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Deep learning for Natural Language Processing

o Day 1
» Class: intro to natural language processing
» Class: quick primer on deep learning
» Tutorial: neural networks with Keras
Day 2
> Class: word embeddings
» Tutorial: word embeddings
o Day 3
» Class: convolutional neural networks, recurrent neural networks
» Tutorial: sentiment analysis
o Day 4
» Class: advanced neural network architectures
» Tutorial: language modeling
Day 5
» Tutorial: Image and text representations
» Test

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 2 /28



Mathematical notations

Just to be make sure we share the same vocabulary

@ x can be a scalar, vector, matrix or tensor (n-dimensional array)
> An “axis" of z is one of the dimensions of z
» The “shape" of x is the size of the axes of x
> x; ;& is the element of index i, j, k in the 3 first dimensions

f(z) is a function on z, it returns a same-shape mathematical object
xy = x -y = dot(x,y) is the matrix-to-matrix multiplication
» if r=xy, then ri; =3, Tix X Yr,j

x ® y is the elementwise multiplication

tanh(x) applies the tanh function to all elements of z and returns the result

o is the sigmoid function, |x| is the absolute value, maz(z) is the largest
element...

>~ is the sum of elements in z, [] = is the product of elements in z

% is the partial derivative of f with respect to parameter 6
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What is machine learning?

@ Objective

» Train a computer to simulate what humans do
> Give examples to a computer and teach it to do the same

@ Actual way of doing machine learning
» Adjust parameters of a function so that it generates an output that looks like
some data
» Minimize a loss function between the output of the function and some true
data
» Actual minimization target: perform well on new data (empirical risk)
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A formalization

@ Formalism

» z € R* is an observation, a vector of real numbers
» y € R™ is a class label among m possible labels

» X,Y = {(a:(i), y(i))} is training data
i€[1..n]

> fo(+) is a function parametrized by 6

» L(-,-) is a loss function

o Inference

> Predict a label by passing the observation through a neural network

y = fo(x)

@ Training
> Find the parameter vector that minimizes the loss of predictions versus truth
on a training corpus

0" =arg;nin Z L(fo(x),y)

(z,y)ET
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Neural networks
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@ A biological neuron
> Inputs: dendrite
» OQutput: axon
» Processing unit: nucleus

Soma

Schwann cell
Myelin sheath
Nucleus

@ One formal neuron
» output = activation(weighted sum(inputs) + bias)

o A layer of neurons
» f is an activation function
» Process multiple neurons in parallel
» Implement as matrix-vector multiplication

y=f(Wzx+0)
@ A multilayer perceptron

y = fa(Wsfo(Waf1(Wix + b1) + ba) + b3)
Y= NNg(x),qquadO = (W17b17W27b27W33b3)
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http://www.marekrei.com/blog/wp-content/uploads/2014/01/neuron.png

Encoding inputs and outputs

o Input x
» Vector of real values

o Output y
» Binary problem: 1 value, can be 0 or 1 (or -1 and 1 depending on activation
function)

> Regression problem: 1 real value
» Multiclass problem

* One-hot encoding
* Example: class 3 among 6 — (0,0,1,0,0,0)
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Non linearity

@ Activation function

> If f is identity, composition of linear applications is still linear
» Need non linearity (tanh, o, ...)
» For instance, 1 hidden-layer MLP

NNg(x) = O'(WQZ(x) + bg)
z(x) = o(Whiz + b1)

@ Non linearity
» Neural network can approximate any® continuous function [Cybenko’'89,
Hornik'91, ...]
@ Deep neural networks

» A composition of many non-linear functions
> Faster to compute and better expressive power than very large shallow network
» Used to be hard to train

lhttp://neuralnetworksanddeeplearning.com/chap4.html
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Loss

@ Loss suffered by wrongfully predicting the class of an example
NI
= > 1y, NNy (x))
i=1

o Well-known losses
> 1y, is the true label, y, is the predicted label

bmae (Y, Yp) = |yt — Yp| absolute loss
mse(yta yp) (yt - yp)2 mean square error
lee(Yt, Yp) = ytlnyp + (1 —y)In(l —y,) cross entropy
Ihinge (Yt, Yp) = max(0, 1 — y:yp) hinge loss

