
Applying Multiclass Bandit algorithms to call-type
classification

Liva Ralaivola1, Benoit Favre1, Pierre Gotab2, Frederic Bechet1, Geraldine Damnati3

1Aix Marseille Universite - LIF/CNRS - Marseille, France
{liva.ralaivola,benoit.favre,frederic.bechet}@lif.univ-mrs.fr

2Universite d’Avignon - LIA/CERI - Avignon, France
pierre.gotab@univ-avignon.fr

3France Telecom - Orange Labs, Lannion, France
geraldine.damnati@orange-ftgroup.com

Abstract—We analyze the problem of call-type classification
using data that is weakly labelled. The training data is not
systematically annotated, but we consider we have a weak or
lazy oracle able to answer the question “Is sample x of class q?”
by a simple ‘yes’ or ‘no’ answer. This situation of learning might
be encountered in many real-world problems where the cost of
labelling data is very high. We prove that it is possible to learn
linear classifiers in this setting, by estimating adequate expecta-
tions inspired by the Multiclass Bandit paradgim. We propose a
learning strategy that builds on Kessler’s construction to learn
multiclass perceptrons. We test our learning procedure against
two real-world datasets from spoken langage understanding and
provide compelling results.

I. INTRODUCTION

Multiclass Bandit algorithms correspond to online classifi-
cation algorithms with bandit or partial feedback: only a binary
feedback (positive or negative) is given at each trial of online
learning. The true class label for a given instance remains
unknown if the feedback is negative. This problem is related to
the multi-armed bandit problem originally proposed by [1]: a
gambler plays with a slot-machine with K arms. At each time
step, he has to choose one arm to pull and he receives a reward
corresponding to the arm chosen. The gambler’s purpose is
to maximize his return over a sequence of pulls. Each arm
delivers rewards that are independently drawn from a fixed
and unknown distribution so the goal of the gambler is to find
the arm with the highest expected reward as early as possible.
At each step in the game the player must decide if he wants to
explore a new arm or exploit the knowledge acquired to choose
the best arm known so far. This problem is an illustration of the
exploration vs. exploitation trade-off studied in reinforcement
learning algorithms.

Multi-armed bandit algorithms have been widely studied
in the Machine Learning community and recently applied to
multiclass online learning (see, e.g., [2], [3], [4], [5], [6]).
In multiclass bandit algorithms the feature vectors of the
training examples are considered as side information given
to the gambler to help him choose the next arm to pull —
these bandit algorithms using side information may as well be
termed contextual bandits.

The goal of this paper is to apply the multiclass bandit
paradigm to Spoken Dialog Systems (SDS) through the online
adaptation of Call-Routing classification models. In this setting
the whole dialog system is considered as a slot machine with
K arms, each arm corresponding to a call-type to predict.
For each spoken request expressed by a caller (the side
information), the system (considered here as the gambler) will
pull one arm by proposing a call-type to the caller and asking
him for a confirmation. The answer to this confirmation can
be positive or negative and corresponds here to the bandit or
partial feedback. For each request the system can choose a
random call-type (exploration) or the most probable call-type
estimated by the current classification models on the caller’s
request (exploitation).

Two algorithms are compared in this study on two call-
routing tasks developed at Orange Labs: firstly the online
learning Banditron algorithm proposed by [4]; secondly a
novel batch learning algorithm, closely related to the Ban-
ditron, that we believe is more adequate for the rapid adapta-
tion of Spoken Dialog systems.

More formally, this new algorithm is a linear multiclass
perceptron-based classification algorithm that is capable of
learning from lazily labelled data. Lazy labels are obtained
thanks to a lazy oracle which, given a query pair of the form
(x, q) where x is an input data and q is from a set of predefined
labels Q = {1, . . . , Q} merely answers yes or no depending
on whether q is the correct label for x or not. In other words,
when hypothesizing a label q for the example x, it is possible
to query the lazy oracle ỹq(x) ∈ {0, 1} which will say yes
(1) if q is indeed the correct label or no (0) if it is not. In
the case its answer is no, the real label of x is still unknown,
the only thing we learn is that the correct label is not q. In
this work, each example can only be queried once but one
could imagine multiple queries on the same example leading
eventually to the full labeling, at the cost of calling the oracle
several times.

