
Game Theory for Real-Time Synthesis:
Decision, Approximation, and Randomness

Benjamin Monmege

Aix-Marseille Université
Habilitation à diriger des recherches, 29 avril 2022

Eugène Asarin Université de Paris, France (Examinateur)
Béatrice Bérard Sorbonne Université, France (Présidente)

Véronique Bruyère Université de Mons, Belgique (Rapporteuse)
Marcin Jurdziński University of Warwick, UK (Rapporteur)

Nicolas Markey CNRS, Irisa, France (Rapporteur)
Pierre-Alain Reynier Aix-Marseille Université, France (Examinateur)

Yann Vaxès Aix-Marseille Université, France (Examinateur)

Formal methods
for reliable

critical software

Code & model-checking

Game theory
for synthesis

Controller player vs.
environment player

Time constraints

Measure quality

2/28

Formal methods
for reliable

critical software

Code & model-checking

Game theory
for synthesis

Controller player vs.
environment player

Time constraints

Measure quality

2/28

Formal methods
for reliable

critical software

Code & model-checking

Game theory
for synthesis

Controller player vs.
environment player

Time constraints

Measure quality

2/28

Formal methods
for reliable

critical software

Code & model-checking

Game theory
for synthesis

Controller player vs.
environment player

Time constraints

Measure quality

2/28

Methodology

Environment ∥ Controller?? |= Specif

Two-player game

Real-time requirements/environment =⇒ real-time controller
Two-player timed game

Among all valid controllers, choose a cheap/efficient one
Two-player weighted timed game

Production/consumption of resources: negative weights

3/28

Methodology

Environment ∥ Controller?? |= Specif

Two-player game

Real-time requirements/environment =⇒ real-time controller

Two-player timed game

Among all valid controllers, choose a cheap/efficient one
Two-player weighted timed game

Production/consumption of resources: negative weights

3/28

Methodology

Environment ∥ Controller?? |= Specif

Two-player game

Real-time requirements/environment =⇒ real-time controller

Two-player timed game

Among all valid controllers, choose a cheap/efficient one

Two-player weighted timed game

Production/consumption of resources: negative weights

3/28

Methodology

Environment ∥ Controller?? |= Specif
Two-player game

Real-time requirements/environment =⇒ real-time controller

Two-player timed game

Among all valid controllers, choose a cheap/efficient one

Two-player weighted timed game

Production/consumption of resources: negative weights

3/28

Methodology

Environment ∥ Controller?? |= Specif
Two-player game

Real-time requirements/environment =⇒ real-time controller
Two-player timed game

Among all valid controllers, choose a cheap/efficient one

Two-player weighted timed game

Production/consumption of resources: negative weights

3/28

Methodology

Environment ∥ Controller?? |= Specif
Two-player game

Real-time requirements/environment =⇒ real-time controller
Two-player timed game

Among all valid controllers, choose a cheap/efficient one
Two-player weighted timed game

Production/consumption of resources: negative weights

3/28

Methodology

Environment ∥ Controller?? |= Specif
Two-player game

Real-time requirements/environment =⇒ real-time controller
Two-player timed game

Among all valid controllers, choose a cheap/efficient one
Two-player weighted timed game

