
Deep learning for natural language processing
A short primer on deep learning

Benoit Favre <benoit.favre@univ-mrs.fr>

Aix-Marseille Université, LIF/CNRS

20 Feb 2017

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 1 / 25

Deep learning for Natural Language Processing

Day 1
▶ Class: intro to natural language processing
▶ Class: quick primer on deep learning
▶ Tutorial: neural networks with Keras

Day 2
▶ Class: word embeddings
▶ Tutorial: word embeddings

Day 3
▶ Class: convolutional neural networks, recurrent neural networks
▶ Tutorial: sentiment analysis

Day 4
▶ Class: advanced neural network architectures
▶ Tutorial: language modeling

Day 5
▶ Tutorial: Image and text representations
▶ Test

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 2 / 25

Mathematical notations

Just to be make sure we share the same vocabulary
x can be a scalar, vector, matrix or tensor (n-dimensional array)

▶ An “axis" of x is one of the dimensions of x
▶ The “shape" of x is the size of the axes of x
▶ xi,j,k is the element of index i, j, k in the 3 first dimensions

f(x) is a function on x, it returns a same-shape mathematical object
xy = x · y = dot(x, y) is the matrix-to-matrix multiplication

▶ if r = xy, then ri,j =
∑

k xi,k × yk,j

x⊙ y is the elementwise multiplication
tanh(x) applies the tanh function to all elements of x and returns the result
σ is the sigmoid function, |x| is the absolute value, max(x) is the largest
element...∑

x is the sum of elements in x,
∏

x is the product of elements in x
∂f
∂θ is the partial derivative of f with respect to parameter θ

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 3 / 25

What is machine learning?

Objective
▶ Train a computer to simulate what humans do
▶ Give examples to a computer and teach it to do the same

Actual way of doing machine learning
▶ Adjust parameters of a function so that it generates an output that looks like

some data
▶ Minimize a loss function between the output of the function and some true

data
▶ Actual minimization target: perform well on new data (empirical risk)

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 4 / 25

A formalization
Formalism

▶ x ∈ Rk is an observation, a vector of real numbers
▶ y ∈ Rm is a class label among m possible labels
▶ X,Y =

{
(x(i), y(i))

}
i∈[1..n]

is training data

▶ fθ(·) is a function parametrized by θ
▶ L(·, ·) is a loss function

Inference
▶ Predict a label by passing the observation through a neural network

y = fθ(x)

Training
▶ Find the parameter vector that minimizes the loss of predictions versus truth

on a training corpus

θ⋆ = argmin
θ

∑
(x,y)∈T

L(fθ(x), y)

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 5 / 25

Neural networks

A biological neuron
▶ Inputs: dendrite
▶ Output: axon
▶ Processing unit: nucleus

Source: http://www.marekrei.com/blog/wp-content/uploads/2014/01/neuron.png

One formal neuron
▶ output = activation(weighted sum(inputs) + bias)

A layer of neurons
▶ f is an activation function
▶ Process multiple neurons in parallel
▶ Implement as matrix-vector multiplication

y = f(Wx+ b)

A multilayer perceptron

y = f3(W3f2(W2f1(W1x+ b1) + b2) + b3)

y = NNθ(x), qquadθ = (W1, b1,W2, b2,W3, b3)

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 6 / 25

http://www.marekrei.com/blog/wp-content/uploads/2014/01/neuron.png

Encoding inputs and outputs

Input x
▶ Vector of real values

Output y
▶ Binary problem: 1 value, can be 0 or 1 (or -1 and 1 depending on activation

function)
▶ Regression problem: 1 real value
▶ Multiclass problem

⋆ One-hot encoding
⋆ Example: class 3 among 6 → (0, 0, 1, 0, 0, 0)

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 7 / 25

Non linearity

Activation function
▶ If f is identity, composition of linear applications is still linear
▶ Need non linearity (tanh, σ, ...)
▶ For instance, 1 hidden-layer MLP

NNθ(x) = σ(W2z(x) + b2)

z(x) = σ(W1x+ b1)

Non linearity
▶ Neural network can approximate any1 continuous function [Cybenko’89,

Hornik’91, ...]

Deep neural networks
▶ A composition of many non-linear functions
▶ Faster to compute and better expressive power than very large shallow network
▶ Used to be hard to train

1http://neuralnetworksanddeeplearning.com/chap4.html
Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 8 / 25

http://neuralnetworksanddeeplearning.com/chap4.html

Loss

Loss suffered by wrongfully predicting the class of an example

L(X,Y) =
1

n

n∑
i=1

l(y(i), NNθ(x))

Well-known losses
▶ yt is the true label, yp is the predicted label

lmae(yt, yp) = |yt − yp| absolute loss

lmse(yt, yp) = (yt − yp)
2 mean square error

lce(yt, yp) = ytlnyp + (1− yt)ln(1− yp) cross entropy
lhinge(yt, yp) = max(0, 1− ytyp) hinge loss