In the following, we will take advantage of a uniform
random query scheme that, given x, issues the query (x, q)
with probability 1/Q, for all q ∈ Q. The learning algorithms
that we propose extend multiclass Perceptron algorithms that



have been analyzed by [7]. The strategy that we develop
exploits the peculiarity of the random query scheme that is
implemented and it relies on computing empirical estimates of
update vectors whose expectations are known to correspond
to misclassified data.

The paper is organized as follows. In the following section,
we describe some related work done on reducing the need for
human supervision in the training of SDS models. Section III
presents more formally the problem and introduce the nota-
tions that are going to be used to present our approach in
section IV. Finally section V presents experiments and results
performed on two call-type classification corpora collected at
Orange Labs.

II. RELATED WORK

Reducing the need for manual transcription and annotation
data is the key for the rapid deployment of statistical SDS on
a large scale. From a machine learning point of view, this can
be seen as studying weakly or partially supervised methods
for training and updating ASR and SLU models. Most of the
weakly supervised methods applied to SLU are based on the
active learning paradigm [8].

Regardless of the method used, the active learning paradigm
always needs a Full Oracle to obtain the true labels on the
portion of the raw data selected. In the context of SDS a weak
supervision can be provided by the caller using the system:
by analyzing the dialog structure and detecting implicit or
explicit confirmations and corrections, by analyzing system
logs, we can collect clues about the correctness of the semantic
hypotheses proposed by the system. Such a process has been
proposed in [9] and was named Implicitly-supervised Learning
by the authors. It was used in order to automatically train
a confidence annotation process. In [10] the confirmation
prompts of the users of a call-routing spoken dialog system
are used as a partial Oracle for directly improving the classi-
fication accuracy of a set of n binary classifiers (one for each
call-type).

In all these previous studies a bootstrap corpus, fully anno-
tated, containing examples of all the expected labels is needed
in order to train a first classifier producing the hypotheses
given to the partial oracle. The online adaptation process only
performs exploitation using the current classification models.
The goal of this study is to adapt the Multiclass Bandit
paradigm to call-type classification in order to perform explo-
ration as well as exploitation during the adaptation process.
We will first use the Banditron algorithm proposed by [4].
This algorithm is based on a perceptron adapted to handle the
case of partial feedback where it is possible to manually set
the tradeoff between exploration and exploitation.

In this study, we want to push forward this paradigm, both
from a theoretical and practical point of view, by implementing
an exploration strategy based on a uniform random query
scheme that does not need any bootstrap corpus and which
can learn only from this weak supervision.

III. LEARNING FROM LAZY LABELS

This section provides a formal description of the problem
we are interested in.

A. General

From here on, the notation we introduce holds throughout
the paper. As already mentioned, we are addressing a mul-
ticlass learning task. This task is defined over the product
space Rd × Q, where d < ∞ is the number of features that
describe our data x ∈ X and Q = {1, . . . , Q} is the set of Q
categories or classes of interest. We assume that there exists a
(deterministic) labelling function y : Rd → Q such that y(x)
denotes the class of x. We also assume that there exists a fixed
but unknown distribution D over Rd such that every vector x
or xn is an independent random vector with distribution D.

We consider three different settings: the usual multiclass
learning setting (full oracle), the online bandit setting in which
each prediction of a classifier is revealed as correct or incorrect
in sequence by a lazy oracle and a batch derivative of the
bandit setting in which a batch of examples is randomly
queried to the lazy oracle. In the following, we explain more
formally how this batch bandit setting is derived.

B. Partial or Lazy Label Information

Our goal is to propose a learning procedure capable of
building a classifier from weakly or lazily labelled data
Contrarily to what is commonly encountered in supervised
learning scenarios, lazily labelled data are not of the form
S = {(xn, y(xn))}Nn=1 but of the form S̃ = {(xn, ỹn)}Nn=1,
where ỹn = (ỹnq )q∈Q is a Q-dimensional vector with ỹnq ∈
{1, 0,⊥}, for q ∈ Q; ỹn carries the following information:
• if ỹnq = 1, then xn is of class q;
• if ỹnq = 0, then xn is not of class q;
• if ỹnq =⊥, then we do not know whether xn is of class
q or not.

