Deep learning for natural language processing A short primer on deep learning

Benoit Favre

benoit.favre@univ-amu.fr>

Aix-Marseille Université, LIF/CNRS

03-2018

Mathematical notations

Just to be make sure we share the same vocabulary

- x can be a scalar, vector, matrix or tensor (n-dimensional array)
 - ightharpoonup An "axis" of x is one of the dimensions of x
 - lacktriangle The "shape" of x is the size of the axes of x
 - \blacktriangleright $x_{i,j,k}$ is the element of index i,j,k in the 3 first dimensions
 - $ightharpoonup x^{\mathsf{T}}$ is the transpose of x $(x_{i,j}^{\mathsf{T}} = x_{j,i})$
- \bullet f(x) is a function on x, it returns a same-shape mathematical object
- $xy = x \cdot y = matmul(x, y)$ is the matrix-to-matrix multiplication
 - if r = xy, then $r_{i,j} = \sum_k x_{i,k} \times y_{k,j}$
- ullet $x\odot y$ is the elementwise multiplication
- ullet tanh(x) applies the tanh function to all elements of x and returns the result
- σ is the sigmoid function, |x| is the absolute value, max(x) is the largest element...
- $\sum_{x \in X} x$ is the sum of elements in x, $\prod x$ is the product of elements in x
- $\frac{\partial f}{\partial \theta}$ is the partial derivative of f with respect to parameter θ

What is machine learning?

Objective

- Train a computer to simulate what humans do
- Give examples to a computer and teach it to do the same
- Actual way of doing machine learning
 - Adjust parameters of a function so that it generates an output that looks like some data
 - Minimize a loss function between the output of the function and some true data
 - Actual minimization target: perform well on new data (empirical risk)

A formalization

- Formalism
 - $\mathbf{x} \in \mathbb{R}^k$ is an observation, a vector of real numbers
 - $y \in \mathbb{R}^m$ is a class label among m possible labels
 - $igwedge X, Y = \left\{ (x^{(i)}, y^{(i)}) \right\}_{i \in [1...n]}$ is training data
 - $f_{\theta}(\cdot)$ is a function parametrized by θ
 - $ightharpoonup L(\cdot,\cdot)$ is a loss function
- Inference
 - Predict a label by passing the observation through a neural network

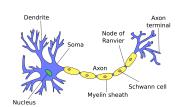
$$y = f_{\theta}(x)$$

- Training
 - Find the parameter vector that minimizes the loss of predictions versus truth on a training corpus

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{(x,y)\in(X,Y)} L(f_{\theta}(x), y)$$

Neural networks

- A biological neuron
 - Inputs: dendrite
 - Output: axon
 - Processing unit: nucleus



- One formal neuron
 - ightharpoonup output = activation(weighted sum(inputs) + bias)
- A layer of neurons
 - f is an activation function
 - ▶ Process multiple neurons in parallel
 - ► Implement as matrix-vector multiplication

$$y = f(Wx + b)$$

A multilayer perceptron

$$y = f_3(W_3 f_2(W_2 f_1(W_1 x + b_1) + b_2) + b_3)$$

$$y = NN_{\theta}(x), \qquad \theta = (W_1, b_1, W_2, b_2, W_3, b_3)$$

Encoding inputs and outputs

- Input x
 - Vector of real values
- Output y
 - Binary problem: 1 value, can be 0 or 1 (or -1 and 1 depending on activation function)
 - ▶ Regression problem: 1 real value
 - Multiclass problem
 - ★ One-hot encoding
 - ***** Example: class 3 among $6 \rightarrow (0,0,1,0,0,0)$

Non linearity

- Activation function
 - ▶ If f is identity, composition of linear applications is still linear
 - ▶ Need non linearity $(tanh, \sigma, ...)$
 - ► For instance, 1 hidden-layer MLP

$$NN_{\theta}(x) = tanh(W_2 z(x) + b_2)$$
$$z(x) = tanh(W_1 x + b_1)$$

- Non linearity
 - Neural network can approximate any¹ continuous function [Cybenko'89, Hornik'91, ...]
- Deep neural networks
 - A composition of many non-linear functions
 - ▶ Faster to compute and better expressive power than very large shallow network
 - Used to be hard to train