The most common loss for classification
▶ Cross entropy

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 9 / 25

Training as loss minimization

As a loss minimization problem

θ× = argmin
θ

L(X,Y)

So 1-hidden layer MLP with cross entropy loss

θ× = argmin
θ

1

n

n∑
i=1

ytlnyp + (1− yt)ln(1− yp)

yp =

We have a multilayer perceptron with two hidden layers

yp = NNθ(x) = σ(W2z(x) + b2)

z(x) = σ(W1x+ b1)

→ Need to minimize a non linear, non convex function

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 10 / 25

Function minimization

Non convext → local minima

Source: https://www.inverseproblem.co.nz/OPTI/Images/plot_ex2nlpb.png

Gradient descent

Source: https://qph.ec.quoracdn.net/main-qimg-1ec77cdbb354c3b9d439fbe436dc5d4f

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 11 / 25

https://www.inverseproblem.co.nz/OPTI/Images/plot_ex2nlpb.png
https://qph.ec.quoracdn.net/main-qimg-1ec77cdbb354c3b9d439fbe436dc5d4f

Gradient descent

Start with random θ

Compute gradient of loss with respect to θ

∇L(Y,X) =

(
∂L(X,Y)

∂θ1
, . . .

∂L(X,Y)

∂θn

)
Make a step towards the direction of the gradient

θ(t+1) = θ(t) + λ∇L(X,Y)

λ is a small value called learning rate

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 12 / 25

Chain rule

Differentiation of function composition
▶ Remember calculus class

g ◦ f(x) = g(f(x))

∂(g ◦ f)
∂x

=
∂g

∂f

∂f

∂x

So if you have function compositions, you can compute their derivative with
respect to a parameter by multiplying a series of factors

∂(f1 ◦ · · · ◦ fn)
∂θ

=
∂f1
∂f2

. . .
∂fn−1

∂fn

∂fn
∂θ

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 13 / 25

Example for MLP
Multilayer perceptron with one hidden layer (z2)

L(X,Y) =
1

n

n∑
i=1

lce(y
(i), NNθ(x

(i)))

NNθ(x) = z1(x) = σ(W2z2(x) + b2)

z2(x) = σ(W1x+ b1)

θ = (W1, b1,W2, b2)

So we need to compute

∂L

∂W2
=

∂L

∂lce

∂lce
∂z1

∂z1
∂W2

∂L

∂b2
=

∂L

∂lce

∂lce
∂z1

∂z1
∂b2

∂L

∂W2
=

∂L

∂lce

∂lce
∂z1

∂z1
∂z2

∂z2
∂W1

∂L

∂b2
=

∂L

∂lce

∂lce
∂z1

∂z1
∂z2

∂z2
∂b1

A lot of the computation is redundant
Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 14 / 25

Back propagation

A lot of computations are shared
▶ No need to recompute them
▶ Similar to dynamic programming

Information propagates back through the network
▶ We call it “back-propagation"

Training a neural network
1 θ0 = random
2 while not converged

1 forward: Lθt(X,Y)
⋆ Predict yp
⋆ Compute loss

2 backward: ∇Lθt(X,Y)
⋆ Compute partial derivatives

3 update θt+1 = θt + λ∇Lθt(X,Y)

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 15 / 25

Computational Graphs

Represent operations in L(X,Y) as a graph
▶ Every operation, not just high-level functions

Source: http://colah.github.io

More details: http://outlace.com/Computational-Graph/

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 16 / 25

http://colah.github.io
http://outlace.com/Computational-Graph/

Building blocks for neural networks
Can build a neural network like lego

▶ Each block has inputs, parameters and outputs
▶ Examples

⋆ Logarithm: forward: y = ln(x), backward: ∂ln
∂x

(y) = 1/y
⋆ Linear: forward: y = fW,b(x) = W · x+ b

backward: ∂f
∂x

(y) = yT · x, ∂f
∂W

(y) = y ·W , ∂f
∂b

(y) = y
⋆ Sum, product: ...

Provides auto-differentiation
▶ A key component of modern deep learning toolkits

f
x1

∂f
∂x1

(y)

x2

∂f
∂x2

(y)

f(x1, x2)

y

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 17 / 25

Stochastic optimization
Stochastic gradient descent (SGD)

▶ Look at one example at a time
▶ Update parameters every time
▶ Learning rate λ

Many optimization techniques have been proposed
▶ Sometimes we should make larger steps: adaptive λ

⋆ λ← λ/2 when loss stops decreasing on validation set
▶ Add inertia to skip through local minima
▶ Adagrad, Adadelta, Adam, NAdam, RMSprop...
▶ The key is that fancier algorithms use more memory

⋆ But they can converge faster

Regularization
▶ Prevent model from fitting too well to the data
▶ Penalize loss by magnitude of parameter vector (loss+ ||θ||)
▶ Dropout: randomly disable
▶ Mini-batches

⋆ Averages SGD updates over a set of examples
⋆ Much faster because computations are parallel