Production/consumption of resources: negative weights
3/28

Brussels/Mons
EU Project Cassting

2013 2015 2016

Marseille
ANR Project TickTac

2019 2020

Timed games & ⩽ 0 weights

T. Brihaye
G. Geeraerts

S. K. Narayanan
L. Manasa
A. Trivedi

Untimed & total payoff

T. Brihaye
G. Geeraerts
A. Haddad

1 clock
T. Brihaye

G. Geeraerts
A. Haddad

E. Lefaucheux

Divergence, approximation, robustness

D. Busatto-Gaston (PhD)
P.-A. Reynier

O. Sankur

Randomisation

J. Parreaux (PhD)
P.-A. Reynier

MITL
T. Brihaye

M. Estiévenart
G. Geeraerts

H.-M. Ho
A. Milchior
N. Sznajder

Evolutionary Games

T. Brihaye
G. Geeraerts

M. Hallet
B. Quoitin

Transducers & WA
ANR Project Delta

N. Baudru
L.-M. Dando

N. Lhote
T. Lopez (PhD)
P.-A. Reynier
J.-M. Talbot

4/28

Brussels/Mons
EU Project Cassting

2013 2015 2016

Marseille
ANR Project TickTac

2019 2020

Timed games & ⩽ 0 weights

T. Brihaye
G. Geeraerts

S. K. Narayanan
L. Manasa
A. Trivedi

Untimed & total payoff

T. Brihaye
G. Geeraerts
A. Haddad

1 clock
T. Brihaye

G. Geeraerts
A. Haddad

E. Lefaucheux

Divergence, approximation, robustness

D. Busatto-Gaston (PhD)
P.-A. Reynier

O. Sankur

Randomisation

J. Parreaux (PhD)
P.-A. Reynier

MITL
T. Brihaye

M. Estiévenart
G. Geeraerts

H.-M. Ho
A. Milchior
N. Sznajder

Evolutionary Games

T. Brihaye
G. Geeraerts

M. Hallet
B. Quoitin

Transducers & WA
ANR Project Delta

N. Baudru
L.-M. Dando

N. Lhote
T. Lopez (PhD)
P.-A. Reynier
J.-M. Talbot

4/28

Brussels/Mons
EU Project Cassting

2013 2015 2016

Marseille
ANR Project TickTac

2019 2020

Timed games & ⩽ 0 weights

T. Brihaye
G. Geeraerts

S. K. Narayanan
L. Manasa
A. Trivedi

Untimed & total payoff

T. Brihaye
G. Geeraerts
A. Haddad

1 clock
T. Brihaye

G. Geeraerts
A. Haddad

E. Lefaucheux

Divergence, approximation, robustness

D. Busatto-Gaston (PhD)
P.-A. Reynier

O. Sankur

Randomisation

J. Parreaux (PhD)
P.-A. Reynier

MITL
T. Brihaye

M. Estiévenart
G. Geeraerts

H.-M. Ho
A. Milchior
N. Sznajder

Evolutionary Games

T. Brihaye
G. Geeraerts

M. Hallet
B. Quoitin

Transducers & WA
ANR Project Delta

N. Baudru
L.-M. Dando

N. Lhote
T. Lopez (PhD)
P.-A. Reynier
J.-M. Talbot

4/28

Brussels/Mons
EU Project Cassting

2013 2015 2016

Marseille
ANR Project TickTac

2019 2020

Timed games & ⩽ 0 weights

T. Brihaye
G. Geeraerts

S. K. Narayanan
L. Manasa
A. Trivedi

Untimed & total payoff

T. Brihaye
G. Geeraerts
A. Haddad

1 clock
T. Brihaye

G. Geeraerts
A. Haddad

E. Lefaucheux

Divergence, approximation, robustness

D. Busatto-Gaston (PhD)
P.-A. Reynier

O. Sankur

Randomisation

J. Parreaux (PhD)
P.-A. Reynier

MITL
T. Brihaye

M. Estiévenart
G. Geeraerts

H.-M. Ho
A. Milchior
N. Sznajder

Evolutionary Games

T. Brihaye
G. Geeraerts

M. Hallet
B. Quoitin

Transducers & WA
ANR Project Delta

N. Baudru
L.-M. Dando

N. Lhote
T. Lopez (PhD)
P.-A. Reynier
J.-M. Talbot

4/28

Brussels/Mons
EU Project Cassting

2013 2015 2016

Marseille
ANR Project TickTac

2019 2020

Timed games & ⩽ 0 weights

T. Brihaye
G. Geeraerts

S. K. Narayanan
L. Manasa
A. Trivedi

Untimed & total payoff

T. Brihaye
G. Geeraerts
A. Haddad

1 clock
T. Brihaye

G. Geeraerts
A. Haddad

E. Lefaucheux

Divergence, approximation, robustness

D. Busatto-Gaston (PhD)
P.-A. Reynier

O. Sankur

Randomisation

J. Parreaux (PhD)
P.-A. Reynier

MITL
T. Brihaye

M. Estiévenart
G. Geeraerts

H.-M. Ho
A. Milchior
N. Sznajder

Evolutionary Games

T. Brihaye
G. Geeraerts

M. Hallet
B. Quoitin

Transducers & WA
ANR Project Delta

N. Baudru
L.-M. Dando

N. Lhote
T. Lopez (PhD)
P.-A. Reynier
J.-M. Talbot

4/28

Brussels/Mons
EU Project Cassting

2013 2015 2016

Marseille
ANR Project TickTac

2019 2020

Timed games & ⩽ 0 weights

T. Brihaye
G. Geeraerts

S. K. Narayanan
L. Manasa
A. Trivedi

Untimed & total payoff

T. Brihaye
G. Geeraerts
A. Haddad

1 clock
T. Brihaye

G. Geeraerts
A. Haddad

E. Lefaucheux

Divergence, approximation, robustness

D. Busatto-Gaston (PhD)
P.-A. Reynier

O. Sankur

Randomisation

J. Parreaux (PhD)
P.-A. Reynier

MITL
T. Brihaye

M. Estiévenart
G. Geeraerts

H.-M. Ho
A. Milchior
N. Sznajder

Evolutionary Games

T. Brihaye
G. Geeraerts

M. Hallet
B. Quoitin

Transducers & WA
ANR Project Delta

N. Baudru
L.-M. Dando

N. Lhote
T. Lopez (PhD)
P.-A. Reynier
J.-M. Talbot

4/28

Brussels/Mons
EU Project Cassting

2013 2015 2016

Marseille
ANR Project TickTac

2019 2020

Timed games & ⩽ 0 weights

T. Brihaye
G. Geeraerts

S. K. Narayanan
L. Manasa
A. Trivedi

Untimed & total payoff

T. Brihaye
G. Geeraerts
A. Haddad

1 clock
T. Brihaye

G. Geeraerts
A. Haddad

E. Lefaucheux

Divergence, approximation, robustness

D. Busatto-Gaston (PhD)
P.-A. Reynier

O. Sankur

Randomisation

J. Parreaux (PhD)
P.-A. Reynier

MITL
T. Brihaye

M. Estiévenart
G. Geeraerts

H.-M. Ho
A. Milchior
N. Sznajder

Evolutionary Games

T. Brihaye
G. Geeraerts

M. Hallet
B. Quoitin

Transducers & WA
ANR Project Delta

N. Baudru
L.-M. Dando

N. Lhote
T. Lopez (PhD)
P.-A. Reynier
J.-M. Talbot

4/28

Brussels/Mons
EU Project Cassting

2013 2015 2016

Marseille
ANR Project TickTac

2019 2020

Timed games & ⩽ 0 weights

T. Brihaye
G. Geeraerts

S. K. Narayanan
L. Manasa
A. Trivedi

Untimed & total payoff

T. Brihaye
G. Geeraerts
A. Haddad

1 clock
T. Brihaye

G. Geeraerts
A. Haddad

E. Lefaucheux

Divergence, approximation, robustness

D. Busatto-Gaston (PhD)
P.-A. Reynier

O. Sankur

Randomisation

J. Parreaux (PhD)
P.-A. Reynier

MITL
T. Brihaye

M. Estiévenart
G. Geeraerts

H.-M. Ho
A. Milchior
N. Sznajder

Evolutionary Games

T. Brihaye
G. Geeraerts

M. Hallet
B. Quoitin

Transducers & WA
ANR Project Delta

N. Baudru
L.-M. Dando

N. Lhote
T. Lopez (PhD)
P.-A. Reynier
J.-M. Talbot

4/28

Brussels/Mons
EU Project Cassting

2013 2015 2016

Marseille
ANR Project TickTac

2019 2020

Timed games & ⩽ 0 weights

T. Brihaye
G. Geeraerts

S. K. Narayanan
L. Manasa
A. Trivedi

Untimed & total payoff

T. Brihaye
G. Geeraerts
A. Haddad

1 clock
T. Brihaye

G. Geeraerts
A. Haddad

E. Lefaucheux

Divergence, approximation, robustness

D. Busatto-Gaston (PhD)
P.-A. Reynier

O. Sankur

Randomisation

J. Parreaux (PhD)
P.-A. Reynier

MITL
T. Brihaye

M. Estiévenart
G. Geeraerts

H.-M. Ho
A. Milchior
N. Sznajder

Evolutionary Games

T. Brihaye
G. Geeraerts

M. Hallet
B. Quoitin

Transducers & WA
ANR Project Delta

N. Baudru
L.-M. Dando

N. Lhote
T. Lopez (PhD)
P.-A. Reynier
J.-M. Talbot

4/28

Part I : Weighted games

Weighted games

v1

v2 v3

v4 v5

, v6

0

1

0

0

1

0

1

2

Weighted graph with
vertices partitioned between

2 players
+ reachability objective

v1
↘−→v4

→−→v5
←−→v4

→−→v5
↗−→,

1 +1 +2 = 4

v1
↗−→v2

→−→v3

⟲

−→v3

⟲

−→v3 · · ·
· · · = +∞ (, not reached)

Weight of a path:
{

+∞ if , not reached
total weight until , otherwise

Min = #, Max = 2 6/28

Weighted games

• v1

v2 v3

v4 v5

, v6

0

1

0

0

1

0

1

2

Weighted graph with
vertices partitioned between

2 players
+ reachability objective

v1

↘−→v4
→−→v5

←−→v4
→−→v5

↗−→,
1 +1 +2 = 4

v1
↗−→v2

→−→v3

⟲

−→v3

⟲

−→v3 · · ·
· · · = +∞ (, not reached)

Weight of a path:
{

+∞ if , not reached
total weight until , otherwise

Min = #, Max = 2 6/28

Weighted games

v1

v2 v3

•
v4 v5

, v6

0

1

0

0

1

0

1

2

Weighted graph with
vertices partitioned between

2 players
+ reachability objective

v1
↘−→v4

→−→v5
←−→v4

→−→v5
↗−→,

1 +1 +2 = 4

v1
↗−→v2

→−→v3

⟲

−→v3

⟲

−→v3 · · ·
· · · = +∞ (, not reached)

Weight of a path:
{

+∞ if , not reached
total weight until , otherwise

Min = #, Max = 2 6/28

Weighted games

v1

v2 v3

v4

•
v5

, v6

0

1

0

0

1

0

1

2

Weighted graph with
vertices partitioned between

2 players
+ reachability objective

v1
↘−→v4

→−→v5

←−→v4
→−→v5

↗−→,
1 +1 +2 = 4

v1
↗−→v2

→−→v3

⟲

−→v3

⟲

−→v3 · · ·
· · · = +∞ (, not reached)

Weight of a path:
{

+∞ if , not reached
total weight until , otherwise

Min = #, Max = 2 6/28

Weighted games

v1

v2 v3

•
v4 v5

, v6

0

1

0

0

1

0

1

2

Weighted graph with
vertices partitioned between

2 players
+ reachability objective

v1
↘−→v4

→−→v5
←−→v4

→−→v5
↗−→,

1 +1 +2 = 4

v1
↗−→v2

→−→v3

⟲

−→v3

⟲

−→v3 · · ·
· · · = +∞ (, not reached)

Weight of a path:
{

+∞ if , not reached
total weight until , otherwise

Min = #, Max = 2 6/28

Weighted games

v1

v2 v3

v4

•
v5

, v6

0

1

0

0

1

0

1

2

Weighted graph with
vertices partitioned between

2 players
+ reachability objective

v1
↘−→v4

→−→v5
←−→v4

→−→v5

↗−→,
1 +1 +2 = 4

v1
↗−→v2

→−→v3

⟲

−→v3

⟲

−→v3 · · ·
· · · = +∞ (, not reached)

Weight of a path:
{

+∞ if , not reached
total weight until , otherwise

Min = #, Max = 2 6/28

Weighted games

v1

v2 v3

v4 v5

, v6

0

1

0

0

1

0

1

2

Weighted graph with
vertices partitioned between

2 players
+ reachability objective

v1
↘−→v4

→−→v5
←−→v4

→−→v5
↗−→,

1 +1 +2 = 4

v1
↗−→v2

→−→v3

⟲

−→v3

⟲

−→v3 · · ·
· · · = +∞ (, not reached)

Weight of a path:
{

+∞ if , not reached
total weight until , otherwise

Min = #, Max = 2 6/28

Weighted games

v1

v2 v3

v4 v5

, v6

0

1

0

0

1

0

1

2

Weighted graph with
vertices partitioned between

2 players
+ reachability objective

v1
↘−→v4

→−→v5
←−→v4

→−→v5
↗−→,

1 +1 +2 = 4

v1
↗−→v2

→−→v3

⟲

−→v3

⟲

−→v3 · · ·
· · · = +∞ (, not reached)

Weight of a path:
{

+∞ if , not reached
total weight until , otherwise

Min = #, Max = 2 6/28

Weighted games

v1

v2 v3

v4 v5

, v6

0

1

0

0

1

0

1

2

Weighted graph with
vertices partitioned between

2 players
+ reachability objective

v1
↘−→v4

→−→v5
←−→v4

→−→v5
↗−→,

1 +1 +2 = 4

v1
↗−→v2

→−→v3

⟲

−→v3

⟲

−→v3 · · ·
· · · = +∞ (, not reached)

Weight of a path:
{

+∞ if , not reached
total weight until , otherwise

Min = #, Max = 2 6/28

Strategies and objectives

v1

v2 v3

v4 v5

, v6

0

1

0

0

1

0

1

2

Strategy for a player: map finite executions to the transition to fire

Objective of player #: reach , and minimise the weight
Objective of player 2: avoid , or, if not possible, maximise the weight

Main object of interest:
Val(v) = inf

σMin∈StratMin
sup

σMax∈StratMax
Weight(Exec(v , σMin, σMax)) ∈ Z ∪ {±∞}

What weight can players guarantee? Following which strategies?

Min = #, Max = 2 7/28

Strategies and objectives

v1

v2 v3

v4 v5

, v6

0

1

0

0

1

0

1

2

Strategy for a player: map finite executions to the transition to fire

Objective of player #: reach , and minimise the weight
Objective of player 2: avoid , or, if not possible, maximise the weight

Main object of interest:
Val(v) = inf

σMin∈StratMin
sup

σMax∈StratMax
Weight(Exec(v , σMin, σMax)) ∈ Z ∪ {±∞}

What weight can players guarantee? Following which strategies?