1http://neuralnetworksanddeeplearning.com/chap4.html□ > < ③ > < ≧ > < ≧ > ≥ → < ≥ → < ≥ > > ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ →

Benoit Favre (AMU) DL4NLP: deep learning 03-2018

Common non linearities

Most common activation functions used in neural networks

$$\begin{aligned} \tanh(x) &= \frac{e^x - e^{-x}}{e^x + e^{-x}} &\in [-1, 1] \\ \mathrm{sigmoid}(x) &= \sigma(x) = \frac{1}{1 + e^{-x}} &\in [0, 1] \\ \mathrm{softmax}(x) &= \frac{e^x}{\sum_i e^{x_i}} &\in [0, 1] \\ \mathrm{ReLU}(x) &= \max(0, x) \end{aligned}$$

And many more...

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

Loss

Loss suffered by wrongfully predicting the class of an example

$$L(X,Y) = \frac{1}{n} \sum_{i=1}^{n} l(y^{(i)}, NN_{\theta}(x))$$

- Well-known losses
 - $ightharpoonup y_t$ is the true label, y_p is the predicted label

$$\begin{split} l_{\text{mae}}(y_t,y_p) &= |y_t - y_p| & \text{absolute loss} \\ l_{\text{mse}}(y_t,y_p) &= (y_t - y_p)^2 & \text{mean square error} \\ l_{\text{ce}}(y_t,y_p) &= y_t \ln y_p + (1-y_t) \ln (1-y_p) & \text{cross entropy} \\ l_{\text{hinge}}(y_t,y_p) &= \max(0,1-y_t y_p) & \text{hinge loss} \end{split}$$

- The most common loss for classification
 - Cross entropy

Benoît Favre (AMU) DL4NLP: deep learning 03-2018 9/23

Training as loss minimization

As a loss minimization problem

$$\theta^\star = \operatorname*{argmin}_{\theta} L(X,Y)$$

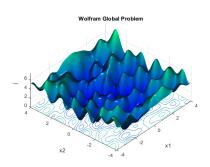
So MLP with one hidden layer, with cross entropy loss

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n y_t \ln y_p + (1 - y_t) \ln(1 - y_p)$$
$$y_p = NN_{\theta}(x) = \sigma(W_2 z(x) + b_2)$$
$$z(x) = \sigma(W_1 x + b_1)$$

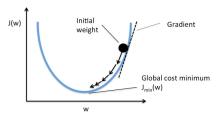
ullet Need to minimize a non linear, non convex function

Function minimization

• Non convext \rightarrow local minima



Gradient descent



Benoit Favre (AMU)

Gradient descent

- Start with random θ
- ullet Compute gradient of loss with respect to heta

$$\nabla L(Y, X) = \left(\frac{\partial L(X, Y)}{\partial \theta_1}, \dots \frac{\partial L(X, Y)}{\partial \theta_n}\right)$$

• Make a step towards the direction of the gradient

$$\theta^{(t+1)} = \theta^{(t)} - \lambda \nabla L(X, Y)$$

ullet λ is a small value called *learning rate*

Chain rule

- Differentiation of function composition
 - Remember calculus class

$$g \circ f(x) = g(f(x))$$

 $\frac{\partial (g \circ f)}{\partial x} = \frac{\partial g}{\partial f} \frac{\partial f}{\partial x}$

 So if you have function compositions, you can compute their derivative with respect to a parameter by multiplying a series of factors

$$\frac{\partial (f_1 \circ \cdots \circ f_n)}{\partial \theta} = \frac{\partial f_1}{\partial f_2} \cdots \frac{\partial f_{n-1}}{\partial f_n} \frac{\partial f_n}{\partial \theta}$$