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 18 / 25

Deep learning toolkits

Low level toolkits
▶ Tensorflow: https://www.tensorflow.org

▶ Theano: http://deeplearning.net/software/theano

▶ Torch: http://torch.ch

▶ mxnet: http://mxnet.io

High level frameworks
▶ Keras: http://keras.io

▶ Tflearn: http://tflearn.org

▶ Lasagne: https://lasagne.readthedocs.io

Some can do both
▶ Chainer: http://chainer.org

▶ Pytorch: http://pytorch.org

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 19 / 25

https://www.tensorflow.org
http://deeplearning.net/software/theano
http://torch.ch
http://mxnet.io
http://keras.io
http://tflearn.org
https://lasagne.readthedocs.io
http://chainer.org
http://pytorch.org

What they provide

Low level toolkits
▶ Can “implement paper from the equations"
▶ Static or dynamic computation graph compilation and optimization
▶ Hardware acceleration (CUDA, BLAS...)
▶ But lots of house keeping

High level frameworks
▶ Generally built on top of low level toolkits
▶ Implementation of most basic layers, losses, etc.
▶ Your favourite model in 10 lines
▶ Data processing pipeline
▶ Harder to customize

At some point, you will need to jump from high-level to low-level

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 20 / 25

Comparison

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 21 / 25

Graphical Processing Units
Most toolkits can take advantage of hardware acceleration

▶ Graphical Processing Units
⋆ GPGPU → accelerate matrix product
⋆ Take advantage of highly parallel operations

▶ x10-x100 acceleration
⋆ Things that would take weeks to compute, can be done in days
⋆ The limiting factor is often data transfer from and to GPU

NVIDIA
▶ Currently the best (only?) option
▶ High-end gamer cards: cheaper but limited

⋆ Gforce GTX 1080 ($800)
⋆ Titan X ($1,200)

▶ Professional cards
⋆ Can run 24/7 for years, passive cooling
⋆ K40/K80: previous generation cards ($3.5k)
⋆ P100: current generation ($6k)
⋆ DGX-1: datacenter with 8 P100 ($129k)

▶ Renting: best way to scale
⋆ Amazon AWS EC2 P2 ($1-$15 per hour)

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 22 / 25

Information sources

The Deep learning landscape is moving fast
▶ Conferences: NIPS, ICML,ICLR...
▶ Need to read scientific papers from arxiv
▶ Plenty of reading lists on the web

⋆ https://github.com/ChristosChristofidis/awesome-deep-learning
⋆ https://github.com/kjw0612/awesome-rnn
⋆ https://github.com/kjw0612/awesome-deep-vision
⋆ https://github.com/keon/awesome-nlp

Where to get news from
▶ Twitter http://twitter.com/DL_ML_Loop/lists/deep-learning-loop
▶ Reddit https://www.reddit.com/r/MachineLearning/
▶ HackerNews http://www.datatau.com/

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 23 / 25

https://github.com/ChristosChristofidis/awesome-deep-learning
https://github.com/kjw0612/awesome-rnn
https://github.com/kjw0612/awesome-deep-vision
https://github.com/keon/awesome-nlp
http://twitter.com/DL_ML_Loop/lists/deep-learning-loop
https://www.reddit.com/r/MachineLearning/
http://www.datatau.com/

Keras: short presentation

Keras is an abstraction over Theano and Tensorflow
▶ Advice: follow the tutorial at https://keras.io/

from keras.models import Sequential

from keras.layers import Dense, Activation

build and compile the model
model = Sequential()

model.add(Dense(output_dim=64, input_dim=100))

model.add(Activation("relu"))

model.add(Dense(output_dim=10))

model.add(Activation("softmax"))

model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

assumes you have loaded data in X_train and Y_train
model.fit(X_train, Y_train, nb_epoch=5, batch_size=32)

get the classes predicted by the model
proba = model.predict_classes(X_test, batch_size=32)

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 24 / 25

https://keras.io/

Conclusion

Deep learning is loosely modeled after the brain
▶ Neural network is a parametrisable function composition
▶ Learns a non-linear function of its input
▶ Back-propagation of the error

⋆ Chain rule
⋆ Computation graph

▶ Loss minimization

Many toolkits available today
▶ High-level programming language
▶ Automatic differentiation
▶ Accelerated with GPU

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 25 / 25

	 Introduction
	 Deep learning for Natural Language Processing
	 Mathematical notations
	 What is machine learning?
	 A formalization
	 Neural networks
	 Encoding inputs and outputs
	 Non linearity
	 Loss
	 Training as loss minimization
	 Function minimization
	 Gradient descent
	 Chain rule
	 Example for MLP
	 Back propagation
	 Computational Graphs
	 Building blocks for neural networks
	 Stochastic optimization
	 Deep learning toolkits
	 What they provide
	 Comparison
	 Graphical Processing Units
	 Information sources
	 Keras: short presentation
	 Conclusion

