
Deep learning for NLP

Joint text and image representations

Benoit Favre

24 Feb 2017

1 Introduction

For this tutorial, we will work with the MSCOCO image captioning dataset1, in
particular with the val2014 data which contains a set of 40k images annotated
with five captions each. For example, one of the pictures is annotated with the
following captions:

a male skier leaning as he goes down a snowy hill
a man in the snow on some skis

a man is skiing on the snow in the winter
a man riding skis down a snow covered slope

a skier skiing down a snowy ski slope

We intend to build a model that projects captions and images in the same
representation space, so that an image is close to its captions in that space,
and far away from dissimilar captions and dissimilar images. This space will be
really neat because we will be able to use it to label unseen images by searching
for the most similar caption to its representation, and we will also be able to
search for the closest images given a new description.

Instead of using the 200,000 captions available in MSCOCO, we will use only
10,000 images and one caption per image.

To create image representations, we will start with a state-of-the-art image
processing model which is able to recognize 1000 Imagenet2 concepts in a picture
with very good accuracy. We chop the last layer of this model and use the acti-
vations as input representation. We will call this processing feature extraction
as it builds features for the images.

1http://mscoco.org/
2http://www.image-net.org/

1

Normally, we would include the whole image model as part as our neural
network, initialize it with weights trained on the concept detection task, and
fine-tune it as we train the other components of our model. But this part is very
expensive to train, so we will use precomputed features for the training data.

For text representation, we will use a recurrent neural network with GRU
units, and in particular the value of the last hidden state after reading the whole
caption. The embedding layer will be initialized with GloVe embeddings.

Then we need a loss to tell our classifier to learn to transform the image
representation and the text representation so that they end-up at the same
location. It is a case of metric learning: We want the dot product between the
image and text representations to be high when the caption and image match,
and low when they don’t. So our model will compute the dot product of the
representations of two pairs, a matched (or positive) pair and a mismatched (or
negative) pair. Then, we will be trained with a maximum margin loss which
makes sure the positive pair has a (dot product) value higher than one plus the
value of the negative pair.

Note that using a mismatched pair which has a dot product lower than the
positive pair will not modify the model, so we need a good strategy to select the
pairs. The best strategy would be to try them all and use the highest-scoring
one, but that’s too expensive to compute, so here we will just associate a random
caption with the same image which was used in the positive pair.

This kind of loss is very similar to triplet ranking, a famous technique for
learning how to rank examples given representations.

2 Image representation

In the following, we will use ResNet50 model implemented in Keras3. Once its
decision layer has been removed, it generates a feature vector of size 2048. Since
passing images through this 50-layer neural network is slow without a GPU, we
provide you with a numpy matrix containing already computed features for the
whole set of 10,000 images.

You can load that matrix with:

features = np.load(’resnet50-features.10k.npy’)

print(features.shape)

This should show a shape of (10000, 2048). The features for the i-th image
can be accessed in features[i].

Once the model will be trained, you will probably want to extract features
for new images. You can do it with the following code which uses the modules
available in resnet50.py and imagenet_utils.py:

from resnet50 import ResNet50

from keras.preprocessing import image

3https://github.com/fchollet/deep-learning-models

2

from imagenet_utils import preprocess_input

resnet_model = ResNet50(weights=’imagenet’, include_top=False)

def extract_features(img_path):

img = image.load_img(img_path, target_size=(224, 224))

x = image.img_to_array(img)

x = np.expand_dims(x, axis=0)

x = preprocess_input(x)

features = resnet_model.predict(x)

return np.expand_dims(features.flatten(), axis=0)

features = extract_features(’some_image.png’)

On first run, the resnet50 module will load the weights for the model (about
100MB) and store them in ~/.keras/models.

To compare text and image representations, they need to have the same size,
so we will add a Dense layer which reduces the size from 2048 to 256. This layer
will be trained as part of our model and generate image representations from
ResNet50 features.