Example for MLP

• Multilayer perceptron with one hidden layer (z_2)

$$L(X,Y) = \frac{1}{n} \sum_{i=1}^{n} l_{ce}(y^{(i)}, NN_{\theta}(x^{(i)}))$$

$$NN_{\theta}(x) = z_{1}(x) = \sigma(W_{2}z_{2}(x) + b_{2})$$

$$z_{2}(x) = \sigma(W_{1}x + b_{1})$$

$$\theta = (W_{1}, b_{1}, W_{2}, b_{2})$$

So we need to compute

$$\begin{split} \frac{\partial L}{\partial W_2} &= \frac{\partial L}{\partial l_{\rm ce}} \frac{\partial l_{\rm ce}}{\partial z_1} \frac{\partial z_1}{\partial W_2} \\ \frac{\partial L}{\partial b_2} &= \frac{\partial L}{\partial l_{\rm ce}} \frac{\partial l_{\rm ce}}{\partial z_1} \frac{\partial z_1}{\partial b_2} \\ \frac{\partial L}{\partial W_2} &= \frac{\partial L}{\partial l_{\rm ce}} \frac{\partial l_{\rm ce}}{\partial z_1} \frac{\partial z_1}{\partial z_2} \frac{\partial z_2}{\partial W_1} \\ \frac{\partial L}{\partial b_2} &= \frac{\partial L}{\partial l_{\rm ce}} \frac{\partial l_{\rm ce}}{\partial z_1} \frac{\partial z_1}{\partial z_2} \frac{\partial z_2}{\partial b_1} \end{split}$$

• A lot of the computation is redundant

Back propagation

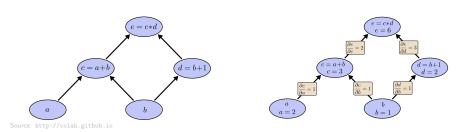
- A lot of computations are shared
 - No need to recompute them
 - Similar to dynamic programming
- Information propagates back through the network
 - We call it "back-propagation"

Training a neural network

- while not converged
 - forward: $L_{\theta_t}(X,Y)$
 - \star Predict y_p
 - Compute loss
 - **2** backward: $\nabla L_{\theta_t}(X,Y)$
 - ★ Compute partial derivatives

Computational Graphs

- Represent operations in L(X,Y) as a graph
 - Every operation, not just high-level functions

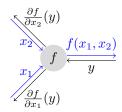


• More details: http://outlace.com/Computational-Graph/

Benoit Favre (AMU)

Building blocks for neural networks

- Can build a neural network like lego
 - Each block has inputs, parameters and outputs
 - Examples
 - * Logarithm: forward: y=ln(x), backward: $\frac{\partial ln}{\partial x}(y)=1/y$ * Linear: forward: $y=f_{W,b}(x)=W\cdot x+b$
 - * Linear: forward: $y = f_{W,b}(x) = W \cdot x + b$ backward: $\frac{\partial f}{\partial x}(y) = y^T \cdot x$, $\frac{\partial f}{\partial W}(y) = y \cdot W$, $\frac{\partial f}{\partial b}(y) = y$
 - * Sum, product: ...
- Provides auto-differentiation
 - ▶ A key component of modern deep learning toolkits



Stochastic optimization

- Stochastic gradient descent (SGD)
 - Look at one example at a time
 - Update parameters every time
 - Learning rate λ
- Many optimization techniques have been proposed
 - ightharpoonup Sometimes we should make larger steps: adaptive λ
 - * $\lambda \leftarrow \lambda/2$ when loss stops decreasing on validation set
 - Add inertia to skip through local minima
 - Adagrad, Adadelta, Adam, NAdam, RMSprop...
 - http://sebastianruder.com/optimizing-gradient-descent
- Regularization
 - Prevent model from fitting too well to the data
 - lacktriangle Penalize loss by magnitude of parameter vector (loss + || heta||)
 - ▶ Dropout: randomly disable neurons in layers
 - Mini-batches
 - Averages SGD updates over a set of examples
 - Much faster because computations are parallel