Min = #, Max = 2 7/28

Strategies and objectives

v1

v2 v3

v4 v5

, v6

0

1

0

0

1

0

1

2

Strategy for a player: map finite executions to the transition to fire

Objective of player #: reach , and minimise the weight
Objective of player 2: avoid , or, if not possible, maximise the weight

Main object of interest:
Val(v) = inf

σMin∈StratMin
sup

σMax∈StratMax
Weight(Exec(v , σMin, σMax)) ∈ Z ∪ {±∞}

What weight can players guarantee? Following which strategies?

Min = #, Max = 2 7/28

State of the art

▶ one-player: shortest path in a weighted graph... polynomial algo.

▶ two players, ⩾ 0 weights: polynomial algo.
(Khachiyan, Boros, Borys, Elbassioni, Gurvich, Rudolf, and Zhao 2008)

▶ two players, arbitrary weights?

,
−1

0

,

−1

−50

0

0

▶ Value −∞: detection is as hard as solving parity games
(NP ∩ co-NP)

▶ # needs memory

Min = #, Max = 2 8/28

State of the art

▶ one-player: shortest path in a weighted graph... polynomial algo.
▶ two players, ⩾ 0 weights: polynomial algo.

(Khachiyan, Boros, Borys, Elbassioni, Gurvich, Rudolf, and Zhao 2008)

▶ two players, arbitrary weights?

,
−1

0

,

−1

−50

0

0

▶ Value −∞: detection is as hard as solving parity games
(NP ∩ co-NP)

▶ # needs memory

Min = #, Max = 2 8/28

State of the art

▶ one-player: shortest path in a weighted graph... polynomial algo.
▶ two players, ⩾ 0 weights: polynomial algo.

(Khachiyan, Boros, Borys, Elbassioni, Gurvich, Rudolf, and Zhao 2008)
▶ two players, arbitrary weights?

,
−1

0

,

−1

−50

0

0

▶ Value −∞: detection is as hard as solving parity games
(NP ∩ co-NP)

▶ # needs memory

Min = #, Max = 2 8/28

State of the art

▶ one-player: shortest path in a weighted graph... polynomial algo.
▶ two players, ⩾ 0 weights: polynomial algo.

(Khachiyan, Boros, Borys, Elbassioni, Gurvich, Rudolf, and Zhao 2008)
▶ two players, arbitrary weights?

,
−1

0

,

−1

−50

0

0

▶ Value −∞: detection is as hard as solving parity games
(NP ∩ co-NP)

▶ # needs memory

Min = #, Max = 2 8/28

State of the art

▶ one-player: shortest path in a weighted graph... polynomial algo.
▶ two players, ⩾ 0 weights: polynomial algo.

(Khachiyan, Boros, Borys, Elbassioni, Gurvich, Rudolf, and Zhao 2008)
▶ two players, arbitrary weights?

,
−1

0

,

−1

−50

0

0

▶ Value −∞: detection is as hard as solving parity games
(NP ∩ co-NP)

▶ # needs memory

Min = #, Max = 2 8/28

State of the art

▶ one-player: shortest path in a weighted graph... polynomial algo.
▶ two players, ⩾ 0 weights: polynomial algo.

(Khachiyan, Boros, Borys, Elbassioni, Gurvich, Rudolf, and Zhao 2008)
▶ two players, arbitrary weights?

,
−1

0

,

−1

−50

0

0

▶ Value −∞: detection is as hard as solving parity games
(NP ∩ co-NP)

▶ # needs memory

Min = #, Max = 2 8/28

Pseudo-polynomial time algorithm
Joint work with T. Brihaye, G. Geeraerts and A. Haddad
Value iteration algorithm: compute F i(+∞)...

F(x)v =

min

e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMin

max
e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMax

,

−1

−W

0

0

2 #
horizon 0: +∞ +∞

horizon 1: +∞ 0
horizon 2: −1 0
horizon 3: −1 −1
horizon 4: −2 −1

.
horizon 2W + 1: −W −W
horizon 2W + 2: −W −W

st
ra

te
gy

of
#

Theorem:
We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies: # may require (pseudo-polynomial) memory
to play optimally, 2 has optimal memoryless strategy.

Min = #, Max = 2 9/28

Pseudo-polynomial time algorithm
Joint work with T. Brihaye, G. Geeraerts and A. Haddad
Value iteration algorithm: compute F i(+∞)...

F(x)v =

min

e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMin

max
e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMax

,

−1

−W

0

0

2 #
horizon 0: +∞ +∞
horizon 1: +∞ 0

horizon 2: −1 0
horizon 3: −1 −1
horizon 4: −2 −1

.
horizon 2W + 1: −W −W
horizon 2W + 2: −W −W

st
ra

te
gy

of
#

Theorem:
We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies: # may require (pseudo-polynomial) memory
to play optimally, 2 has optimal memoryless strategy.

Min = #, Max = 2 9/28

Pseudo-polynomial time algorithm
Joint work with T. Brihaye, G. Geeraerts and A. Haddad
Value iteration algorithm: compute F i(+∞)...

F(x)v =

min

e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMin

max
e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMax

,

−1

−W

0

0

2 #
horizon 0: +∞ +∞
horizon 1: +∞ 0
horizon 2: −1 0

horizon 3: −1 −1
horizon 4: −2 −1

.
horizon 2W + 1: −W −W
horizon 2W + 2: −W −W

st
ra

te
gy

of
#

Theorem:
We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies: # may require (pseudo-polynomial) memory
to play optimally, 2 has optimal memoryless strategy.

Min = #, Max = 2 9/28

Pseudo-polynomial time algorithm
Joint work with T. Brihaye, G. Geeraerts and A. Haddad
Value iteration algorithm: compute F i(+∞)...

F(x)v =

min

e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMin

max
e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMax

,

−1

−W

0

0

2 #
horizon 0: +∞ +∞
horizon 1: +∞ 0
horizon 2: −1 0
horizon 3: −1 −1

horizon 4: −2 −1
.

horizon 2W + 1: −W −W
horizon 2W + 2: −W −W

st
ra

te
gy

of
#

Theorem:
We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies: # may require (pseudo-polynomial) memory
to play optimally, 2 has optimal memoryless strategy.

Min = #, Max = 2 9/28

Pseudo-polynomial time algorithm
Joint work with T. Brihaye, G. Geeraerts and A. Haddad
Value iteration algorithm: compute F i(+∞)...

F(x)v =

min

e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMin

max
e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMax

,

−1

−W

0

0

2 #
horizon 0: +∞ +∞
horizon 1: +∞ 0
horizon 2: −1 0
horizon 3: −1 −1
horizon 4: −2 −1

.
horizon 2W + 1: −W −W
horizon 2W + 2: −W −W

st
ra

te
gy

of
#

Theorem:
We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies: # may require (pseudo-polynomial) memory
to play optimally, 2 has optimal memoryless strategy.

Min = #, Max = 2 9/28

Pseudo-polynomial time algorithm
Joint work with T. Brihaye, G. Geeraerts and A. Haddad
Value iteration algorithm: compute F i(+∞)...

F(x)v =

min

e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMin

max
e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMax

,

−1

−W

0

0

2 #
horizon 0: +∞ +∞
horizon 1: +∞ 0
horizon 2: −1 0
horizon 3: −1 −1
horizon 4: −2 −1

.
horizon 2W + 1: −W −W

horizon 2W + 2: −W −W

st
ra

te
gy

of
#

Theorem:
We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies: # may require (pseudo-polynomial) memory
to play optimally, 2 has optimal memoryless strategy.

Min = #, Max = 2 9/28

Pseudo-polynomial time algorithm
Joint work with T. Brihaye, G. Geeraerts and A. Haddad
Value iteration algorithm: compute F i(+∞)...

F(x)v =

min

e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMin

max
e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMax

,

−1

−W

0

0

2 #
horizon 0: +∞ +∞
horizon 1: +∞ 0
horizon 2: −1 0
horizon 3: −1 −1
horizon 4: −2 −1

.
horizon 2W + 1: −W −W
horizon 2W + 2: −W −W

st
ra

te
gy

of
#

Theorem:
We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies: # may require (pseudo-polynomial) memory
to play optimally, 2 has optimal memoryless strategy.

Min = #, Max = 2 9/28

Pseudo-polynomial time algorithm
Joint work with T. Brihaye, G. Geeraerts and A. Haddad
Value iteration algorithm: compute F i(+∞)...

F(x)v =

min

e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMin

max
e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMax

,

−1

−W

0

0

2 #
horizon 0: +∞ +∞
horizon 1: +∞ 0
horizon 2: −1 0
horizon 3: −1 −1
horizon 4: −2 −1

.
horizon 2W + 1: −W −W
horizon 2W + 2: −W −W

st
ra

te
gy

of
#

Theorem:
We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies: # may require (pseudo-polynomial) memory
to play optimally, 2 has optimal memoryless strategy.

Min = #, Max = 2 9/28

Large polynomial fragment: divergent weighted games
Joint work with D. Busatto-Gaston and P.-A. Reynier

Divergence property (in the underlying graph):
Every cycle has total weight either ⩽ −1 or ⩾ 1

Characterisation: all the simple cycles of an SCC have the same sign

,v1

v2

v3

v4

v5
v6

v7

v8

v9

vf

−1
−1

−1

−10

−1

1

1

−1

−12

Theorem:
Deciding if a weighted game is divergent is in PTIME.