The label information carried by ỹn is only partial whenever
none of the ỹnq ’s is equal to 1. In the following, we show how
such partial or lazy label ỹn can be obtained from what we
call a lazy oracle.

Remark 1 (Positive and negative data). In the following, we
will refer to positive data for all pairs (xn, ỹn) such that there
is some q ∈ Q such that ỹnq = 1. All other pairs, i.e. those
(xn, ỹn) such that ỹnq 6= 1, ∀q ∈ Q, are termed negative data.

C. Building S̃ with Uniform Queries

We now describe a scenario that labels the unlabelled
training sequence {xn}Nn=1 of vectors to give rise to the lazily
labelled set S̃ = {(xn, ỹn)}Nn=1. As already pointed out in
the introduction, we do not have access to an oracle that may
provide us with the correct labels {y(xn)}Nn=1. Instead, we
consider a lazy oracle that, when queried whether q is the
correct class for some example x, only answers yes or no.

To build S̃, we rely on this lazy oracle by generating a
specific type of queries, namely uniform queries: for each
example xn, we uniformly pick at random one class q among



the Q possible categories from Q and ask the oracle whether
q is the correct label of xn. The lazy label ỹn is obtained as
follows: if q is indeed the correct label of xn, then ỹnq is set to
1 and the ỹnr ’s for r 6= q are all set to 0; if q is not the correct
label of xn then ỹnq is set to 0 and the ỹnr ’s for r 6= q are
all set to ⊥. The following property characterizes the random
labels ỹn produced by the uniform querying scheme.

Property 1. Given the uniform querying scheme, the following
holds (we drop the superscript n).

∀q ∈ Q, P(ỹq = 1|y(x) = q) =
1

Q
(1)

∀q ∈ Q, P(ỹq = 0|y(x) = q) = 0, (2)

and

∀q, r ∈ Q, r 6= q, P(ỹr = 1|y(x) = q) = 0 (3)

∀q, r ∈ Q, r 6= q, P(ỹr = 0|y(x) = q) =
2

Q
. (4)

In a more compact way, we may write:

∀q ∈ Q, P(ỹq = 1|y(x)) = 1

Q
I{y(x) = q} (5)

∀q ∈ Q, P(ỹq = 0|y(x)) = 2

Q
I{y(x) 6= q}. (6)

Proof: (2) and (3) are straightforward. For (1) it suffices
to see that ỹq = 0 only if the queried label is indeed q, which
happens with probability 1/Q.

For (4) we use the fact that we are in a single-label scenario.
The situations that imply ỹr = 0 are the following: either the
queried label is r or the queried label is q, in which case ỹq = 1
and ỹr = 0 for all r 6= q. Both events have a probability of
1/Q to occur, which gives the expected result.

D. Goal: Learning a Linear Classifier from S̃

Our goal is to propose a strategy for learning a classifier
from the set S̃ obtained using the uniform querying procedure.
Note that the majority of the results we provide may be
extended to the case of more elaborate query schemes.

More precisely, we are interested in producing multiclass
linear predictors fW : S → Q parameterized by a family of
vectors W = {w1, ...,wQ} such that fW predicts the class of
x according to:

fW (x) = argmax
q∈Q

〈wq,x〉. (7)

To achieve our goal, we build upon the multiclass perceptron
learning procedures described by [7] and extend their learning
strategy so as to take advantage of the lazily labelled data.

IV. PROPOSED APPROACH

This section presents the learning algorithms capable of
dealing with lazily labelled data. As a first step, we recall
the multiclass perceptron learning schemes proposed by [7].

TABLE I
GENERIC MULTICLASS PERCEPTRON LEARNING SCHEME.

input: S = {(xn, yn)}Nn=1
output: W = {w1, . . . ,wQ}

initialization: w1 = . . . = wQ = 0
repeat T times
• get a labelled pair (x, y) from S
• set E := {q : q 6= y ∧ 〈wq ,x〉 ≥ 〈wy ,x〉}
• if E 6= ∅, then choose τ1, . . . , τQ such that

1) τq ≤ 0 for q 6= y,
2)

∑
q∈Q τq = 0,

3) τq = 0 for q 6∈ E ∪{y},
4) τy = 1,

and, for q = 1, . . . , Q: wq ← wq + τqx, (update)
endif

endrepeat

TABLE II
BANDITRON LEARNING SCHEME.

