
Deep learning for NLP

Multi-layer perceptron with Keras

Benoit Favre

20 Feb 2017

1 Python

The python language is a dynamically typed scripting language with a char-
acteristic indentation style which mimics algorithms. It is widely used in the
scientific community and most deep learning toolkits are written in that lan-
guage. Python is concise and easy to read, however it is relatively slow in itself,
so it is necessary to use native libraries for computation-intensive applications.
It is advised to read the tutorials over the web1 to make sure you are suffi-
ciently fluent with the language. There are also tutorials to install it on Linux,
Windows or OSX. In the following we will use python version 3.

1.1 Python extensions

There are many ways to install python extensions. The easiest one is pip. On
Ubuntu it can be installed with:

sudo apt-get install python-pip python-dev build-essential

2 Numpy

Numpy is a python library with basic math routines, in particular matrix ma-
nipulation. It is advised to go through one of the tutorials2 to refresh your
memory. It is also advised to look at the reference documentation3 for a specific
function.

2.1 Numpy matrices

Here is a quick cheat sheet for matrix-specific constructs. Note that numpy
arrays are tensors and can have more than two dimensions:

1https://docs.python.org/3/tutorial/
2https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
3https://docs.scipy.org/doc/numpy/reference

1

import numpy as np

m = np.zeros((2, 3), dtype=np.float32) # create a 2x3 matrix

filled with 0.0↪→

m = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32) # create

an integer matrix from python lists↪→

m = np.random.rand(2, 3) # create a matrix filled with random

numbers in [0, 1]↪→

print(m) # display a matrix (abbreviated for large matrices)

print(m.tolist()) # convert to list to print the whole thing

print(m.shape) # display the number rows and columns of the

matrix↪→

m[1,2] = 9 # access elements

m[0] = np.zeros((4,)) # set row at a time

print(m[:2, 1:3]) # use slices as indices to get a submatrix

m = a + b # matrix addition

m = a * b # elementwise multiplication

m = np.dot(a, b) # matrix multiplication

2.2 Acceleration

By default, numpy does not use an optimized matrix multiplication implemen-
tation. It can be compiled with BLAS acceleration which makes things much
faster on CPU. First, check whether BLAS is compiled-in.

import numpy.distutils.system_info as sysinfo

sysinfo.get_info(’openblas’)

If not, make sure you installed numpy from your distribution, not from pip. On
Ubuntu, the command is:

sudo apt-get install python-numpy

There are numerous tutorials on the web to install accelerated libraries for
deep learning4.

3 Keras

Keras is a deep learning framework designed on top of generalist frameworks
which significantly reduce the code required to build a system. Theano and
Tensorflow are available as backends.

3.1 Installing keras

You can install keras with pip. We will use the Theano backend, so install it as
well.

4http://www.johnwittenauer.net/configuring-theano-for-high-performance-deep-learning/

2

pip install keras Theano matplotlib scipy pydot-ng --user

In the tutorials, we will manipulate small datasets which are processed in
a reasonable time without a GPU. However, if you want to address real-life
datasets, you will need a machine with a GPU, and you will have to install
proprietary drivers, such as Nvidia CuDNN, so that keras backends can make
use of GPU acceleration. Note that this part is not required for completing the
tutorials.

The backend can be selected by setting the KERAS_BACKEND environment
variable to either theano or tensorflow, or modifying the ~/.keras/keras.json
file5.

To make sure that keras uses the GPU, you need to tell the backend (Theano
or Tensorflow) to use it. Assuming cuda is installed in $HOME/cuda and cudnn
is installed in $HOME/cudnn-v5, you can tell Theano to use the GPU by setting
the following environment variables:

export PATH=$HOME/cuda/bin:$PATH

export CPATH=$HOME/cudnn-v5/include

export LIBRARY_PATH=$HOME/cudnn-v5/lib64

export LD_LIBRARY_PATH=$HOME/cudnn-v5/lib64:$HOME/cuda/lib64

export THEANO_FLAGS=device=gpu,floatX=float32

For TensorFlow, install tensorflow-gpu with pip, select the backend and
set the paths and library paths6.

3.2 Building a multilayer perceptron

Keras provides utilities and classes for building various kinds of neural networks.
The basic workflow consists in loading training data in a numpy array with
proper representation, building a model by stacking layers, compiling it, and
finally fitting the model to the data. The following tutorial explains briefly
those steps. For more information, go to the keras documentation at http:

//keras.io.

Creating data Let’s start by building a predictor on a simple classification
task: given a set of points in the 2d plane, predict those that belong to the unit
circle. Reminding that a point of coordinates (x0, x1) belongs to the unit circles
iif:

x2
0 + x2

1 < 1 (1)

we can generate random points in [−2, 2]× [−2, 2] and label them with 1 if they
are in the unit circle, 0 otherwise. In python, it would look like this:

5https://keras.io/backend/
6https://www.tensorflow.org/get_started/os_setup

3

import numpy as np

n = 10

X = np.random.rand(n, 2) * 4 - 2

labels = X[:,0] ** 2 + X[:,1] ** 2 < 1

print(X)

print(labels)

The X matrix contains on each row a pair of coordinates. The labels vector
contains True or False depending on if the corresponding point belongs to the
unit circle.

Now, keras expects labels to be specified in one-hot representation, that is
for each point a two-dimension vector with 1 at the index of the label (assuming
False has index 0 and True has index 1). So we have to convert the truth vector
to that particular representation using indexing.

