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Deep learning for Natural Language Processing

Day 1
▶ Class: intro to natural language processing
▶ Class: quick primer on deep learning
▶ Tutorial: neural networks with Keras

Day 2
▶ Class: word embeddings
▶ Tutorial: word embeddings

Day 3
▶ Class: convolutional neural networks, recurrent neural networks
▶ Tutorial: sentiment analysis

Day 4
▶ Class: advanced neural network architectures
▶ Tutorial: language modeling

Day 5
▶ Tutorial: Image and text representations
▶ Test
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Mathematical notations

Just to be make sure we share the same vocabulary
x can be a scalar, vector, matrix or tensor (n-dimensional array)

▶ An “axis" of x is one of the dimensions of x
▶ The “shape" of x is the size of the axes of x
▶ xi,j,k is the element of index i, j, k in the 3 first dimensions

f(x) is a function on x, it returns a same-shape mathematical object
xy = x · y = dot(x, y) is the matrix-to-matrix multiplication

▶ if r = xy, then ri,j =
∑

k xi,k × yk,j

x⊙ y is the elementwise multiplication
tanh(x) applies the tanh function to all elements of x and returns the result
σ is the sigmoid function, |x| is the absolute value, max(x) is the largest
element...∑

x is the sum of elements in x,
∏

x is the product of elements in x
∂f
∂θ is the partial derivative of f with respect to parameter θ
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What is machine learning?

Objective
▶ Train a computer to simulate what humans do
▶ Give examples to a computer and teach it to do the same

Actual way of doing machine learning
▶ Adjust parameters of a function so that it generates an output that looks like

some data
▶ Minimize a loss function between the output of the function and some true

data
▶ Actual minimization target: perform well on new data (empirical risk)
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A formalization
Formalism

▶ x ∈ Rk is an observation, a vector of real numbers
▶ y ∈ Rm is a class label among m possible labels
▶ X,Y =

{
(x(i), y(i))

}
i∈[1..n]

is training data

▶ fθ(·) is a function parametrized by θ
▶ L(·, ·) is a loss function

Inference
▶ Predict a label by passing the observation through a neural network

y = fθ(x)

Training
▶ Find the parameter vector that minimizes the loss of predictions versus truth

on a training corpus

θ⋆ = argmin
θ

∑
(x,y)∈T

L(fθ(x), y)
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Neural networks

A biological neuron
▶ Inputs: dendrite
▶ Output: axon
▶ Processing unit: nucleus

Source: http://www.marekrei.com/blog/wp-content/uploads/2014/01/neuron.png

One formal neuron
▶ output = activation(weighted sum(inputs) + bias)

A layer of neurons
▶ f is an activation function
▶ Process multiple neurons in parallel
▶ Implement as matrix-vector multiplication

y = f(Wx+ b)

A multilayer perceptron

y = f3(W3f2(W2f1(W1x+ b1) + b2) + b3)

y = NNθ(x), qquadθ = (W1, b1,W2, b2,W3, b3)
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Encoding inputs and outputs

Input x
▶ Vector of real values

Output y
▶ Binary problem: 1 value, can be 0 or 1 (or -1 and 1 depending on activation

function)
▶ Regression problem: 1 real value
▶ Multiclass problem

⋆ One-hot encoding
⋆ Example: class 3 among 6 → (0, 0, 1, 0, 0, 0)
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Non linearity

Activation function
▶ If f is identity, composition of linear applications is still linear
▶ Need non linearity (tanh, σ, ...)
▶ For instance, 1 hidden-layer MLP

NNθ(x) = σ(W2z(x) + b2)

z(x) = σ(W1x+ b1)

Non linearity
▶ Neural network can approximate any1 continuous function [Cybenko’89,

Hornik’91, ...]