input: γ ∈ [0, 0.5]
output: W = {w1, . . . ,wQ}

initialization: w1 = . . . = wQ = 0
repeat T times
• get instance x ∈ X
• set p̂ = arg maxq∈Q〈wq ,x〉
• ∀q ∈ Q, set P (q) = (1− γ)I{q = p̂}+ γ

Q
• randomly sample p̃ from P
• predict p̃ and recieve ỹp̃ ∈ {0, 1}
• let τ1 = . . . = τQ = 0,

τp̂ ← τp̂ − 1,
τp̃ ← τp̃ +

ỹp̃
P (p̃)

• and, for q = 1, . . . , Q: wq ← wq + τqx, (update)
endrepeat

A. Full-information Multiclass Perceptron

For a multiclass linear predictor fW , a generic learning
scheme suggested by [7] to learn W from a (regularly) labelled
training set S = {(xn, yn)}Nn=1, with yn ∈ Q, is provided
in Table I. It is interesting to note that [7] have proved the
convergence properties of the generic learning algorithm for
any choice of τ = (τ1, . . . , τQ) fulfilling conditions 1, 2, 3
and 4 of Table I whenever the training set S is actually linearly
separable, i.e. whenever there exists W ∗ = [w∗1, . . . ,w

∗
Q] such

that
yn = argmax

q∈Q
〈w∗q ,x〉, for n = 1, . . . , N.

This generic algorithm is the cornerstone of the learning
algorithms we develop and, in order to fully apprehend their
philosophy, it is critical to understand the following fact. The
perceptron does not use examples for which it performs correct
predictions: it needs misclassified examples to build its model,
examples for which we do not necessarily know the actual
label in the bandit setting.

B. The online bandit perceptron (Banditron)

The Banditron is an online algorithm derived from the
perceptron for learning in the bandit setting [4]. It operates in



two modes: exploration and exploitation. In exploitation mode,
the model is used as in a regular perceptron. In exploration
mode, predictions are randomly performed regardless of the
model in order to gather misclassified examples for which the
label is known. At each round, the banditron randomly outputs
a label, by drawing from a distribution biased towards the
predicted label. It then uses the information from the oracle
to update its model. The γ parameter is used to trade off
between exploration and exploitation. Details of the algorithm
are given in Table II. Contrarily to the algorithms that we will
present in the following section, the banditron works in a fully
online setting and does not memorize examples for later use.
Interested readers are advised to refer to the original paper for
the spectific properties of the Banditron.

C. Misclassified Examples from Positive Data Only
We then consider the batch bandit setting where a training

set S̃ is first gathered using a uniform query and then a
classifier is trained using this (lazily-labelled) data. The most
naive approach is to learn a regular perceptron on the positive
data only and completely ignore examples for which we do
not know the label. In this setting, it might be observed that
the probability for a vector x to get a positive label is given
by ∑

q∈Q
Pỹq (ỹq = 1) =

∑
q,r∈Q

Pỹq,x(ỹq = 1, y(x) = r)

=
∑
q,r∈Q

Pỹq (ỹq = 1|y(x) = r)Px(y(x) = r)

=
∑
q

1

Q
Px(y(x) = q) =

1

Q
, (using (1))

This means that if learning is based on positive data, only
a 1/Q fraction of the whole dataset is actually considered,
which obviously is suboptimal.

In what follows, we show how to make a more efficient use
of the lazily labelled data, and, in particular, how to make use
of the negative data.

D. Misclassified Examples from Positive and Negative Data
As mentioned earlier, the perceptron procedure only re-

quires examples of known class that are misclassified by the
current model W = {w1, . . . ,wQ}. Our learning approach
is precisely to iteratively create such examples and the orig-
inality of our method is that both positive and negative data
may be used to this end. Namely, given a lazy training set
S̃ = {(xn, ỹn)}Nn=1, a current model W = {w1, . . . ,wQ}
and two labels p and q, the following proposition provides
statistical estimates µ̂1

pq and µ̂2
pq of a vector µpq that i) is of

class q and ii) is such that 〈wp,µpq〉 ≥ 〈wq,µpq〉. We make
use of these vectors µ̂1

pq and µ̂2
pq to learn from S̃; the resulting

multiclass Lazy Perceptron algorithm is depicted in Table III.