@ The most common loss for classification
» Cross entropy
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Training as loss minimization

@ As a loss minimization problem

0> = argmin L(X,Y)
0
@ So 1-hidden layer MLP with cross entropy loss

1 n
6> = argmin - Z yelny, + (1 — y¢)In(1 — 1)
o i—1
Yp =

@ We have a multilayer perceptron with two hidden layers

Yp = NNQ({E) = J(WQZ(.’E) + bz)
2(z) = o(Wiz + b1)

@ — Need to minimize a non linear, non convex function

Benoit Favre (AMU) DL4NLP: deep learning 20 Feb 2017 10 / 25



Function minimization

@ Non convext — local minima o Gradient descent

Wolfram Global Problem

I(w) Initial ! _— Gradient

Global cost minimum

Lt unlw)
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Gradient descent

e Start with random 0

o Compute gradient of loss with respect to 6

VLY, X) <6L(X, Y)  OL(X, Y))

06, T 90,
@ Make a step towards the direction of the gradient
o+ = 9 L AVL(X,Y)

@ )\ is a small value called learning rate
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Chain rule

o Differentiation of function composition

» Remember calculus class

go f(z) =g(f(z))

d(gof) _0gof
ox af Oz

@ So if you have function compositions, you can compute their derivative with
respect to a parameter by multiplying a series of factors

Afro--ofn) _0f  Ofus0fs
00 Ofy T Of, 00
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Example for MLP

o Multilayer perceptron with one hidden layer (z2)

NNp(x) =

22(r) =

0

@ So we need to compute
oL

W,

oL

by

oL

oW,

oL

by

n

Z o y(’) N Ny( x( )))

=

z1(z )_U(sz2( ) +b2)
<W1$+b1)
(W, b1, Wa,b2)

OL Olce 021

alce 821 8W2

OL 0Olee 071

Olee 021 8_l72

OL Ol.e 021 029
Olee 021 025 OWy
3L 8ZCC 821 822

= Blow 02, 02y OBy

@ A lot of the computation is redundant
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Back propagation

@ A lot of computations are shared
» No need to recompute them
» Similar to dynamic programming

@ Information propagates back through the network
» We call it "back-propagation"

Training a neural network

Q 0y = random
@ while not converged
@ forward: Ly, (X,Y)

* Predict yp
* Compute loss

@ backward: VL, (X,Y)
* Compute partial derivatives

5] update 9t+1 = 0,5 + )\VLgt (X, Y)
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Computational Graphs

@ Represent operations in L(X,Y) as a graph

» Every operation, not just high-level functions

e .
de de ad
— = — = — =1
/ \ / ot -] =

@ More details: http://outlace.com/Computational-Graph/
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Building blocks for neural networks

@ Can build a neural network like lego

» Each block has inputs, parameters and outputs
» Examples

* Logarithm: forward: y = in(z), backward: %l—;(y) =1/y
* Linear: forward: y = fiyp(z) =W -2z +b

backward: 2L (y) =47 -z, 2L () =y W, H(y) =y
* Sum, product: ...

o Provides auto-differentiation
» A key component of modern deep learning toolkits
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Stochastic optimization

@ Stochastic gradient descent (SGD)
» Look at one example at a time
» Update parameters every time
> Learning rate \

@ Many optimization techniques have been proposed
» Sometimes we should make larger steps: adaptive A
* X < A\/2 when loss stops decreasing on validation set

» Add inertia to skip through local minima

» Adagrad, Adadelta, Adam, NAdam, RMSprop...
> The key is that fancier algorithms use more memory

* But they can converge faster

@ Regularization
» Prevent model from fitting too well to the data
Penalize loss by magnitude of parameter vector (loss + ||0]])
Dropout: randomly disable
Mini-batches
* Averages SGD updates over a set of examples
* Much faster because computations are parallel

vyvyy
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Deep learning toolkits

o Low level toolkits

v

Tensorflow: https://www.tensorflow.org

Theano: http://deeplearning.net/software/theano
Torch: http://torch.ch

mxnet: http://mxnet.io

vYyy

o High level frameworks

> Keras: http://keras.io
> Tflearn: http://tflearn.org
> Lasagne: https://lasagne.readthedocs.io

@ Some can do both

» Chainer: http://chainer.org
» Pytorch: http://pytorch.org
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What they provide

o Low level toolkits

v

Can “implement paper from the equations"

Static or dynamic computation graph compilation and optimization
Hardware acceleration (CUDA, BLAS...)