Theorem:
We can compute in polynomial time the value of a divergent weighted
game, as well as optimal strategies for both players.
▶ Value computation SCC by SCC, bottom-up
▶ in positive SCC, the "value iteration" algo converges in linear time
▶ in negative SCC, detection of vertices of value −∞ in polynomial

time, and then the "value iteration" algo converges in linear time
with initialisation at −∞

10/28

Large polynomial fragment: divergent weighted games
Joint work with D. Busatto-Gaston and P.-A. Reynier

Divergence property (in the underlying graph):
Every cycle has total weight either ⩽ −1 or ⩾ 1
Characterisation: all the simple cycles of an SCC have the same sign

,v1

v2

v3

v4

v5
v6

v7

v8

v9

vf

−1
−1

−1

−10

−1

1

1

−1

−12

Theorem:
Deciding if a weighted game is divergent is in PTIME.

Theorem:
We can compute in polynomial time the value of a divergent weighted
game, as well as optimal strategies for both players.
▶ Value computation SCC by SCC, bottom-up
▶ in positive SCC, the "value iteration" algo converges in linear time
▶ in negative SCC, detection of vertices of value −∞ in polynomial

time, and then the "value iteration" algo converges in linear time
with initialisation at −∞

10/28

Large polynomial fragment: divergent weighted games
Joint work with D. Busatto-Gaston and P.-A. Reynier

Divergence property (in the underlying graph):
Every cycle has total weight either ⩽ −1 or ⩾ 1
Characterisation: all the simple cycles of an SCC have the same sign

Theorem:
Deciding if a weighted game is divergent is in PTIME.

Theorem:
We can compute in polynomial time the value of a divergent weighted
game, as well as optimal strategies for both players.
▶ Value computation SCC by SCC, bottom-up
▶ in positive SCC, the "value iteration" algo converges in linear time
▶ in negative SCC, detection of vertices of value −∞ in polynomial

time, and then the "value iteration" algo converges in linear time
with initialisation at −∞

10/28

Large polynomial fragment: divergent weighted games
Joint work with D. Busatto-Gaston and P.-A. Reynier

Divergence property (in the underlying graph):
Every cycle has total weight either ⩽ −1 or ⩾ 1
Characterisation: all the simple cycles of an SCC have the same sign

Theorem:
Deciding if a weighted game is divergent is in PTIME.

Theorem:
We can compute in polynomial time the value of a divergent weighted
game, as well as optimal strategies for both players.

▶ Value computation SCC by SCC, bottom-up
▶ in positive SCC, the "value iteration" algo converges in linear time
▶ in negative SCC, detection of vertices of value −∞ in polynomial

time, and then the "value iteration" algo converges in linear time
with initialisation at −∞

10/28

Large polynomial fragment: divergent weighted games
Joint work with D. Busatto-Gaston and P.-A. Reynier

Divergence property (in the underlying graph):
Every cycle has total weight either ⩽ −1 or ⩾ 1
Characterisation: all the simple cycles of an SCC have the same sign

Theorem:
Deciding if a weighted game is divergent is in PTIME.

Theorem:
We can compute in polynomial time the value of a divergent weighted
game, as well as optimal strategies for both players.
▶ Value computation SCC by SCC, bottom-up

▶ in positive SCC, the "value iteration" algo converges in linear time
▶ in negative SCC, detection of vertices of value −∞ in polynomial

time, and then the "value iteration" algo converges in linear time
with initialisation at −∞

10/28

Large polynomial fragment: divergent weighted games
Joint work with D. Busatto-Gaston and P.-A. Reynier

Divergence property (in the underlying graph):
Every cycle has total weight either ⩽ −1 or ⩾ 1
Characterisation: all the simple cycles of an SCC have the same sign

Theorem:
Deciding if a weighted game is divergent is in PTIME.

Theorem:
We can compute in polynomial time the value of a divergent weighted
game, as well as optimal strategies for both players.
▶ Value computation SCC by SCC, bottom-up
▶ in positive SCC, the "value iteration" algo converges in linear time

▶ in negative SCC, detection of vertices of value −∞ in polynomial
time, and then the "value iteration" algo converges in linear time
with initialisation at −∞

10/28

Large polynomial fragment: divergent weighted games
Joint work with D. Busatto-Gaston and P.-A. Reynier

Divergence property (in the underlying graph):
Every cycle has total weight either ⩽ −1 or ⩾ 1
Characterisation: all the simple cycles of an SCC have the same sign

Theorem:
Deciding if a weighted game is divergent is in PTIME.

Theorem:
We can compute in polynomial time the value of a divergent weighted
game, as well as optimal strategies for both players.
▶ Value computation SCC by SCC, bottom-up
▶ in positive SCC, the "value iteration" algo converges in linear time
▶ in negative SCC, detection of vertices of value −∞ in polynomial

time, and then the "value iteration" algo converges in linear time
with initialisation at −∞

10/28

Part II : Weighted timed games

Weighted timed games

v1

v2 v3

v4 v5

, v6

x > 0
x := 0

x ⩽ 1

x ⩽ 2

x < 1
x := 0

x > 1

x ⩾ 1
x := 0

x ⩾ 1
x := 0

x ⩾ 1

Timed automaton with
vertices partitioned between

2 players
+ reachability objective

(v1, 0) 0.4,↘−−−−→(v4, 0.4) 0.6,→−−−−→(v5, 0) 1.5,←−−−−→(v4, 0) 1.1,→−−−−→(v5, 0) 2,↗−−−→(,, 2)
1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

(v1, 0) 0.2,↗−−−−→(v2, 0) 0.9,→−−−−→(v3, 0.9) 0.2,

⟲

−−−−→(v3, 0) 0.9,

⟲

−−−−→(v3, 0) · · ·
1×0.2+0 +2×0.9+0 −1×0.2+0 −1×0.9+0 · · · = +∞

Weight of an execution :
{

+∞ if , not reached
total weight until , otherwise

12/28

Weighted timed games

• v1

v2 v3

v4 v5

, v6

x > 0
x := 0

x ⩽ 1

x ⩽ 2

x < 1
x := 0

x > 1

x ⩾ 1
x := 0

x ⩾ 1
x := 0

x ⩾ 1

Timed automaton with
vertices partitioned between

2 players
+ reachability objective

(v1, 0)

0.4,↘−−−−→(v4, 0.4) 0.6,→−−−−→(v5, 0) 1.5,←−−−−→(v4, 0) 1.1,→−−−−→(v5, 0) 2,↗−−−→(,, 2)
1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

(v1, 0) 0.2,↗−−−−→(v2, 0) 0.9,→−−−−→(v3, 0.9) 0.2,

⟲

−−−−→(v3, 0) 0.9,

⟲

−−−−→(v3, 0) · · ·
1×0.2+0 +2×0.9+0 −1×0.2+0 −1×0.9+0 · · · = +∞

Weight of an execution :
{

+∞ if , not reached
total weight until , otherwise

12/28

Weighted timed games

v1

v2 v3

•
v4 v5

, v6

x > 0
x := 0

x ⩽ 1

x ⩽ 2

x < 1
x := 0

x > 1

x ⩾ 1
x := 0

x ⩾ 1
x := 0

x ⩾ 1

Timed automaton with
vertices partitioned between

2 players
+ reachability objective

(v1, 0) 0.4,↘−−−−→(v4, 0.4)

0.6,→−−−−→(v5, 0) 1.5,←−−−−→(v4, 0) 1.1,→−−−−→(v5, 0) 2,↗−−−→(,, 2)
1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

(v1, 0) 0.2,↗−−−−→(v2, 0) 0.9,→−−−−→(v3, 0.9) 0.2,

⟲

−−−−→(v3, 0) 0.9,

⟲

−−−−→(v3, 0) · · ·
1×0.2+0 +2×0.9+0 −1×0.2+0 −1×0.9+0 · · · = +∞

Weight of an execution :
{

+∞ if , not reached
total weight until , otherwise

12/28

Weighted timed games

v1

v2 v3

v4

•
v5

, v6

x > 0
x := 0

x ⩽ 1

x ⩽ 2

x < 1
x := 0

x > 1

x ⩾ 1
x := 0

x ⩾ 1
x := 0

x ⩾ 1

Timed automaton with
vertices partitioned between

2 players
+ reachability objective

(v1, 0) 0.4,↘−−−−→(v4, 0.4) 0.6,→−−−−→(v5, 0)

1.5,←−−−−→(v4, 0) 1.1,→−−−−→(v5, 0) 2,↗−−−→(,, 2)
1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

(v1, 0) 0.2,↗−−−−→(v2, 0) 0.9,→−−−−→(v3, 0.9) 0.2,

⟲

−−−−→(v3, 0) 0.9,

⟲

−−−−→(v3, 0) · · ·
1×0.2+0 +2×0.9+0 −1×0.2+0 −1×0.9+0 · · · = +∞

Weight of an execution :
{

+∞ if , not reached
total weight until , otherwise

12/28

Weighted timed games

v1

v2 v3

•
v4 v5

, v6

x > 0
x := 0

x ⩽ 1

x ⩽ 2

x < 1
x := 0

x > 1

x ⩾ 1
x := 0

x ⩾ 1
x := 0

x ⩾ 1

Timed automaton with
vertices partitioned between

2 players
+ reachability objective

(v1, 0) 0.4,↘−−−−→(v4, 0.4) 0.6,→−−−−→(v5, 0) 1.5,←−−−−→(v4, 0)