Proposition 1 (Expected Misclassified Data). Let S̃ =
{(xn, ỹn)}Nn=1, W = {w1, . . . ,wQ} and p, q ∈ Q. In
addition, let Apq be the subspace

Apq :=
{
x : 〈wp,x〉 ≥ 〈wq,x〉, x ∈ Rd

}
.

Fig. 1. Illustration of the generation of misclassified examples µ̂1
pq and µ̂2

pq
from lazily labelled examples; p̄ (resp. q̄) means that the lazy label associated
with the location of the point is such that ỹp = 0 (resp. ỹq = 0). Here
spq := 〈wq −wp,x〉.

Let α ∈ R and let µ̂1
pq and µ̂2

pq be the random vectors

µ̂1
pq :=

Q

N

N∑
n=1

I{ỹnq = 1}I{xn ∈ Apq}xn (8)

µ̂2
pq :=

1

2N

N∑
n=1

(
2−QI{ỹnq = 0}

)
I{xn ∈ Apq}xn (9)

µ̂αpq := (1− α)µ̂1
pq + αµ̂2

pq. (10)

The following holds

ES̃µ̂
1
pq = ES̃µ̂

2
pq = ES̃µ̂

α
pq =: µpq (11)

q = argmax
r∈Q

〈w∗r ,µpq〉 (12)

〈wp,µpq〉 ≥ 〈wq,µpq〉. (13)

Proof: Calculating the expectation of µ̂1
pq . Using the lin-

earity of the expectation, it is sufficient to study the following
expectation:

Exỹq I{ỹq = 1}I{x ∈ Apq}x,

where we have dropped the superscript n. We may rewrite the
latter expectation as

Ex

[
Eỹq|x [I{ỹq = 1}I{x ∈ Apq}x]

]
,

= Ex

[
I{x ∈ Apq}xEỹq|xI{ỹq = 1}

]
,

and use (5) to get

Eỹq|xI{ỹq = 1} =
∑

v∈{1,0,⊥}

I{v = 1}P(ỹq = v|y(x))

=
1

Q
I{y(x) = q}.

As the xn’s are distributed identically (and independently) as
x (see section III), we obtain that

ES̃µ̂
1
pq = Ex [I{y(x) = q}I{x ∈ Apq}x]

= Ex[x|x ∈ Hpq]Px(x ∈ Hpq)

where Hpq is defined as

Hpq :=
{
x : y(x) = q ∧ x ∈ Apq, x ∈ Rd

}
.



TABLE III
MULTICLASS LAZY PERCEPTRON.

input: S̃ = {(xn, ỹn)}Nn=1
output: W = {w1, . . . ,wQ}

initialization: w1 = . . . = wQ = 0
repeat T times
• randomly pick a label q (correct label)
• for each label p 6= q (incorrect prediction)

compute a misclassified example µαpq using either:
- Lazy I: equation (8)
- Lazy II: equation (9)
- Lazy III: equation (10) with α empirically fixed on the

training corpus
and, update the model:
wq ← wq + µαpq ,
wp ← wp − µαpq ,

endrepeat

Calculating the expectation of µ̂2
pq is achieved by following

a similar reasoning. It suffices to focus on Eỹq|xI{ỹq = 0} to
get (using (6)):

Eỹq|xI{ỹq = 0} = 2

Q
I{y(x) 6= q},

and to use 1− I{y(x) 6= q} = I{y(x) = q} to show that µ̂1
pq

and µ̂2
pq have the same expectation.

Let us now consider

µpq := Ex[x|x ∈ Hpq]Px(x ∈ Hpq).

By construction, the expectation is computed on vectors of
class q (see the definition of Hpq): this directly gives (12).
At the same time, Hpq only contains vectors x such that
〈wp,x〉 ≥ 〈wq,x〉: this directly gives (13).

Again, this result provides us with a way to approximately
construct misclassified data (where ‘approximately’ refers to
the fact that we compute estimates on a finite sample). Figure 1
graphically represents (a scaled version of) µ̂1

pq and µ̂2
pq .

The learning algorithm that we have implemented and that
makes use of the various estimates presented above is given
in Table III. We call our algorithm Lazy Perceptron.