3 Text representation

The captions are stored in the annotations.10k.txt file. On each line, it
contains an image name followed by one caption for that image. The text
has already been tokenized, lower-cased and stripped of its punctuation (using
NLTK). The lines of that file correspond to the rows of the matrix of precom-
puted image features. To load both, you could use the following function:

def load(captions_filename, features_filename):

features = np.load(features_filename)

images = []

texts = []

with open(captions_filename) as fp:

for line in fp:

tokens = line.strip().split()

images.append(tokens[0])

texts.append(’ ’.join(tokens[1:]))

return features, images, texts

It returns a tuple containing the image features, the image names, and the
caption texts.

We need to convert the texts to integer sequences of the same size. This can
be performed with the Tokenizer from Keras, and the pad_sequences function.
Most captions are short, so specifying a maxlen of 16 is reasonable.

3

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

tokenizer = Tokenizer()

tokenizer.fit_on_texts(texts)

sequences = tokenizer.texts_to_sequences(texts)

captions = pad_sequences(sequences, maxlen=16)

It’s the right time to save the vocabulary so that we can reload it later.

vocab = tokenizer.word_index

vocab[’<eos>’] = 0 # add word with id 0

import json

with open(’vocab.json’, ’w’) as fp: # save the vocab

fp.write(json.dumps(vocab))

Our text representation model will input word sequences as arrays of inte-
gers, then project them to a 100-dimensional space with embeddings, and feed
those embeddings to gated recurrent units (GRU). We will not use the output
of the GRU to predict a word-level label, but rather only use the last hidden
state as representation for the whole text. Before putting together the model,
we can load a set of pretrained embeddings with the embedding module. These
embeddings have been filtered to only contain the words used in the captions.

import embedding

embedding_weights = embedding.load(vocab, 100,

’glove.twitter.27B.100d.filtered.txt’)↪→

4 Putting together the model

For that part, we need to use the functional api from Keras since it allows
sharing weights between parts of a model. Here, we will build two pairs of
representations that share some weights. At this point, it is a good idea to read
about the functional api in the Keras documentation4.

Our model will contain three inputs: an image features input (the output of
the ResNet50 model), a correct caption input, and a noise caption input.

from keras.layers import Input, Dense, Embedding, GRU

image_input = Input(shape=(2048,))

caption_input = Input(shape=(16,))

noise_input = Input(shape=(16,))

4https://keras.io/getting-started/functional-api-guide/

4

Next we can setup the individual layers that are going to be used at several
place in the model. We have an embedding layer which is initialized with GloVe
embeddings, a GRU layer which creates the text representation and a dense
layer which creates the image representation.

caption_embedding = Embedding(len(vocab), 100, input_length=16,

weights=[embedding_weights])↪→

caption_rnn = GRU(256)

image_dense = Dense(256, activation=’tanh’)

Now, we need to create the pipelines for each input by just calling the layers
on their respective inputs. Note that this way the weights of the correct caption
and noise pipelines are shared.

image_pipeline = image_dense(image_input)

caption_pipeline = caption_rnn(caption_embedding(caption_input))

noise_pipeline = caption_rnn(caption_embedding(noise_input))

To compute the dot product between the image and caption representations
we need to use the merge function from Keras. In ‘dot’ mode, it computes the
dot product between its arguments and returns a scalar. We then concatenate
the results for both pairs and that’s the output of the model which will be used
by the loss function.

from keras.utils.layer_utils import merge

positive_pair = merge([image_pipeline, caption_pipeline],

mode=’dot’)↪→

negative_pair = merge([image_pipeline, noise_pipeline],

mode=’dot’)↪→

output = merge([positive_pair, negative_pair], mode=’concat’)

From the inputs and this output, we can create multiple models. First a
model for training which outputs the concatenation of the result of the positive
and negative pairs, then a model which only does the image pipeline and one
which only does the caption pipeline. Those two models will be used at predic-
tion time when we have novel images or captions and we want to compute their
representations.