Deep neural networks
▶ A composition of many non-linear functions
▶ Faster to compute and better expressive power than very large shallow network
▶ Used to be hard to train

1http://neuralnetworksanddeeplearning.com/chap4.html
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Loss

Loss suffered by wrongfully predicting the class of an example

L(X,Y ) =
1

n

n∑
i=1

l(y(i), NNθ(x))

Well-known losses
▶ yt is the true label, yp is the predicted label

lmae(yt, yp) = |yt − yp| absolute loss

lmse(yt, yp) = (yt − yp)
2 mean square error

lce(yt, yp) = ytlnyp + (1− yt)ln(1− yp) cross entropy
lhinge(yt, yp) = max(0, 1− ytyp) hinge loss

The most common loss for classification
▶ Cross entropy
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Training as loss minimization

As a loss minimization problem

θ× = argmin
θ

L(X,Y )

So 1-hidden layer MLP with cross entropy loss

θ× = argmin
θ

1

n

n∑
i=1

ytlnyp + (1− yt)ln(1− yp)

yp =

We have a multilayer perceptron with two hidden layers

yp = NNθ(x) = σ(W2z(x) + b2)

z(x) = σ(W1x+ b1)

→ Need to minimize a non linear, non convex function
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Function minimization

Non convext → local minima

Source: https://www.inverseproblem.co.nz/OPTI/Images/plot_ex2nlpb.png

Gradient descent

Source: https://qph.ec.quoracdn.net/main-qimg-1ec77cdbb354c3b9d439fbe436dc5d4f
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Gradient descent

Start with random θ

Compute gradient of loss with respect to θ

∇L(Y,X) =

(
∂L(X,Y )

∂θ1
, . . .

∂L(X,Y )

∂θn

)
Make a step towards the direction of the gradient

θ(t+1) = θ(t) + λ∇L(X,Y )

λ is a small value called learning rate
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Chain rule

Differentiation of function composition
▶ Remember calculus class

g ◦ f(x) = g(f(x))

∂(g ◦ f)
∂x

=
∂g

∂f

∂f

∂x

So if you have function compositions, you can compute their derivative with
respect to a parameter by multiplying a series of factors

∂(f1 ◦ · · · ◦ fn)
∂θ

=
∂f1
∂f2

. . .
∂fn−1

∂fn

∂fn
∂θ
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Example for MLP
Multilayer perceptron with one hidden layer (z2)

L(X,Y ) =
1

n

n∑
i=1

lce(y
(i), NNθ(x

(i)))

NNθ(x) = z1(x) = σ(W2z2(x) + b2)

z2(x) = σ(W1x+ b1)

θ = (W1, b1,W2, b2)

So we need to compute

∂L

∂W2
=

∂L

∂lce

∂lce
∂z1

∂z1
∂W2

∂L

∂b2
=

∂L

∂lce

∂lce
∂z1

∂z1
∂b2

∂L

∂W2
=

∂L

∂lce

∂lce
∂z1

∂z1
∂z2

∂z2
∂W1

∂L

∂b2
=

∂L

∂lce

∂lce
∂z1

∂z1
∂z2

∂z2
∂b1

A lot of the computation is redundant
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Back propagation

A lot of computations are shared
▶ No need to recompute them
▶ Similar to dynamic programming

Information propagates back through the network
▶ We call it “back-propagation"

Training a neural network
1 θ0 = random
2 while not converged

1 forward: Lθt(X,Y )
⋆ Predict yp
⋆ Compute loss

2 backward: ∇Lθt(X,Y )
⋆ Compute partial derivatives

3 update θt+1 = θt + λ∇Lθt(X,Y )
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Computational Graphs

Represent operations in L(X,Y ) as a graph
▶ Every operation, not just high-level functions

Source: http://colah.github.io

More details: http://outlace.com/Computational-Graph/
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Building blocks for neural networks
Can build a neural network like lego

▶ Each block has inputs, parameters and outputs
▶ Examples

⋆ Logarithm: forward: y = ln(x), backward: ∂ln
∂x

(y) = 1/y
⋆ Linear: forward: y = fW,b(x) = W · x+ b

backward: ∂f
∂x

(y) = yT · x, ∂f
∂W

(y) = y ·W , ∂f
∂b

(y) = y
⋆ Sum, product: ...

