Deep learning for NLP
Language modeling with RNNs

Benoit Favre

23 Feb 2017

1 Introduction

Language modeling is a core component of most natural language processing
systems. It consists in, given a history, predicting the next symbol in a sequence.
Formally, we try to estimate the probability of a sequence of words to come from
the same distribution as a training corpus.

P(wo, . wn) = P(wO)P(w1|w0) . P(wn\wo . wn_l) (1)

Where wy . .. w,, are words. These probabilities can be estimated with a k-gram
language model with horizon-k Markovian assumption:

P(wi\wo...wi,l) :p(wi|wi,k+17...wi,1) (2)

In which we ignore the history after £ — 1 words. This model is easy to estimate
but it is lacking in term of modeling long-term dependencies.

Recurrent neural networks (RNNs) make strive to model the full history from
the beginning of the sequence by estimating that probability in the following
way:

P(wilwo ... wi—1) = p(wi|hi), hi = f(wi—1,hi—1) (3)

2 Character language model

In this tutorial, you will build a simple language model which predicts a charac-
ter given the previous character and a hidden state. The model will be trained
to predict a sentence character by character, from the start.

The dataset is a list of people extracted from http://www.nndb.com/. Each
line contains the person’s name, her job, a summary of what this person is
known for, her birth date, and death date (if it applies).

Donald Sutherland;Actor;The Dirty Dozen;17-Jul-1935;-
Amy Yasbeck;Actor;Casey Davenport on Wings;12-Sep-1963;-
George Lucas;Film Director;Creator of Star Wars;14-May-1944;-

The objective is to make a language model that will predict a person’s de-
scription character by character.

2.1 Data layout

The RNN classifier will predict the next character given the previous character.
So let’s consider the 6-character sentence “Benoit”. The first input is <start>
for which we must predict the character ‘B’. Then given ‘B’ we must predict
‘e’ and so on. At the end, the last character to predict is <eos> (for end of
sentence).

0 1 2 3 4 5 6
Input <start> B e n o i t
Output B e n o i t <eos>

Keras (any many deep learning toolkits) requires to unroll the network for
several time steps to optimize computations and minimize CPU-GPU commu-
nication. We will use Keras’ stateless recurrent units that start with a hidden
state of 0 before predicting the first symbol of an unrolled sequence, and we will
consider this to be the beginning of a sentence, and therefore predict the first
character of the sentence given the symbol <start>.

For unrolling to be efficient, Keras enforces that all sequences are the same
size, so we have to pad the sequences to account for the various length they
can have. Since some sentences can be very long, we will decide on a maximum
length, and trim longer sequences and pad shorter sequences with the <eos>
symbol. For instance, the example padded at length 11 would look like that.

0 1 2 3 4 5 6 7 8 9
Input <start> B e n o i t <eos> <eos> <eos>
Output B e n o i t <eos> <eos> <eos> <eos>

The model will use some capacity to model this phenomenon but RNNs
are pretty good at figuring out that when a given symbol is seen they should
output it for the rest of the sequence. Keras can automate this process, but
instead of manipulating character strings, it needs to deal with numbers. So
the first step is to load the dataset sentence by sentence, as a sequence of
characters, and prefix each sequence with a <start> symbol. The characters
should be mapped to integers with a dictionary and you should also keep track
of a reversed dictionary to be able to display the character that corresponds to a
given integer when generating text. The following python function loads a text
file in this fashion and returns an array of integer sequences. Note that <eos>
needs to have an id of 0.