training_model = Model(input=[image_input, caption_input,

noise_input], output=output)↪→

image_model = Model(input=image_input, output=image_pipeline)

caption_model = Model(input=caption_input,

output=caption_pipeline)↪→

5

5 Custom loss

Keras does not provide a loss for maximizing the margin between a positive and
negative example. So we have to write it. If we call pi the score of the positive
pair of the i-th example, and ni the score of the negative pair of that example,
the loss is

loss =
∑
i

max(0, 1 − pi + ni) (1)

It is very straightforward to implement in Keras thanks to its backend func-
tions (functions from Theano and Tensorflow). The loss gets two arguments:
a tensor containing the true label for the minibatch, and another tensor con-
taining the model output. Our loss does not use the true label, only the model
output, which corresponds to the concatenation of the positive score and the
negative score.

from keras import backend as K

def custom_loss(y_true, y_pred):

positive = y_pred[:,0]

negative = y_pred[:,1]

return K.sum(K.maximum(0., 1. - positive + negative))

While we are creating custom Keras functions, we can also compute an
accuracy value: How many times did the positive pair effectively get a higher
value than the negative pair? It’s as easy as:

def accuracy(y_true, y_pred):

positive = y_pred[:,0]

negative = y_pred[:,1]

return K.mean(positive > negative)

Once the custom_loss and accuracy functions are defined, they can be
used to compile the model. Note that we only compile the training_model,
the other models will not be manipulated again, they just represent a subset of
the whole model.

training_model.compile(loss=custom_loss, optimizer=’adam’,

metrics=[accuracy])↪→

6 Training

For training, the model inputs three components: the ResNet50 features for
the image (features hereafter), the correct captions (captions) and the mis-
matched captions (noise). It also expects labels, so we will create an array of
zeros which is never used by the loss function (fake_labels). The noise matrix
needs to be shuffled before each epoch so that the identity of the mismatched
pair is not learned by the model.

6

To verify that the model is not overfitting, we will split the training data
and create a validation set. The first 9,000 examples are used for training, and
the last 1,000 for validation.

noise = np.copy(captions)

fake_labels = np.zeros((len(features), 1))

X_train = [features[:9000], captions[:9000], noise[:9000]]

Y_train = fake_labels[:9000]

X_valid = [features[-1000:], captions[-1000:], noise[-1000:]]

Y_valid = fake_labels[-1000:]

actual training

for epoch in range(10):

np.random.shuffle(noise) # don’t forget to shuffle mismatched

captions↪→

training_model.fit(X_train, Y_train,

validation_data=[X_valid, Y_valid], nb_epoch=1,

batch_size=64)

↪→

↪→

After a few epochs, an accuracy of more than 90% on the validation set
should be obtained. This means that for 9 out of 10 images, the model outputs
a higher score for the correct caption than for a random caption.

Once training is finished, we need to save the weights of the models used
to create representations. The rest of the network does not contain any train-
able weight so it can be thrown away. We shall also compute and save the
representations of all images and captions for using them at prediction time.

save models

image_model.save(’model.image’)

caption_model.save(’model.caption’)

save representations

np.save(’caption-representations’,

caption_model.predict(captions))↪→

np.save(’image-representations’, image_model.predict(features))

7 Captioning novel images

Since training can be a bit long, code for the following sections can be written in
a different python script. Note that some functions should be copied from above,
and that models and other parameters (such as vocab and maxlen) should be
loaded from the files they are saved in. In addition of models, we can load the
representations we have computed for the whole dataset.

load models

from keras.models import load_model

7

image_model = load_model(’model.image’)

caption_model = load_model(’model.caption’)

load representations (you could as well recompute them)

import numpy as np

caption_representations = np.load(’caption-representations.npy’)

image_representations = np.load(’image-representations.npy’)