1.1,→−−−−→(v5, 0) 2,↗−−−→(,, 2)
1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

(v1, 0) 0.2,↗−−−−→(v2, 0) 0.9,→−−−−→(v3, 0.9) 0.2,

⟲

−−−−→(v3, 0) 0.9,

⟲

−−−−→(v3, 0) · · ·
1×0.2+0 +2×0.9+0 −1×0.2+0 −1×0.9+0 · · · = +∞

Weight of an execution :
{

+∞ if , not reached
total weight until , otherwise

12/28

Weighted timed games

v1

v2 v3

v4

•
v5

, v6

x > 0
x := 0

x ⩽ 1

x ⩽ 2

x < 1
x := 0

x > 1

x ⩾ 1
x := 0

x ⩾ 1
x := 0

x ⩾ 1

Timed automaton with
vertices partitioned between

2 players
+ reachability objective

(v1, 0) 0.4,↘−−−−→(v4, 0.4) 0.6,→−−−−→(v5, 0) 1.5,←−−−−→(v4, 0) 1.1,→−−−−→(v5, 0)

2,↗−−−→(,, 2)
1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

(v1, 0) 0.2,↗−−−−→(v2, 0) 0.9,→−−−−→(v3, 0.9) 0.2,

⟲

−−−−→(v3, 0) 0.9,

⟲

−−−−→(v3, 0) · · ·
1×0.2+0 +2×0.9+0 −1×0.2+0 −1×0.9+0 · · · = +∞

Weight of an execution :
{

+∞ if , not reached
total weight until , otherwise

12/28

Weighted timed games

v1

v2 v3

v4 v5

, v6

x > 0
x := 0

x ⩽ 1

x ⩽ 2

x < 1
x := 0

x > 1

x ⩾ 1
x := 0

x ⩾ 1
x := 0

x ⩾ 1

Timed automaton with
vertices partitioned between

2 players
+ reachability objective

(v1, 0) 0.4,↘−−−−→(v4, 0.4) 0.6,→−−−−→(v5, 0) 1.5,←−−−−→(v4, 0) 1.1,→−−−−→(v5, 0) 2,↗−−−→(,, 2)

1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

(v1, 0) 0.2,↗−−−−→(v2, 0) 0.9,→−−−−→(v3, 0.9) 0.2,

⟲

−−−−→(v3, 0) 0.9,

⟲

−−−−→(v3, 0) · · ·
1×0.2+0 +2×0.9+0 −1×0.2+0 −1×0.9+0 · · · = +∞

Weight of an execution :
{

+∞ if , not reached
total weight until , otherwise

12/28

Weighted timed games

1 v1

2
v2

−1
v3

−3
v4

1
v5

, v6

x > 0
x := 0

0

x ⩽ 1
1

x ⩽ 2
0

x < 1
x := 0

0

x > 1
1

x ⩾ 1
x := 0

0
x ⩾ 1
x := 0

0

x ⩾ 1
2

Timed automaton with
vertices partitioned between

2 players
+ reachability objective

+ linear weights on vertices
+ discrete weights on

transitions

(v1, 0) 0.4,↘−−−−→(v4, 0.4) 0.6,→−−−−→(v5, 0) 1.5,←−−−−→(v4, 0) 1.1,→−−−−→(v5, 0) 2,↗−−−→(,, 2)
1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

(v1, 0) 0.2,↗−−−−→(v2, 0) 0.9,→−−−−→(v3, 0.9) 0.2,

⟲

−−−−→(v3, 0) 0.9,

⟲

−−−−→(v3, 0) · · ·
1×0.2+0 +2×0.9+0 −1×0.2+0 −1×0.9+0 · · · = +∞

Weight of an execution :
{

+∞ if , not reached
total weight until , otherwise

12/28

Weighted timed games

1 v1

2
v2

−1
v3

−3
v4

1
v5

, v6

x > 0
x := 0

0

x ⩽ 1
1

x ⩽ 2
0

x < 1
x := 0

0

x > 1
1

x ⩾ 1
x := 0

0
x ⩾ 1
x := 0

0

x ⩾ 1
2

Timed automaton with
vertices partitioned between

2 players
+ reachability objective

+ linear weights on vertices
+ discrete weights on

transitions

(v1, 0) 0.4,↘−−−−→(v4, 0.4) 0.6,→−−−−→(v5, 0) 1.5,←−−−−→(v4, 0) 1.1,→−−−−→(v5, 0) 2,↗−−−→(,, 2)
1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

(v1, 0) 0.2,↗−−−−→(v2, 0) 0.9,→−−−−→(v3, 0.9) 0.2,

⟲

−−−−→(v3, 0) 0.9,

⟲

−−−−→(v3, 0) · · ·
1×0.2+0 +2×0.9+0 −1×0.2+0 −1×0.9+0 · · · = +∞

Weight of an execution :
{

+∞ if , not reached
total weight until , otherwise

12/28

Strategies and objectives

1 v1

2
v2

−1
v3

−3
v4

1
v5

, v6

x > 0
x := 0

0

x ⩽ 1
1

x ⩽ 2
0

x < 1
x := 0

0

x > 1
1

x ⩾ 1
x := 0

0
x ⩾ 1
x := 0

0

x ⩾ 1
2

Strategy for a player: map finite executions to a delay and a transition

Val(v , x) = inf
σMin∈StratMin

sup
σMax∈StratMax

Weight(Exec(v , x , σMin, σMax)) ∈ R

13/28

Strategies and objectives

1 v1

2
v2

−1
v3

−3
v4

1
v5

, v6

x > 0
x := 0

0

x ⩽ 1
1

x ⩽ 2
0

x < 1
x := 0

0

x > 1
1

x ⩾ 1
x := 0

0
x ⩾ 1
x := 0

0

x ⩾ 1
2

Strategy for a player: map finite executions to a delay and a transition

Val(v , x) = inf
σMin∈StratMin

sup
σMax∈StratMax

Weight(Exec(v , x , σMin, σMax)) ∈ R

13/28

State of the art

Decision problem: ∃ a strategy of # reaching , with a weight ⩽ K?

▶ One-player case (Weighted timed automata): PSPACE-complete
▶ Algorithm based on regions (Bouyer, Brinksma, and Larsen 2004;

Bouyer, Brihaye, Bruyère, and Raskin 2007);
▶ and hardness shown for timed automata with ⩾ 2 clocks (Fearnley

and Jurdziński 2013; Haase, Ouaknine, and Worrell 2012)

▶ 2-player WTGs: undecidable (Brihaye, Bruyère, and Raskin 2005; Bouyer,
Brihaye, and Markey 2006), even with only ⩾ 0 weights and 3 clocks
(only 2 clocks needed with arbitrary weights (Brihaye, Geeraerts,
Narayanan Krishna, Manasa, Monmege, and Trivedi 2014))

▶ Decidability results for WTGs with arbitrary weights?

14/28

State of the art

Decision problem: ∃ a strategy of # reaching , with a weight ⩽ K?

▶ One-player case (Weighted timed automata): PSPACE-complete
▶ Algorithm based on regions (Bouyer, Brinksma, and Larsen 2004;

Bouyer, Brihaye, Bruyère, and Raskin 2007);
▶ and hardness shown for timed automata with ⩾ 2 clocks (Fearnley

and Jurdziński 2013; Haase, Ouaknine, and Worrell 2012)

▶ 2-player WTGs: undecidable (Brihaye, Bruyère, and Raskin 2005; Bouyer,
Brihaye, and Markey 2006), even with only ⩾ 0 weights and 3 clocks
(only 2 clocks needed with arbitrary weights (Brihaye, Geeraerts,
Narayanan Krishna, Manasa, Monmege, and Trivedi 2014))

▶ Decidability results for WTGs with arbitrary weights?

14/28

State of the art

Decision problem: ∃ a strategy of # reaching , with a weight ⩽ K?

▶ One-player case (Weighted timed automata): PSPACE-complete
▶ Algorithm based on regions (Bouyer, Brinksma, and Larsen 2004;

Bouyer, Brihaye, Bruyère, and Raskin 2007);
▶ and hardness shown for timed automata with ⩾ 2 clocks (Fearnley

and Jurdziński 2013; Haase, Ouaknine, and Worrell 2012)

▶ 2-player WTGs: undecidable (Brihaye, Bruyère, and Raskin 2005; Bouyer,
Brihaye, and Markey 2006), even with only ⩾ 0 weights and 3 clocks
(only 2 clocks needed with arbitrary weights (Brihaye, Geeraerts,
Narayanan Krishna, Manasa, Monmege, and Trivedi 2014))

▶ Decidability results for WTGs with arbitrary weights?

14/28

State of the art

Decision problem: ∃ a strategy of # reaching , with a weight ⩽ K?