V. EXPERIMENTS ON CALL-CLASSIFICATION TASKS

We carry out a set of experiments on two real-world datasets
collected from deployed spoken language understanding ser-
vices at Orange Labs. We chose two datasets corresponding to
two different call-routing services in order to check the rele-
vance of our methods within different experimental conditions.
However, in these experiments, the lazy oracle process can be
simulated since both datasets contain the true labels for each
example. The parameter α (see Table III) is computed at each
update so that it minimizes the variance of the estimate µαpq .

A. The call-routing corpora

Two corpora have been extracted from two different
customer-care services exploiting a natural language call-
routing system. The first level in the Spoken Language Un-
derstanding (SLU) module of these systems is a call-routing

classification module leading to around 10 targets for both
applications. All the experiments reported in this paper are
made at the call-routing classification step.

The first application (A1) has been designed for a general
public customer-sale service while the second one (A2) is a
technical assistance application. The corpora have different
complexities and class distributions. A1 contains 8 targets.
It has a dominant target which covers nearly 67% of the
utterances. The second most frequent target represents 16% of
the utterances. A2 is composed of 10 targets and has a more
balanced target distribution, with the dominant target covering
49% of the utterances and the second most represented cover-
ing 14% of the data. All these experiments have been carried
out on the Automatic Speech Recognition transcriptions of
the customers requests. On overall the word error rate for the
A1 application is around 45% and around 30% for the A2
application. Each corpus has been split between a training and
a test set, sorted by the date of collection. The training corpus
of A1 contains 17,000 requests collected between 03/2008 and
05/2009. The A1 test corpus contains 3,800 requests collected
after the traininig set in 05/2009. Similarly the training corpus
of A2 contains 23,968 requests collected between 10/2010 and
03/2011 and the test corpus contains 1,000 requests collected
in 03/2011.

B. Evaluation protocol

Each experiment is run with an increasing number N of
training examples, and for each size 20 runs are performed to
be able to plot means and standard deviations. Six algorithms
are compared:
• Banditron: this corresponds to the online Bandit algo-

rithm with an exploration vs. exploitation ratio fixed to
0.15

• Regular: only the examples for which the class is known
— i.e. the positive examples from the oracle — are used
to train a Classical Perceptron (as described in Table I)

• Lazy I, II, III: given an unlabeled training set S̃ of N
examples, each example is submitted to the Lazy Oracle
with one of the Q random classes according to the
uniform query scheme. The resulting Lazy Labels are
used to train a Lazy Perceptron in modes I, II and III

• Full: acting as a reference, the Full experiment leverages
the hypothetic data set S to learn a Classical Perceptron
on all fully-labeled examples. This is a topmost result we
strive to reach.

C. Results

The results are presented in Table IV.
As expected, the classifier of the Full experiment outper-

forms all the other classifiers, and is a topline for them. The
Regular experiment uses roughly 1

Q examples and therefore
behaves like the Full perceptron at that amount of data.
Regular and Lazy I start with similar results for corpora up
to 2,000 examples. After 2,000 examples Lazy I gives better
results than Regular while using the same quantity of positive
examples. Even if the gain is small, this shows that Lazy I



TABLE IV
CLASSIFICATION ERROR RATE FOR THE A1 AND A2 CORPORA

Corpus A1
#added examples Banditron Regular Lazy I Lazy II Lazy III Full
200 29.2 31,5 31.0 47.7 29.3 26.7
500 28.3 31.0 29.5 47.5 29.2 22.8
1000 26.9 28.0 28.0 46.4 27.7 23.4
2000 24.5 25.1 24.7 40.1 24.4 23.1
5000 23.5 22.4 21.6 35.1 21.0 15.4
10000 22.1 19.6 18.4 32.4 18.2 14.4

Corpus A2
#added examples Banditron Regular Lazy I Lazy II Lazy III Full
200 27.4 45.8 48.0 71.8 46.7 25.4
500 23.0 38.7 38.3 58.0 37.5 17.9
1000 20.8 30.2 28.9 51.6 29.2 16.7
2000 20.9 24.6 24.9 48.4 23.9 13.6
5000 19.2 19.7 18.1 41.1 18.2 12.7
10000 18.8 16.4 14.8 37.0 14.7 9.7

can take advantage of the generated examples to improve its
performance. Lazy II which uses only negative examples (the
oracle always said “no”) starts poorly but manage to reduce
significantly its error rates on large corpora. This shows that
with sufficient data, our Lazy Perceptron can learn from the
Q−1
Q N negative examples without information on their real

class label. The Lazy III experiment combines positively and
negatively labeled examples to create virtual examples as a
linear interpolation between the Lazy I and Lazy II examples.
The Banditron algorithm performs very well for small size
of data but provides worse results than the Bandit batch
algorithms Lazy I and Lazy III when using the whole training
corpus.