Y = np.zeros((n, 2))

Y[np.arange(n), labels.astype(int)] = 1

print(Y)

Earlier, we have installed matplotlib, a library which can display points
graphically. This is a function which shows the generated data points and
colors them according to their label.

import matplotlib.pyplot as plt

plt.scatter(X[:,0], X[:,1], c=Y[:,0], cmap=’brg’)

plt.show()

The brg cmap corresponds to coloring points in shades from blue to red to
green between the lowest to the highest value. The label is specified by the first
dimension of Y since both dimensions are complementary. Note that you have
to close the window for your program to proceed. With n = 10, it’s difficult to
see the shape of the distribution, so try with a larger sample.

4

3.3 Building the model

Let’s start with a very simple linear model of the form:

y = Wx + b (2)

where x, y and b are a dimension-2 vectors, and W is a 2 × 2 matrix. In
keras, such model has only one layer (a Dense layer which computes Wx + b).
Our points have 2 dimensions, and the number of labels is 2.

from keras.models import Sequential

from keras.layers import Dense

model = Sequential()

model.add(Dense(output_dim=2, input_dim=2))

We will train this model with the mean squared error loss using the stochas-
tic gradient descent optimizer with default learning rate, and display accuracy
during training. The model is compiled this way:

model.compile(loss=’mse’, optimizer=’sgd’, metrics=[’accuracy’])

The compiled model is cached, so the next time you execute your code with
the same model, it will be much faster.

For debugging purposes, it is often useful to see the content of your model
as a picture. You can use the following to see the previously defined model.

from keras.utils.visualize_util import plot

plot(model, to_file=’model.png’, show_shapes=True)

The shape of the arrays expected by each layer is very useful to understand
how keras wants the data and labels to look like. The first dimensions is None
because the model can be fed with various batch sizes, and will adapt its shape
depending on the batch size. Note that the first dimension is always the batch
size. Keras also likes to separate the input layer to allow creating complex
inputs, but here it essentially copies the content of X.

5

Fitting the model and generating predictions Next, let’s fit the model
with the training data. It is as simple as calling model.fit with the data points
X, their labels Y and specifying that we want 50 epochs and a batch size of 5.

model.fit(X, Y, nb_epoch=50, batch_size=5)

The number of epochs and the batch size can have an impact on the accuracy
of the final model. You can play a bit with them but first, let’s create a validation
set and generate predictions for that set:

X_valid = np.random.rand(n, 2) * 4 - 2

Y_pred = model.predict(X_valid)

print(Y_pred)

You can display the result on a scale from blue to green, which corresponds
to the confidence of the model of a given point to have the 1 label. Can a linear
model fit that data?

Now to the deep model So let’s try to add more layers and build an actual
multilayer perceptron. We can start with 2 hidden layers of size 3 with the tanh
activation function and a softmax on top of the last layer. To fit the softmax,
we will use binary crossentropy loss which is better suited.

The mathematical definition of the model is:

a1 = tanh(W1x + b1) (3)

a2 = tanh(W2a1 + b2) (4)

y = softmax(W3a2 + b3) (5)

(6)

W1, b1,W2, b2,W3, b3 are the parameters of our model. The corresponding
keras code is as follows:

from keras.layers import Activation

model = Sequential()

model.add(Dense(output_dim=3, input_dim=2))

6

model.add(Activation(’tanh’))

model.add(Dense(output_dim=3, input_dim=3))

model.add(Activation(’tanh’))

model.add(Dense(output_dim=2, input_dim=3))

model.add(Activation(’softmax’))

model.compile(loss=’binary_crossentropy’, optimizer=’sgd’,

metrics=[’accuracy’])↪→

If we display the model, it looks like that:

After 50 epochs, it generally reaches an accuracy of 95% on the training
data, which is much better than the linear model. On the validation data, it is
much more fit than the linear model. Note that due to the reduced problem size,
it is likely that the model does not converge on first run, so try again multiple
times.

7

Extensions You can try to find the best activation function for that dataset,
look into how training criteria and optimizers impact the results, etc.

3.4 Other aspects of Keras

Training regimes Training does not need to be performed in one session.
You can call model.fit() multiple times with one epoch each time. You can
also save the model to disk and reload it later and resume training. model.fit()
also takes a callback argument which is a function executed after each epoch
of training. It is useful to compute a custom loss on the validation set, save the
model, change the learning rate, etc. A few callbacks are already implemented
and it is useful to look at the documentation for full details.

Another approach is to directly implement the batch generation loop and
call model.train_on_batch(X_batch, Y_batch) to train the model on a single
batch. This way, you can spare loading the full dataset in memory and load one
batch at a time. It is less efficient regarding transfers between CPU and GPU
but more flexible. You have to implement some sort of shuffling of the data by
yourself.

Saving and loading a model Models are stored in two files: a description
of the model structure in json which is equivalent to rebuilding the model with
calls to model.add(), and the weights of the model stored in HDF5 format.

model.save_weights(’model.weights’)

with open(’model.structure’, ’w’) as fp:

fp.write(model.to_json())

You can also save the model weights to text by getting them from each layers
with layer.get_weights() as numpy matrices. See the documentation of the
layers for the number and shape of these matrices.

To load a model, no need to instantiate it from Sequential. Just load it
from the json structure, and the weights which have been saved to disk.

import json

from keras.models import model_from_json

8

with open(’model.structure’) as fp:

model = model_from_json(json.loads(fp.read()))

model.load_weights(’model.weights’)

Going further with Keras You are now equipped with the basics of using
the keras library for deep learning. To go further, you should read the docu-
mentation at https://keras.io, look at the examples provided with keras and
the numerous implementations available on github and tutorials available on
the web.

9