▶ One-player case (Weighted timed automata): PSPACE-complete
▶ Algorithm based on regions (Bouyer, Brinksma, and Larsen 2004;

Bouyer, Brihaye, Bruyère, and Raskin 2007);
▶ and hardness shown for timed automata with ⩾ 2 clocks (Fearnley

and Jurdziński 2013; Haase, Ouaknine, and Worrell 2012)

▶ 2-player WTGs: undecidable (Brihaye, Bruyère, and Raskin 2005; Bouyer,
Brihaye, and Markey 2006), even with only ⩾ 0 weights and 3 clocks
(only 2 clocks needed with arbitrary weights (Brihaye, Geeraerts,
Narayanan Krishna, Manasa, Monmege, and Trivedi 2014))

▶ Decidability results for WTGs with arbitrary weights?

14/28

State of the art: one clock, ⩾ 0 weights

(Fearnley, Ibsen-Jensen, and Savani 2020): PSPACE-hard
(Bouyer, Larsen, Markey, and Rasmussen 2006; Rutkowski 2011; Hansen, Ibsen-Jensen, and

Miltersen 2013): exponential time algo
▶ simplification of 1-clock WTGs:

▶ clock bounded by 1, no guards, no resets

▶ for simple WTGs: compute value functions Val(v , x).

3
v2

9
v4

9v1 6
v3

0 v5

,

3

x1

9
v1(x)

x1

9

6
5

3

1
3

2
3

v2(x)

x1

8

6
5

3

1
3

2
3

v3(x)

x1

5

3

2
3

v4(x)

x1

5

v5(x)

1

2 4

53

⊥

r1 = 9

r2 = 3 r4 = 9

r5 = 0

r3 = 6

c(5,⊥) = 5

c(3,1) = 3

Figure 1: Example of an SPTG, showing value functions and an optimal strategy profile.

current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of

3

16/28

State of the art: one clock, ⩾ 0 weights

(Fearnley, Ibsen-Jensen, and Savani 2020): PSPACE-hard
(Bouyer, Larsen, Markey, and Rasmussen 2006; Rutkowski 2011; Hansen, Ibsen-Jensen, and

Miltersen 2013): exponential time algo
▶ simplification of 1-clock WTGs:

▶ clock bounded by 1, no guards, no resets
▶ for simple WTGs: compute value functions Val(v , x).

3
v2

9
v4

9v1 6
v3

0 v5

,

3

x1

9
v1(x)

x1

9

6
5

3

1
3

2
3

v2(x)

x1

8

6
5

3

1
3

2
3

v3(x)

x1

5

3

2
3

v4(x)

x1

5

v5(x)

1

2 4

53

⊥

r1 = 9

r2 = 3 r4 = 9

r5 = 0

r3 = 6

c(5,⊥) = 5

c(3,1) = 3

Figure 1: Example of an SPTG, showing value functions and an optimal strategy profile.

current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of

3

16/28

Simple WTGs with arbitrary weights

x
0

1
4

1
2

3
4

1

Val(ℓ2,x)
−9.5

−6 −5.5

−2
1

x
0

1
4

1
2

3
4

9
10 1

Val(ℓ1,x)
−9.5

−6 −5.5

−2
−0.2

x
0

1
4

1
2 1

Val(ℓ3,x)

−10

−6 −5.5
−7

x
0 1

Val(ℓ4,x)

−4

−7

x
0

3
4 1

Val(ℓ5,x)
−14

−2
1

x
0 1

Val(ℓ7,x)
−16

0

17/28

Simple WTGs with arbitrary weights
Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

−2 v1

−14 v2

4
v3

3
v4

8v5

−12v6

−16

v7
,

1

2

6
−7

18/28

Simple WTGs with arbitrary weights
Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

−2 v1

−14 v2

4
v3

3
v4

8v5

−12v6

−16

v7
,

1

2

6
−7

Val(v4, x) = sup0⩽t⩽1−x 3t − 7 = 3(1 − x) − 7 = −3x − 4

18/28

Simple WTGs with arbitrary weights
Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

−2 v1

−14 v2

4
v3

3
v4

8v5

−12ℓ6

−16

v7
,

1

2

6
−7

Val(v4, x) = −3x − 4, Val(v7, x) = −16(1 − x)

18/28

Simple WTGs with arbitrary weights
Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

−2 v1

−14 v2

4
v3

3
v4

8v5

−12ℓ6

−16

v7
,

1

2

6
−7

−10

−7
−4

6

Val(v4, x) = −3x − 4, Val(v7, x) = −16(1 − x),

18/28

Simple WTGs with arbitrary weights
Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

−2 v1

−14 v2

4
v3

3
v4

8v5

−12ℓ6

−16

v7
,

1

2

6
−7

−10

−7
−4

6

Val(v4, x) = −3x − 4, Val(v7, x) = −16(1 − x),
Val(v3, x) = min(−3x − 4, −16(1 − x) + 6)

18/28

Simple WTGs with arbitrary weights
Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

−2 v1

−14 v2

4
v3

3
v4

8v5

−12ℓ6

−16

v7
,

1

2

6
−7

−10

−7
−4

6

Val(v4, x) = −3x − 4, Val(v7, x) = −16(1 − x),
Val(v3, x) = min(−3x − 4, −16(1 − x) + 6)

Theorem:
For every simple WTG, all value functions are piecewise affine, with at most
an exponential number of cutpoints, and can be computed in exponential
time.

18/28

Simple WTGs with arbitrary weights
Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

−2 v1

−14 v2

4
v3

3
v4

8v5

−12ℓ6

−16

v7
,

1

2

6
−7

−10

−7
−4

6

Val(v4, x) = −3x − 4, Val(v7, x) = −16(1 − x),
Val(v3, x) = min(−3x − 4, −16(1 − x) + 6)

Theorem: NEW!
For every simple WTG, all value functions are piecewise affine, with at
most a pseudo-polynomial number of cutpoints, and can be computed
in pseudo-polynomial time.

18/28

Simple WTGs with arbitrary weights
Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

−2 v1

−14 v2

4
v3

3
v4

8v5

−12ℓ6

−16

v7
,

1

2

6
−7

−10

−7
−4

6

Theorem: NEW!
For every simple WTG, all value functions are piecewise affine, with at
most a pseudo-polynomial number of cutpoints, and can be computed
in pseudo-polynomial time.

For general 1-clock WTGs?
▶ removing guards: previously used techniques work!
▶ removing resets: previously, bound the number of resets...

18/28

One-clock WTG with arbitrary weights NEW!
Joint work with J. Parreaux and P.-A. Reynier

New idea: limit the number of resets (to at most once for each
transition), after having blown up exponentially the WTG

19/28

One-clock WTG with arbitrary weights NEW!
Joint work with J. Parreaux and P.-A. Reynier

New idea: limit the number of resets (to at most once for each
transition), after having blown up exponentially the WTG

,
t<0 t⩾0

t+∞

t1
x := 0

t2
x := 0

t1
x := 0

t2
x := 0

t1
x := 0 t2

x := 0

t2
x := 0

t1 : x := 0

t1 : x := 0

t2
x := 0

19/28

One-clock WTG with arbitrary weights NEW!
Joint work with J. Parreaux and P.-A. Reynier

New idea: limit the number of resets (to at most once for each
transition), after having blown up exponentially the WTG

,
t<0 t⩾0

t+∞

t1
x := 0

t2
x := 0

t1
x := 0

t2
x := 0

t1
x := 0 t2

x := 0

t2
x := 0

t1 : x := 0

t1 : x := 0

t2
x := 0

Theorem:
For every 1-clock WTG, all value functions can be computed in time ex-
ponential in the number of locations and in the largest transition weight,
and polynomial in other weights.

19/28

State of the art: ⩾ 0 weights

⩾ 0 weights and strictly non-Zeno-cost cycles: 2-exp algo
(Bouyer, Cassez, Fleury, and Larsen 2004; Alur, Bernadsky, and Madhusudan 2004)

Value iteration algorithm: compute F i(+∞)...

F(x)(v,ν) =

sup

(v,ν)
d,t−−→(v′,ν′)

(
d × Weight(v) + Weight(t) + x(v′,ν′)

)
if v ∈ VMax

inf
(v,ν)

d,t−−→(v′,ν′)

(
d × Weight(v) + Weight(t) + x(v′,ν′)

)
if v ∈ VMin

21/28

Extension to negative weights

Joint work with D. Busatto-Gaston and P.-A. Reynier

Divergence property:
Every execution following a cycle of the region automaton has a
total weight either ⩽ −1 or ⩾ 1

Characterisation: all simple cycles of an SCC of the region automaton
have the same sign

Theorem:
Deciding if a WTG is divergent is PSPACE-complete.

Theorem:
The value problem on divergent WTG is in 3-EXP, and is EXP-hard.

22/28

Extension to negative weights

Joint work with D. Busatto-Gaston and P.-A. Reynier

Divergence property:
Every execution following a cycle of the region automaton has a
total weight either ⩽ −1 or ⩾ 1

Characterisation: all simple cycles of an SCC of the region automaton
have the same sign

Theorem:
Deciding if a WTG is divergent is PSPACE-complete.

Theorem:
The value problem on divergent WTG is in 3-EXP, and is EXP-hard.

22/28

Extension to negative weights

Joint work with D. Busatto-Gaston and P.-A. Reynier

Divergence property:
Every execution following a cycle of the region automaton has a
total weight either ⩽ −1 or ⩾ 1

Characterisation: all simple cycles of an SCC of the region automaton
have the same sign

Theorem:
Deciding if a WTG is divergent is PSPACE-complete.

