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1 Context

Automatic summarization is a natural language processing task which consists
in generating a shorter version of a document or set of documents on a specific
topic. It is one of the most challenging tasks of the domain because it requires
building a full understanding of the input documents, placing the detected facts
in the context of background knowledge, evaluating the relevance of each fact,
and generating a fluent and concise linguistic representation as output.

While previous summarization generation techniques where mostly extrac-
tive, that is based on copy and rearrangement of the input, recent approaches
heavily rely on deep learning, by extending the encoder-decoder approach with
mechanisms which balance reusing the input with generating new words [11], or
using attention mechanisms to capture redundancy [10]. The domain is flour-
ishing with novel approaches1 that propose better modeling of the problem.

Yet, evaluating the quality of a summarization systems is challenging because
there is no notion of gold standard and typical evaluation metrics cannot be
applied to text generation tasks. Over the years, researchers have resorted
to several methods for evaluation, such as ROUGE [6] which automatically
compares system outputs to a set of hand-written summaries, or Pyramid [7]
which adds an additional layer of manual alignment to facts for more relevant
results. Despite the fact that recent approaches, such as [9, 3], leverage latest
development in machine learning, there is a growing suspicion in the adequacy
of the whole evaluation setup for the summarization task [5].

The goal of this project is to devise interpretable summarization evalua-
tion metrics, which shall produce reliable and accurate predictions of human
evaluation metrics [2]. The approach will be evaluated on data from the TAC
evaluation campaigns, in particular those used in the AESOP track [8] for as-
sessing evaluation metrics. In that task, given a summarization task and auto-
matic summarization system outputs, the evaluator must predict rankings from
human-generated evaluation scores.

1A comprehensive list of summarization techniques can be found at
https://github.com/mathsyouth/awesome-text-summarization
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This project is developed in the context of a collaboration with NIT Silchar
in India, and the trainee will have the opportunity to collaborate with colleagues
from that project.

2 Learning strategies for enforcing interpretabil-
ity

We will explore the use of attention mechanism [1, 13] for interpretability.
An attention mechanism is a model component that is learned from the data
to sequentially focus the attention of the prediction model on a part of its
input. Although attention seems an appealing idea for interpretability, [12]
pointed out that it is not fully justified at least for textual data, which we
believe comes from the fact these mechanisms are not actually trained with any
interpretability-based criterion.

We will explore how to drive attention mechanism learning to enhance their
interpretability capacity. As the usual datasets do not integrate useful supervi-
sion for this, we will have to devise strategies to reach our goals, based on e.g.
adversarial learning [4] or on new innovative strategies to develop.

The approach will be applied on an automatic summarization task, eval-
uated through manual annotation of important factors in machine-produced
summaries.
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