03-2018

Deep learning toolkits

- Low level toolkits
 - ► Tensorflow: https://www.tensorflow.org
 - ► Torch: http://torch.ch
 - mxnet: http://mxnet.io
 - dyNet: https://github.com/clab/dynet
 - Caffe2: https://caffe2.ai
- High level frameworks
 - Keras: http://keras.io
 - Tflearn: http://tflearn.org
- Some can do both
 - Chainer: http://chainer.org
 - Pytorch: http://pytorch.org

What they provide

- Low level toolkits
 - ► Can "implement paper from the equations"
 - Static or dynamic computation graph compilation and optimization
 - ► Hardware acceleration (CUDA, BLAS...)
 - ▶ But lots of house keeping
- High level frameworks
 - Generally built on top of low level toolkits
 - ▶ Implementation of most basic layers, losses, etc.
 - ► Your favourite model in 10 lines®
 - Data processing pipeline
 - Harder to customize
- At some point, you will need to jump from high-level to low-level

Comparison

Framework Comparison: Basic information*

Viewpoint	Torch.nn**	Theano***	Caffe	autograd (NumPy, Torch)	Chainer	MXNet	Tensor- Flow
GitHub stars	4,719	3,457	9,590	N: 654 T: 554	1,295	3,316	20,981
Started from	2002	2008	2013	2015	2015	2015	2015
Open issues/PRs	97/26	525/105	407/204	N: 9/0 T: 3/1	95/25	271/18	330/33
Main developers	Facebook, Twitter, Google, etc.	Université de Montréal	BVLC (U.C. Berkeley)	N: HIPS (Harvard Univ.) T: Twitter	Preferred Networks	DMLC	Google
Core languages	C/Lua	C/Python	C++	Python/Lua	Python	C++	C++/Python
Supported languages	Lua	Python	C++/Python MATLAB	Python/Lua	Python	C++/Python R/Julia/Go etc.	C++/Python

^{*} Data was taken on Apr. 12, 2016

◆ロト ◆団 ▶ ◆ 恵 ▶ ◆ 恵 ・ 夕 Q ②

^{**} Includes statistics of Torch7

Graphical Processing Units

- Most toolkits can take advantage of hardware acceleration
 - Graphical Processing Units
 - **★** GPGPU → accelerate matrix product
 - * Take advantage of highly parallel operations
 - x10-x100 acceleration
 - ★ Things that would take weeks to compute, can be done in days
 - The limiting factor is often data transfer from and to GPU

NVIDIA

- Industry standard (but Google TPU, AMD...)
- High-end gamer cards: cheaper but limited
 - * Gforce 1080 (\$800)
 - ★ Titan XP (\$1,200)
- Professional cards
 - ★ Can run 24/7 for years, passive cooling
 - ★ K40/K80: previous generation cards (\$3k)
 - ★ P100, V100 (pascal, volta): current generation (\$5-9k)
 - ★ DGX-1: datacenter with 8 V100 (\$129k)
- Renting: best way to scale
 - ★ Amazon AWS EC2 P2 (\$1-\$15 per hour)

Information sources

- The Deep learning landscape is moving fast
 - Conferences: NIPS, ICML,ICLR...
 - Need to read scientific papers from arxiv
 - Plenty of reading lists on the web
 - https://github.com/ChristosChristofidis/awesome-deep-learning
 - * https://github.com/kjw0612/awesome-rnn
 - * https://github.com/kjw0612/awesome-deep-vision
 - https://github.com/keon/awesome-nlp
 - "A Primer on Neural Network Models for Natural Language Processing", Y.
 Goldberg
- Where to get news from
 - ► Twitter http://twitter.com/DL_ML_Loop/lists/deep-learning-loop
 - Reddit https://www.reddit.com/r/MachineLearning/
 - HackerNews http://www.datatau.com/