Theorem:
The value problem on divergent WTG is in 3-EXP, and is EXP-hard.

22/28

Extension to negative weights

Joint work with D. Busatto-Gaston and P.-A. Reynier

Divergence property:
Every execution following a cycle of the region automaton has a
total weight either ⩽ −1 or ⩾ 1

Characterisation: all simple cycles of an SCC of the region automaton
have the same sign

Theorem:
Deciding if a WTG is divergent is PSPACE-complete.

Theorem:
The value problem on divergent WTG is in 3-EXP, and is EXP-hard.

22/28

What about cycles of weight = 0?
▶ Adding cycles of weight = 0 to divergent WTG: undecidable but

approximable (Bouyer, Jaziri, and Markey 2015)

Joint work with D. Busatto-Gaston and P.-A. Reynier
Almost-divergent WTG: every SCC of the region automaton is

either (⩾ 1 or = 0), or (⩽ −1 or = 0)
s0

s

Ks′

s

s

sf

Ks′′

sf

stop leaf

0 1

−3 −1 2 1

2

3

1

4

−3

1

−3

Theorem:
Approximation is decidable for almost-divergent WTGs: (semi-)symbolic
algorithm that does not rely on an a-priori discretisation of the regions
with a fixed granularity 1/N.

23/28

What about cycles of weight = 0?
▶ Adding cycles of weight = 0 to divergent WTG: undecidable but

approximable (Bouyer, Jaziri, and Markey 2015)

Joint work with D. Busatto-Gaston and P.-A. Reynier
Almost-divergent WTG: every SCC of the region automaton is

either (⩾ 1 or = 0), or (⩽ −1 or = 0)

s0

s

Ks′

s

s

sf

Ks′′

sf

stop leaf

0 1

−3 −1 2 1

2

3

1

4

−3

1

−3

Theorem:
Approximation is decidable for almost-divergent WTGs: (semi-)symbolic
algorithm that does not rely on an a-priori discretisation of the regions
with a fixed granularity 1/N.

23/28

What about cycles of weight = 0?
▶ Adding cycles of weight = 0 to divergent WTG: undecidable but

approximable (Bouyer, Jaziri, and Markey 2015)

Joint work with D. Busatto-Gaston and P.-A. Reynier
Almost-divergent WTG: every SCC of the region automaton is

either (⩾ 1 or = 0), or (⩽ −1 or = 0)
s0

s

Ks′

s

s

sf

Ks′′

sf

stop leaf

0 1

−3 −1 2 1

2

3

1

4

−3

1

−3

Theorem:
Approximation is decidable for almost-divergent WTGs: (semi-)symbolic
algorithm that does not rely on an a-priori discretisation of the regions
with a fixed granularity 1/N.

23/28

What about cycles of weight = 0?
▶ Adding cycles of weight = 0 to divergent WTG: undecidable but

approximable (Bouyer, Jaziri, and Markey 2015)

Joint work with D. Busatto-Gaston and P.-A. Reynier
Almost-divergent WTG: every SCC of the region automaton is

either (⩾ 1 or = 0), or (⩽ −1 or = 0)
s0

s

Ks′

s

s

sf

Ks′′

sf

stop leaf

0 1

−3 −1 2 1

2

3

1

4

−3

1

−3

Theorem:
Approximation is decidable for almost-divergent WTGs: (semi-)symbolic
algorithm that does not rely on an a-priori discretisation of the regions
with a fixed granularity 1/N.

23/28

Part III : Trade memory for randomisation

How to define stochastic strategies?
(Bertrand, Bouyer, Brihaye, Menet, Baier, Grösser, and Jurdziński 2014)

−2

v0

1

v1

,

a, 0 ⩽ x < 1, x := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0, −1

b
0 ⩽ x ⩽ 1

−10

b
1 ⩽ x ⩽ 2

0

Deterministic strategy
Choose an edge and a delay

Min = #, Max = 2 25/28

How to define stochastic strategies?
(Bertrand, Bouyer, Brihaye, Menet, Baier, Grösser, and Jurdziński 2014)

−2

v0

1

v1

,

a, 0 ⩽ x < 1, x := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0, −1

b
0 ⩽ x ⩽ 1

−10

b
1 ⩽ x ⩽ 2

0

Deterministic strategy
Choose an edge and a delay

In (v1, 0)
Choose a with t = 1

3

Min = #, Max = 2 25/28

How to define stochastic strategies?
(Bertrand, Bouyer, Brihaye, Menet, Baier, Grösser, and Jurdziński 2014)

−2

v0

1

v1

,

a, 0 ⩽ x < 1, x := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0, −1

b
0 ⩽ x ⩽ 1

−10

b
1 ⩽ x ⩽ 2

0

Deterministic strategy
Choose an edge and a delay

In (v1, 0)
Choose a with t = 1

3

Probabilistic strategy
Distribution over possible choices

Min = #, Max = 2 25/28

How to define stochastic strategies?
(Bertrand, Bouyer, Brihaye, Menet, Baier, Grösser, and Jurdziński 2014)

−2

v0

1

v1

,

a, 0 ⩽ x < 1, x := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0, −1

b
0 ⩽ x ⩽ 1

−10

b
1 ⩽ x ⩽ 2

0

Deterministic strategy
Choose an edge and a delay

In (v1, 0)
Choose a with t = 1

3

Probabilistic strategy
Distribution over possible choices

1. Edge: finite distribution

Min = #, Max = 2 25/28

How to define stochastic strategies?
(Bertrand, Bouyer, Brihaye, Menet, Baier, Grösser, and Jurdziński 2014)

−2

v0

1

v1

,

a, 0 ⩽ x < 1, x := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0, −1

b
0 ⩽ x ⩽ 1

−10

b
1 ⩽ x ⩽ 2

0

Deterministic strategy
Choose an edge and a delay

In (v1, 0)
Choose a with t = 1

3

Probabilistic strategy
Distribution over possible choices

1. Edge: finite distribution
2. Delay: infinite distribution

Min = #, Max = 2 25/28

How to define stochastic strategies?
(Bertrand, Bouyer, Brihaye, Menet, Baier, Grösser, and Jurdziński 2014)

−2

v0

1

v1

,

a, 0 ⩽ x < 1, x := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0, −1

b
0 ⩽ x ⩽ 1

−10

b
1 ⩽ x ⩽ 2

0

Deterministic strategy
Choose an edge and a delay

In (v1, 0)
Choose a with t = 1

3

Probabilistic strategy
Distribution over possible choices

1. Edge: finite distribution
2. Delay: infinite distribution

In (v1, 0)
Choose between a or b with B(1

2)

Min = #, Max = 2 25/28

How to define stochastic strategies?
(Bertrand, Bouyer, Brihaye, Menet, Baier, Grösser, and Jurdziński 2014)

−2

v0

1

v1

,

a, 0 ⩽ x < 1, x := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0, −1

b
0 ⩽ x ⩽ 1

−10

b
1 ⩽ x ⩽ 2

0

Deterministic strategy
Choose an edge and a delay

In (v1, 0)
Choose a with t = 1

3

Probabilistic strategy
Distribution over possible choices

1. Edge: finite distribution
2. Delay: infinite distribution

In (v1, 0)
Choose between a or b with B(1

2)
▶ a: choose t with U([0, 1[)

Min = #, Max = 2 25/28

How to define stochastic strategies?
(Bertrand, Bouyer, Brihaye, Menet, Baier, Grösser, and Jurdziński 2014)

−2

v0

1

v1

,

a, 0 ⩽ x < 1, x := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0, −1

b
0 ⩽ x ⩽ 1

−10

b
1 ⩽ x ⩽ 2

0

Deterministic strategy
Choose an edge and a delay

In (v1, 0)
Choose a with t = 1

3

Probabilistic strategy
Distribution over possible choices

1. Edge: finite distribution
2. Delay: infinite distribution

In (v1, 0)
Choose between a or b with B(1

2)
▶ a: choose t with U([0, 1[)
▶ b: choose t = 1.5

Min = #, Max = 2 25/28

Trade memory for randomisation
Joint work with J. Parreaux and P.-A. Reynier

Pr
ob

ab
ili

st
ic

D
et

er
m

in
ist

ic

Infinite memoryFinite memoryMemoryless

σ : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic Moore Machine

Moore Machine

σ : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

Val

pVal = infσMin supσMax
EσMin,σMax

c

26/28

Trade memory for randomisation
Joint work with J. Parreaux and P.-A. Reynier

Pr
ob

ab
ili

st
ic

D
et

er
m

in
ist

ic

Infinite memoryFinite memoryMemoryless

σ : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic Moore Machine

Moore Machine

σ : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

Val

pVal = infσMin supσMax
EσMin,σMax

c

26/28

Trade memory for randomisation
Joint work with J. Parreaux and P.-A. Reynier

Pr
ob

ab
ili

st
ic

D
et

er
m

in
ist

ic

Infinite memoryFinite memoryMemoryless

σ : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic Moore Machine

Moore Machine

σ : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

Val

pVal = infσMin supσMax
EσMin,σMax

c

26/28

Trade memory for randomisation
Joint work with J. Parreaux and P.-A. Reynier

Pr
ob

ab
ili

st
ic

D
et

er
m

in
ist

ic

Infinite memoryFinite memoryMemoryless

σ : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic Moore Machine

Moore Machine

σ : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

Val

pVal = infσMin supσMax
EσMin,σMax

c

26/28

Trade memory for randomisation
Joint work with J. Parreaux and P.-A. Reynier

Pr
ob

ab
ili

st
ic

D
et

er
m

in
ist

ic

Infinite memoryFinite memoryMemoryless

σ : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic Moore Machine

Moore Machine

σ : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

Val

pVal = infσMin supσMax
EσMin,σMax

c

Theorem:
Val = pVal = mVal in weighted (untimed) games and in divergent WTG.