All these results have been obtained with automatic tran-
scriptions with a relatively high Word Error Rate (over 30%),
both for training the classifiers and testing them. This means
that our learning algorithms are robust to the noise generated
by Automatic Recognition Systems.

VI. CONCLUSION

We have explored in this paper a lazy labeling method
as a cheap way to train classification models in the context
of call-routing spoken dialog systems. In such a labeling
process, examples are presented to annotators with a label
which they either validate or invalidate. Such lazy labels can be
obtained through customer feedback, agent annotations or call
log analysis. We have proven that it is possible to learn linear
classifiers in this setting, by estimating adequate expectations.
A set of experiment was run on two call center routing
tasks. We have shown that under a uniform query, the Lazy
Perceptron algorithm performs better than a regular perceptron
only using the small proportion of positively labeled data.
An interesting outcome is that even when relying solely on
negative instances, for which we know that they are not of
a given label, the perceptron can learn a model. The uniform
query setting is an interesting exploration strategy that doesn’t
need any bootstrap corpus and which can learn new events
only from this weak supervision.

As for future work, we plan to extend this setting with more
query types, including data truly lazily labeled by humans. The
idea of generating surrogates of misclassifed examples is also
appealing and might be beneficial to other learning algorithms
than the perceptron. We plan on trying more elaborate example
generation techniques and eventually we hope to be able
to extend this setting to structured predictions which power
most of machine learning applications in natural language
processing.

VII. ACKNOWLEDGMENT

This work is supported by the French agency ANR, Project
DECODA, contract no 2009-CORD-005-01.

REFERENCES

[1] H. Robbins, “Some aspects of the sequential design of experiments,”
Bulletin of the American Mathematical Society, vol. 58, no. 5, pp. 527–
535, 1952.

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire, “The nonstochas-
tic multiarmed bandit problem,” SIAM Journal on Computing, vol. 32,
no. 1, pp. 48–77, 2003.

[3] L. Li, W. Chu, J. Langford, and R. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proceedings
of the 19th international conference on WWW. ACM, 2010, pp. 661–
670.

[4] S. M. Kakade, S. S. Shwartz, and A. Tewari, “Efficient bandit algorithms
for online multiclass prediction,” in ICML ’08: Proc. of the 25th Int.
Conference on Machine learning, 2008, pp. 440–447.

[5] H. Valizadegan, R. Jin, and S. Wang, “Learning to trade off between
exploration and exploitation in multiclass bandit prediction,” in ACM
Conference on Knowledge Discovery and Data Mining (KDD 2011),
2011.

[6] J. Langford and T. Zhang, “The epoch-greedy algorithm for contextual
multi-armed bandits,” in Adv. in Neural Information Processing Systems
20 (NIPS 2008), 2008.

[7] K. Crammer and Y. Singer, “Ultraconservative Online Algorithms for
Multiclass Problems,” Journal of Machine Learning Research, vol. 3,
pp. 951–991, January 2003.

[8] G. Riccardi and D. Hakkani-Tur, “Active learning: theory and applica-
tions to automatic speech recognition,” Speech and Audio Processing,
IEEE Transactions on, vol. 13, no. 4, pp. 504–511, July 2005.

[9] D. Bohus and A. Rudnicky, “Implicitly-supervised learning in spoken
language interfaces: an application to the confidence annotation prob-
lem,” in Proceedings of SigDial, 2007, pp. 256–264.

[10] P. Gotab, F. Béchet, G. Damnati, and L. Delphinpoulat, “Online SLU
model adaptation with a partial Oracle,” in Proceedings of Inter-
speech’10, Makuhari, Japan, 2010.