Instead of using the Tokenizer, we can write our own text to integer routine
which uses the vocabulary we had saved in a json file.

from keras.preprocessing.sequence import pad_sequences

import json

vocab = json.loads(open(’vocab.json’).read())

def preprocess_texts(texts):

output = []

for text in texts:

output.append([vocab[word] if word in vocab else 0 for

word in text.split()])↪→

return pad_sequences(output, maxlen=16)

To generate a caption for a novel image, we need to load that image, extract
features with ResNet50, pass them through the image part of our model to get a
256-value representation. Then, this representation can be compared to all the
caption representations we have computed for the training data by computing
the dot product between the matrix containing all caption representations and
the image representation. This should result in a vector of scores in which
indices correspond to captions. We can use numpy magic (argpartition and
argsort) to retrieve the indices of the n highest scoring captions and display
them to the user.

The following function assumes that you use the extract_features function
to compute ResNet50 image features, that caption representations are loaded
in the caption_representations matrix, and that texts contains the corre-
sponding caption texts (use the load function from above).

def generate_caption(image_filename, n=10):

generate image representation for new image

image_representation =

image_model.predict(extract_features(image_filename))↪→

compute score of all captions in the dataset

scores = np.dot(caption_representations,

image_representation.T).flatten()↪→

compute indices of n best captions

indices = np.argpartition(scores, -n)[-n:]

indices = indices[np.argsort(scores[indices])]

display them

8

for i in [int(x) for x in reversed(indices)]:

print(scores[i], texts[i])

You can now generate a caption for one of the images in the validation set
(the training set images would work as well, but what’s the point generating a
caption for an image we already have a caption for?).

generate_caption(’images/COCO_val2014_000000301581.jpg’)

9.35361 a shadowy skier skiing down a snowy mountain

9.00662 a person is snowboarding down a snowy slope

8.98038 a downhill skier shredding the slopes of snow

8.93038 a person in black jacket skiing on a slope

8.92909 a woman skiing on the snowy slopes

Not so bad, isn’t it? If you try other images, you might not get as lucky,
because our training data is not very diverse and the model is not very large.
In addition, the model is limited to the list of existing captions. If you try to
caption scenes which are not depicted in the training data you will get surprises.

8 Searching for images

In the same way you compared an image representation to all caption represen-
tations, you can input a novel caption, and ask what are the images which match
the most this caption. Again, you will compute the representation for that cap-
tion, and take its dot product with the matrix containing representations for all
images of the corpus.

The function is very similar as for generating a caption, except that it
assumes that you can turn a textual caption to an array of integers of the
correct shape to be input to the caption model with preproces_texts, and
that image_representations contain the matrix of image representations, and
images contains the name of the image files.

def search_image(caption, n=10):

caption_representation =

caption_model.predict(preprocess_texts([caption]))↪→

scores = np.dot(image_representations,

caption_representation.T).flatten()↪→

indices = np.argpartition(scores, -n)[-n:]

indices = indices[np.argsort(scores[indices])]

for i in [int(x) for x in reversed(indices)]:

print(scores[i], images[i])

To make it fancier, you could display the retrieved images.

search_image(’a man in the snow on some skis’)

9

9 Going further

The representations work for images and captions, so if you explore captions
which are similar to a given caption, they should have the same meaning. Same
applies for images. A nice extension could be to plot the t-SNE representation
of both images and captions, for a sample of the data.

You can download the whole image set and train a model for the 200,000
captions (on GPU). At this point, you can refine the ResNet50 weights to better
fit the problem. This was a key factor in the NeuralTalk2 project to generate
good captions with its conditioned language model.

Since the model quickly reaches an accuracy of 95%, this means that only 5%
of the training instances actually modify the model. So a good improvement
could be to find strategies for building negative pairs that are guaranteed to
have a better score than the positive pair in order to improve the model every
time. Note that it is easy to do this at a very high cost, but what about keeping
training time low?

10

