral graph of training data before and after 2 iterations of
LW normalization. For the 500 dimensions (x axis) of speaker em-
beddings, the y axis shows the total, speaker and session variances.

6. EXPERIMENTS

6.1. Speaker Diarization

The diarization system used in experiments is the LIUM Speaker Di-
arization system [16]2. This system obtained the best results during
the ETAPE 2012 and REPERE 2012 French evaluation campaigns.

The speaker diarization system relies on two major steps: seg-
mentation and speaker clustering. The purpose of this segmentation
is to produce homogeneous segments that can be exploited in the
next steps (i.e., a segment must match a single speaker). Segmenta-
tion is performed using a Generalized Likelihood Ratio (GLR) cri-
terion based on GMMs. The next step aims to regroup all segments
that belong to the same speaker. Speaker clustering is performed
in two steps: BIC Clustering based on GMMs followed by Integer
Linear Programming (ILP) Clustering based on i-vectors [17].

In this work, we propose to substitute i-vectors for speaker em-
beddings during ILP Clustering.

6.2. Data

In the following experiments, we use the ETAPE 2012 data [18].
The data consists in 7 different shows from French TV channels
and French Radios, split according to the official train, development
and test sets. The development corpus corresponds to 15 recordings
(6h53 hours) and is employed to determine the various thresholds
of the systems. The evaluation corpus contains 15 recordings (6h57
hours) and is employed to evaluate model performance. For train-
ing, we use ESTER1, ESTER2, REPERE and ETAPE training cor-
pora. I-vectors, speaker embeddings and GMM-UBM models are all
learned from the training corpus.

We note that on the dev corpus 28.57% speaker are present in the
training corpus and on the test corpus 35.25% speakers are present
in the training corpus.

2Freely distributed at http://www-lium.univ-lemans.fr/diarization/



6.3. Evaluation Metrics

Diarization Error Rate (DER) is the metric used to measure perfor-
mance in speaker diarization. DER is the fraction of speaking time
which is not attributed to the correct speaker, using the best matching
between references and hypothesis speaker labels.

DER =
#Spk + #Miss+ #FA

#Total
(5)

where #Spk, #Miss and #FA are respectively speaker error,
missed speech and false alarm speech. The scoring tool we used
was developed by the LNE as part of the ETAPE campaign [19].

6.4. I-vectors and Speaker embeddings

Throughout the experiments, speaker embeddings and i-vectors are
extracted using 60-dimensional acoustic features, with a 10ms frame
rate, composed of 19 MFCCs plus log energy and augmented by the
first and second-order deltas. The UBM used for the features is a
gender- and channel-independent GMM composed of 1024 Diago-
nal Gaussians computed with the Kaldi toolkit [20].

The dimension of i-vectors is fixed to 200 (determined on the
development corpus from range between 50 and 600). The i-vectors
are conditioned with two iterations of LW-normalization.

Concerning speaker embeddings, the DNN used for extracting
the speaker embedding is composed of 3 hidden layers of respec-
tively 1024, 500 and 1024 units (the middle one is used for the em-
bedding). This topology obtains the best results on the development
corpus. The activation function of the DNN is ReLu. The learning
rate was initialized at 0.01 and reduced at the end to 0.001. The
weights are updated using mini-batches of size 128 frames. And the
model is trained over 6 iterations. The DNN implementation is that
of the Kaldi toolkit.

6.5. Results

Table 1 shows the results of a first experiment where we look at
which hidden layer has the most potential for being extracted as
representation (cosine distance without any normalization). Perfor-
mance is reported on the test set according to the size of the layer
from which embeddings are drawn.

Layer/Dim 300 400 500 600 700
Layer 1 22.11 22.38 20.80 20.10 21.78
Layer 2 21.26 21.08 20.15 20.52 20.79
Layer 3 23.97 19.58 21.44 21.73 21.78

Table 1. Results in DER obtained by speaker embedding using co-
sine metric following vector size and hidden location.

On the dev corpus the best performance is obtained by using the
second hidden layer with 500 neurons. We observe that this configu-
ration obtains on the test corpus 20.15% DER. But on the test corpus
the best configuration would be to use the first hidden layer with 400
neurons, resulting in 19.58% DER.

In Table 2, we propose to normalize the features with different
levels of normalization and substituting the cosine metric by PLDA.
The system called No Norm is run without any normalization, while
systems called LW-1,2,3 are run with LW-normalization, applied
respectively with 1, 2 and 3 iterations.

No Norm LW-1 LW-2 LW-3
FranceInter 21.14 16.48 16.53 16.81
BFMStory 17.31 15.55 15.55 15.55

CaVousRegarde 18.77 10.28 10.28 10.28
EntreLesLignes 20.30 17.61 17.61 17.61

PileEtFace 35.75 24.88 25.73 25.73
TopQuestions 15.81 13.83 13.83 13.83

LaPlaceDuVillage 58.19 45.55 46.57 46.57
Overall 25.04 19.25 19.44 19.54

Table 2. DER results obtained by speaker embeddings using PLDA
and LW-normalization with varying iterations.

The No norm systems obtains the worse results when using the
cosine metric (25.04% DER). We observe that the best results are ob-
tained by the system LW-1 (ie. which performs LW-normalization
with one iteration), ressulting in a DER of 19.25%. The results
shows the importance of conditioning the data before applying the
PLDA metric.

In Table 3 we compare i-vectors (i-vector/PLDA) and speaker
embeddings (speaker-embedding/PDLA). The two systems use
PLDA and are conditioned with LW-normalization (two iterations
for i-vectors and one iteration for speaker embeddings.

i-vector Speaker Embedding
PLDA Cosine PLDA

FranceInter 20.88 17.45 16.48
BFMStory 16.78 18.42 15.55

CaVousRegarde 11.75 11.75 10.28
EntreLesLignes 18.08 18.94 17.61

PileEtFace 25.73 25.73 24.88
TopQuestions 11.61 11.61 13.83

LaPlaceDuVillage 43.00 44.81 45.55
Overall 20.92 20.15 19.25

Table 3. Results in DER obtained by i-vectors and speaker embed-
dings using the cosine and PLDA metrics.

The i-vector/PLDA system is considered as the baseline and ob-
tains 20.92% DER. The Speaker-embedding/Cosine system gives
better results compared to baseline and obtains 20.15% DER (an
absolute gain of 0.77 points). Using the PLDA metric on speaker
embeddings (Speaker-embedding/PLDA), the system gives better re-
sults compared to the Speaker-embedding/cosine system and obtains
19.25% DER (an new absolute gain of 0.91%).

7. CONCLUSION

This paper proposes to learn effective high-level features revealing
speaker identities for speaker diarization. The features are extracted
using the activations of the hidden layer of a DNN. By represent-
ing a large number of identities with a small number of hidden vari-
ables (creating a bottleneck), highly compact and discriminative fea-
tures are created. Speaker embeddings, in place of i-vectors, obtain a
DER decrease of 1.67 absolute DER points on the test corpus of the
ETAPE 2012 evaluation campaign. The speaker embeddings give
more robust models than i-vectors for this task.

For future work, we will investigate the use of different super-
vector and the use of Convolutional Neural Networks (CNN) for
training the representation. We also plan on extensively testing
speaker embeddings on the speaker verification and ASR adaptation
tasks.
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