Provides auto-differentiation
▶ A key component of modern deep learning toolkits

f
x1

∂f
∂x1

(y)

x2

∂f
∂x2

(y)

f(x1, x2)

y
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Stochastic optimization
Stochastic gradient descent (SGD)

▶ Look at one example at a time
▶ Update parameters every time
▶ Learning rate λ

Many optimization techniques have been proposed
▶ Sometimes we should make larger steps: adaptive λ

⋆ λ← λ/2 when loss stops decreasing on validation set
▶ Add inertia to skip through local minima
▶ Adagrad, Adadelta, Adam, NAdam, RMSprop...
▶ The key is that fancier algorithms use more memory

⋆ But they can converge faster

Regularization
▶ Prevent model from fitting too well to the data
▶ Penalize loss by magnitude of parameter vector (loss+ ||θ||)
▶ Dropout: randomly disable
▶ Mini-batches

⋆ Averages SGD updates over a set of examples
⋆ Much faster because computations are parallel
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Deep learning toolkits

Low level toolkits
▶ Tensorflow: https://www.tensorflow.org

▶ Theano: http://deeplearning.net/software/theano

▶ Torch: http://torch.ch

▶ mxnet: http://mxnet.io

High level frameworks
▶ Keras: http://keras.io

▶ Tflearn: http://tflearn.org

▶ Lasagne: https://lasagne.readthedocs.io

Some can do both
▶ Chainer: http://chainer.org

▶ Pytorch: http://pytorch.org
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What they provide

Low level toolkits
▶ Can “implement paper from the equations"
▶ Static or dynamic computation graph compilation and optimization
▶ Hardware acceleration (CUDA, BLAS...)
▶ But lots of house keeping

High level frameworks
▶ Generally built on top of low level toolkits
▶ Implementation of most basic layers, losses, etc.
▶ Your favourite model in 10 lines
▶ Data processing pipeline
▶ Harder to customize

At some point, you will need to jump from high-level to low-level
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Comparison
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Graphical Processing Units
Most toolkits can take advantage of hardware acceleration

▶ Graphical Processing Units
⋆ GPGPU → accelerate matrix product
⋆ Take advantage of highly parallel operations

▶ x10-x100 acceleration
⋆ Things that would take weeks to compute, can be done in days
⋆ The limiting factor is often data transfer from and to GPU

NVIDIA
▶ Currently the best (only?) option
▶ High-end gamer cards: cheaper but limited

⋆ Gforce GTX 1080 ($800)
⋆ Titan X ($1,200)

▶ Professional cards
⋆ Can run 24/7 for years, passive cooling
⋆ K40/K80: previous generation cards ($3.5k)
⋆ P100: current generation ($6k)
⋆ DGX-1: datacenter with 8 P100 ($129k)

▶ Renting: best way to scale
⋆ Amazon AWS EC2 P2 ($1-$15 per hour)
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Information sources

The Deep learning landscape is moving fast
▶ Conferences: NIPS, ICML,ICLR...
▶ Need to read scientific papers from arxiv
▶ Plenty of reading lists on the web

⋆ https://github.com/ChristosChristofidis/awesome-deep-learning
⋆ https://github.com/kjw0612/awesome-rnn
⋆ https://github.com/kjw0612/awesome-deep-vision
⋆ https://github.com/keon/awesome-nlp

Where to get news from
▶ Twitter http://twitter.com/DL_ML_Loop/lists/deep-learning-loop
▶ Reddit https://www.reddit.com/r/MachineLearning/
▶ HackerNews http://www.datatau.com/
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Keras: short presentation

Keras is an abstraction over Theano and Tensorflow
▶ Advice: follow the tutorial at https://keras.io/

from keras.models import Sequential

from keras.layers import Dense, Activation

# build and compile the model
model = Sequential()

model.add(Dense(output_dim=64, input_dim=100))

model.add(Activation("relu"))

model.add(Dense(output_dim=10))

model.add(Activation("softmax"))

model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

# assumes you have loaded data in X_train and Y_train
model.fit(X_train, Y_train, nb_epoch=5, batch_size=32)

# get the classes predicted by the model
proba = model.predict_classes(X_test, batch_size=32)
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Conclusion

Deep learning is loosely modeled after the brain
▶ Neural network is a parametrisable function composition
▶ Learns a non-linear function of its input
▶ Back-propagation of the error

⋆ Chain rule
⋆ Computation graph

▶ Loss minimization

Many toolkits available today
▶ High-level programming language
▶ Automatic differentiation
▶ Accelerated with GPU
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