def load_text(filename) :

vocab = collections.defaultdict(lambda: len(vocab))

vocab[’<eos>’] = 0

text = []

with open(filename) as fp:

for line in fp:
text.append([vocab[’<start>’]] + [vocab[char] for

< char in line.strip()])

rev_vocab = {i: char for char, i in vocab.items()}
return text, vocab, rev_vocab

You can pad and trim this array of sequences by calling the pad_sequences
function from the module keras.preprocessing.sequence. Make sure to
check the Keras documentation for this function to pad after the sequence.
Once the sentences are padded, you can create numpy arrays in which to put
the final training data. We will use embeddings for the input so the shape of
the numpy array is the same as the padded sequences (num sentences, unrolled
steps). For the output, we will use the sparse categorical loss which expects a
3-dimensional array of shape (num sentences, unrolled steps, 1). It is counter
intuitive but that’s to be consistent with losses operating on dense representa-
tions. The output array must be filled with the next character of the input at
the same location, and must end in the <eos> token. The following function
does all the work.

def vectorize(sequences, unroll, size):
sequences = pad_sequences(text, unroll + 1, np.int32, ’post’,
— ’post’, 0)

X_train = np.zeros((len(sequences), unroll), dtype=np.int32)
Y_train = np.zeros((len(sequences), unroll, 1),
— dtype=np.int32)

for i in range(len(sequences)):
for j in range(unroll):
X_train[i,j] = sequencesl[i,j]
Y_train[i,j,0] = sequences[i,j + 1]

return X_train, Y_train

2.2 The keras model

The model contains an embedding layer which converts the n characters that
are represented in the input to a lower dimension vector, setup to accept an
unrolled input. Then, a recurrent layer is added which inputs the embedding
and outputs its hidden state at each timestep (thanks to the return_sequences
flag). GRU or LSTM recurrent layers will do a good job. On top of the recurrent
unit, the model contains a dense layer with a softmax activation to produce the
correct number of outputs (one per character). We have vectorized our data for
the sparse_categorical_crossentropy loss function, so the model must be
compiled with that loss. Here is a function that would create and compile such
a model for a given hidden RNN state size, an embed embedding size, a size
number of characters and unroll steps unrolled.

def make_model(hidden, embed, size, unroll):
model = Sequential()

model . add (Embedding (output_dim=embed, input_dim=size,
— input_length=unroll))

model.add (GRU(hidden, return_sequences=True))

model . add (TimeDistributed (Dense(size)))

model.add(Activation(’softmax’))

model . compile(loss=’sparse_categorical_crossentropy’,
< optimizer=’Nadam’)

return model

2.3 Training

A first way of training the model would be to call model.fit on the training
data for a few epochs.

model = make_model(hidden, embed, size, unroll)
model.fit(X_train, Y_train, batch_size=batch, nb_epoch=5,
< shuffle=True)

If you load the first 5,000 lines of people.txt and train 5 epochs', you
should get a loss of about 1.7. Note that this loss is made artificially low by the
padding symbols (you can change the unroll length to increase/lower it).

Epoch 1/5
5000/5000 [] - 33s - loss: 2.6760
Epoch 2/5
5000/5000 [] - 32s - loss: 2.0012
Epoch 3/5
5000/5000 [==] - 355 - loss: 1.8512
Epoch 4/5
5000/5000 [] - 28s - loss: 1.7645
Epoch 5/5
5000/5000 [] - 27s - loss: 1.7091

3 Generation

The fun with language models is to generate novel text. To do that, we can
input the model with the <start> symbol and a hidden state of 0, and compute
the probability of the next character for all characters. Then we will select a
character in this distribution and use it as input for generating the next char-
acter, and repeat the process until we reach the <eos> symbol. For simplicity,
we will first use the highest probability character at each time step, and once
that works, we will look into sampling from the full distribution.

The model with have built in Keras is not designed for generation and is
optimized for training. In particular, it assumes that the input is known over

Parameters : hidden = 64, batch = 8, unroll = 64, embed = 16, size = 126

all the unrolled time steps. One way to address that problem would be to setup
another model initialized with the weights we have trained earlier. Instead, to
keep things simple we will use the Keras model we have and repeatedly predict
from it adding time steps each time until <eos> is generated. So the input will
look like this:

1. The first symbol is <start> followed by arbitrary input:
<start> <eos> <eos> <eos>...

2. then we use the first prediction c1 as input for the second step:
<start> cl <eos> <eos>...