But lots of house keeping

vYyy

@ High level frameworks

» Generally built on top of low level toolkits

> Implementation of most basic layers, losses, etc.
» Your favourite model in 10 lines

» Data processing pipeline

» Harder to customize

@ At some point, you will need to jump from high-level to low-level
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Comparison

P eferred
etworks

Framework Comparison: Basic information*®

autograd

WETTGIE Torch.nn**  Theano*** Caffe (NumPy, Chainer MXNet Tf,mr'
Torch)
GitHub MN: 654
Sars 4,719 3,457 5,590 T.E54 1,295 3,316 20,981
S::::d 2002 2008 2013 2015 2015 2015 2015
Open N: 9/0
issucafPRs | 97/26 525/105  407/204 e 95/25 271/18 330/33
f Facebook S N: HIPS
Main 4 ] Université BVLC : Preferred
developers G;::ﬁ:e:tcl de Montréal  (L.C. Berkeley) (fl'f r:‘lf\::itlln:rj Networks EHEE Ll
ol C/Lua C/Python C++ Python,/Lua Python C++ C++/Pythen
languages
C++/Python
Supported C++/Python 3 n
st Lua Python MATLAR Python/Lua Python R.-"JL;il:I,-"Gu C++/Python

* Data was taken on Apr. 12, 2016
** Includes statistics of Torch?
*** There are many frameworks on Lop_q'_ElIlya@nprlghpughxﬁe”?[nlit them due to the space con straiqts
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Graphical Processing Units

@ Most toolkits can take advantage of hardware acceleration
» Graphical Processing Units

* GPGPU — accelerate matrix product
* Take advantage of highly parallel operations

» x10-x100 acceleration

* Things that would take weeks to compute, can be done in days
* The limiting factor is often data transfer from and to GPU

o NVIDIA
» Currently the best (only?) option
» High-end gamer cards: cheaper but limited
* Gforce GTX 1080 ($800)
* Titan X ($1,200)
> Professional cards

* Can run 24/7 for years, passive cooling
* K40/K80: previous generation cards ($3.5k)
* P100: current generation ($6k)
* DGX-1: datacenter with 8 P100 ($129k)
> Renting: best way to scale

* Amazon AWS EC2 P2 ($1-$15 per hour)
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Information sources

@ The Deep learning landscape is moving fast

» Conferences: NIPS, ICML,ICLR...
» Need to read scientific papers from arxiv
> Plenty of reading lists on the web

* https://github.com/ChristosChristofidis/awesome-deep-learning
https://github.com/kjw0612/awesome-rnn
https://github.com/kjw0612/awesome-deep-vision
https://github.com/keon/awesome-nlp

* % %

@ Where to get news from

» Twitter http://twitter.com/DL_ML_Loop/lists/deep-learning-loop
> Reddit https://www.reddit.com/r/Machinelearning/
» HackerNews http://www.datatau.com/
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Keras: short presentation

@ Keras is an abstraction over Theano and Tensorflow
» Advice: follow the tutorial at https://keras.io/

from keras.models import Sequential
from keras.layers import Dense, Activation

# build and compile the model

model = Sequential ()

model.add (Dense (output_dim=64, input_dim=100))

model.add (Activation("relu"))

model . add (Dense (output_dim=10))

model.add(Activation("softmax"))

model.compile(loss="'categorical _crossentropy', optimizer='sgd', metrics=['accuracy'])

# assumes you have loaded data in X_train and Y_train
model.fit(X_train, Y_train, nb_epoch=5, batch_size=32)

# get the classes predicted by the model
proba = model.predict_classes(X_test, batch_size=32)
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Conclusion

@ Deep learning is loosely modeled after the brain

» Neural network is a parametrisable function composition

» Learns a non-linear function of its input
» Back-propagation of the error

* Chain rule
* Computation graph

» Loss minimization

@ Many toolkits available today
» High-level programming language
» Automatic differentiation
> Accelerated with GPU
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