3. then we use the second prediction c2 as input for the third step:
<start> cl c2 <eos>...

4. then we use the third prediction c3 as input for the fourth step:
<start> cl c2 c3...

Note that under this model we can only generate sequences of length the
number of unrolled steps. To go further, we would need stateful recurrent cells,
which are available in Keras, but that’s another story.

So we need to create a numpy array x of shape (1, unrolled steps) for
the input. «[0,0] is set to the id of the <start> symbol. Then repeat un-
til the number of unrolled steps is reached or the <eos> symbol is generated:
use model.predict to get the score distribution for the next symbol?, use
np.argmax (scores) to get the most probable symbol, and use the rev_vocab
dictionary to map the character index back to an actual character, and finally
set the next input to the id of the predicted character.

def generate(model, unroll):

x = np.zeros((1, unroll))

selected = 1 # <start>

x[0,0] = selected

for i in range(unroll - 1):
scores = model.predict(x, verbose=0) [0] [i]
selected = np.argmax(scores)
if selected ==

break

print(rev_vocab[selected], end=’"’)
x[0,i + 1] = selected

print ()

Using the argmax is deterministic, so the model will always output its fa-
vorite character sequence. For instance, on the previously trained model, it
generates:

2The model generates predictions for the whole unrolled input, so you need to pick the
correct row.

<start>Jan Baller;Actor;Coriner of Corine Coriner of Corine...

To add some variability, we need to sample from the distribution instead
of using the most probable character. Numpy provides the np.random.choice
function which takes a p parameter for specifying a distribution and can be used
to generate a random integer according to a distribution. The distribution is not
very sharp so quite unlikely characters might be selected. In order to limit this
phenomenon, people have applied a “temperature” factor to the probabilities by
dividing them in log space by a constant between 0 and 1 and renormalizing with
a softmax. Low temperature will generate conservative decisions (characters
that the model really likes) and high temperatures lead to less conservative
decisions.

def sample(scores):
scores = np.log(scores) / 0.7
e = np.exp(scores)
scores = e / np.sum(e)
return np.random.choice(len(scores), 1, p=scores) [0]

With a temperature of 0.7, a sample of the generated sequences after 10
epochs might look like:

<start>Alan Britner;Compimat;President Ropelanist;28-0ct-1966;-
<start>Jofne A. Soma;Actor;Woph Howter;22-0ct-1943;-

<start>Roy Rind;Phlshels;President of Apc.;11-May-1945;-
<start>Lavi;Actor;Lidper on Stong on State;25-Sep-1957;-
<start>Robert M. Jame;Silger;Head of Hiller of Muthe;19-Mar-1942;-
<start>Doron Breiz;Actor;Amanan of the Stite;17-Sep-1944;-
<start>Dancelles 0Olen;Actor;A Tenter of Odano;15-Jan-1927;-

It is interesting to see that the model is good at capturing the repetition of semi-
column separated fields with correct semantics for each field. In addition, the
model does a good job at generating job names such as “actor” or “president”,
and generating birth dates. Since most people in the database are still alive, it
rarely generates death dates.

4 Extensions

The first extension is to train the model on much larger quantities of texts, such
as all of Shakespeare’s work®, Wikipedia* or movie scripts®. A strong GPU and
patience are recommended with larger datasets.

Another extension is to predict words instead of characters. The output
layer of the model will be much larger, in general more than 100,000 words

Shttps://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
4https://dumps.wikimedia.org/
Shttps://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html

(using the most frequent words and replacing infrequent ones with a <unk>
token). For training to be fast enough, one needs to approximate the softmax
layer, through methods such as Noice Contrastive Estimation (NCE) or sampled
softmax which only compute the probability of a subset of words and update
the model accordingly.