26/28

Conclusion

1WTG
exp / ≈ 2-exp
(+) (−)

PSPACE-hard

reset-acyclic 1WTG
pseudo-poly
PSPACE-hard

divergent WTG
2-exp / 3-exp

exp-hard

almost-divergent WTG
approx / approx

elementary complexity

1BiWTG
poly / pseudo-poly

WTG
undec / undec

⩾ 3 clocks / ⩾ 2 clocks

2 clocks?

gap?

gap?gap?

Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi

27/28

Conclusion

1WTG
exp / ≈ 2-exp
(+) (−)

PSPACE-hard

reset-acyclic 1WTG
pseudo-poly
PSPACE-hard

divergent WTG
2-exp / 3-exp

exp-hard

almost-divergent WTG
approx / approx

elementary complexity

1BiWTG
poly / pseudo-poly

WTG
undec / undec

⩾ 3 clocks / ⩾ 2 clocks

2 clocks?

gap?

gap?gap?

Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi

27/28

Conclusion

1WTG
exp / ≈ 2-exp
(+) (−)

PSPACE-hard

reset-acyclic 1WTG
pseudo-poly
PSPACE-hard

divergent WTG
2-exp / 3-exp

exp-hard

almost-divergent WTG
approx / approx

elementary complexity

1BiWTG
poly / pseudo-poly

WTG
undec / undec

⩾ 3 clocks / ⩾ 2 clocks

2 clocks?

gap?

gap?gap?

Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi

27/28

Conclusion

1WTG
exp / ≈ 2-exp
(+) (−)

PSPACE-hard

reset-acyclic 1WTG
pseudo-poly
PSPACE-hard

divergent WTG
2-exp / 3-exp

exp-hard

almost-divergent WTG
approx / approx

elementary complexity

1BiWTG
poly / pseudo-poly

WTG
undec / undec

⩾ 3 clocks / ⩾ 2 clocks

2 clocks?

gap?

gap?gap?

Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi

27/28

Conclusion

1WTG
exp / ≈ 2-exp
(+) (−)

PSPACE-hard

reset-acyclic 1WTG
pseudo-poly
PSPACE-hard

divergent WTG
2-exp / 3-exp

exp-hard

almost-divergent WTG
approx / approx

elementary complexity

1BiWTG
poly / pseudo-poly

WTG
undec / undec

⩾ 3 clocks / ⩾ 2 clocks

2 clocks?

gap?

gap?gap?

Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi

27/28

Conclusion

1WTG
exp / ≈ 2-exp
(+) (−)

PSPACE-hard

reset-acyclic 1WTG
pseudo-poly
PSPACE-hard

divergent WTG
2-exp / 3-exp

exp-hard

almost-divergent WTG
approx / approx

elementary complexity

1BiWTG
poly / pseudo-poly

WTG
undec / undec

⩾ 3 clocks / ⩾ 2 clocks

2 clocks?

gap?

gap?gap?

Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi

27/28

Conclusion

1WTG
exp / ≈ 2-exp
(+) (−)

PSPACE-hard

reset-acyclic 1WTG
pseudo-poly
PSPACE-hard

divergent WTG
2-exp / 3-exp

exp-hard

almost-divergent WTG
approx / approx

elementary complexity

1BiWTG
poly / pseudo-poly

WTG
undec / undec

⩾ 3 clocks / ⩾ 2 clocks

2 clocks?

gap?

gap?gap?

Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi

27/28

Conclusion

1WTG
exp / ≈ 2-exp
(+) (−)

PSPACE-hard

reset-acyclic 1WTG
pseudo-poly
PSPACE-hard

divergent WTG
2-exp / 3-exp

exp-hard

almost-divergent WTG
approx / approx

elementary complexity

1BiWTG
poly / pseudo-poly

WTG
undec / undec

⩾ 3 clocks / ⩾ 2 clocks

2 clocks?

gap?

gap?gap?

Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi

27/28

Conclusion

1WTG
exp / ≈ 2-exp
(+) (−)

PSPACE-hard

reset-acyclic 1WTG
pseudo-poly
PSPACE-hard

divergent WTG
2-exp / 3-exp

exp-hard

almost-divergent WTG
approx / approx

elementary complexity

1BiWTG
poly / pseudo-poly

WTG
undec / undec

⩾ 3 clocks / ⩾ 2 clocks

2 clocks?

gap?

gap?gap?

Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi

27/28

Perspectives

Poly-time algorithms in weighted games

Uta stansburiana - The side-blotched lizard

The populations for these lizards cycle on a six year basis.

When he read that lizards of the species Uta stansburia

were essentially engaged in a game with rock-paper-scissors

structure John Maynard Smith exclaimed :

They have read my book!

Other dynamics

Evolutionary game theory on graphs

Play with less visibility:
▶ robustness to environmental perturbations
▶ randomisation with interval of delays
▶ incomplete information

28/28

Perspectives

Poly-time algorithms in weighted games

Uta stansburiana - The side-blotched lizard

The populations for these lizards cycle on a six year basis.

When he read that lizards of the species Uta stansburia

were essentially engaged in a game with rock-paper-scissors

structure John Maynard Smith exclaimed :

They have read my book!

Other dynamics

Evolutionary game theory on graphs

Play with less visibility:
▶ robustness to environmental perturbations
▶ randomisation with interval of delays
▶ incomplete information

28/28

Perspectives

Poly-time algorithms in weighted games

Uta stansburiana - The side-blotched lizard

The populations for these lizards cycle on a six year basis.

When he read that lizards of the species Uta stansburia

were essentially engaged in a game with rock-paper-scissors

structure John Maynard Smith exclaimed :

They have read my book!

Other dynamics

Evolutionary game theory on graphs

Play with less visibility:
▶ robustness to environmental perturbations
▶ randomisation with interval of delays
▶ incomplete information

28/28

Appendix

Case study

Example of divergent weighted game

Region and corner-point abstractions

1-clock Bi-WTGs

Bounding the number of resets needed to solve 1-clock WTGs is not easy

Randomisation emulates memory

Back to appendix

Case study

Peak-hour Offpeak-hour

Solar panels

15 c€/kWh 12 c€/kWh

Reselling: 20 c€/kWh

rate: total power × 15 c€/h total power × 12 c€/h

−0.5 × 20 c€/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1: discretisation of time, resolution via a weighted game
Solution 2: thin time behaviours, resolution via a weighted timed game
Solution 3: allow for randomisation in the behaviours?

Back to appendix

Case study

Peak-hour Offpeak-hour

Solar panels

15 c€/kWh 12 c€/kWh

Reselling: 20 c€/kWh

rate: total power × 15 c€/h total power × 12 c€/h

−0.5 × 20 c€/h

states to record which device is on/off: computation of the total power

Power consumption:

▶ 100W (1.5 c€/h in peak-hour, 1.2 c€/h in offpeak-hour)

▶ 2500W (37.5 c€/h in peak-hour, 30 c€/h in offpeak-hour)

▶ 2000W (24 c€/h in offpeak-hour)

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1: discretisation of time, resolution via a weighted game
Solution 2: thin time behaviours, resolution via a weighted timed game
Solution 3: allow for randomisation in the behaviours?

Back to appendix

Case study

Peak-hour Offpeak-hour Solar panels

15 c€/kWh 12 c€/kWh Reselling: 20 c€/kWh
rate: total power × 15 c€/h total power × 12 c€/h −0.5 × 20 c€/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1: discretisation of time, resolution via a weighted game
Solution 2: thin time behaviours, resolution via a weighted timed game
Solution 3: allow for randomisation in the behaviours?

Back to appendix

Case study

Peak-hour Offpeak-hour Solar panels

15 c€/kWh 12 c€/kWh Reselling: 20 c€/kWh
rate: total power × 15 c€/h total power × 12 c€/h −0.5 × 20 c€/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1: discretisation of time, resolution via a weighted game
Solution 2: thin time behaviours, resolution via a weighted timed game
Solution 3: allow for randomisation in the behaviours?

Back to appendix

Case study

Peak-hour Offpeak-hour Solar panels

15 c€/kWh 12 c€/kWh Reselling: 20 c€/kWh
rate: total power × 15 c€/h total power × 12 c€/h −0.5 × 20 c€/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1: discretisation of time, resolution via a weighted game
Solution 2: thin time behaviours, resolution via a weighted timed game
Solution 3: allow for randomisation in the behaviours?

Back to appendix

Case study

Peak-hour Offpeak-hour Solar panels

15 c€/kWh 12 c€/kWh Reselling: 20 c€/kWh
rate: total power × 15 c€/h total power × 12 c€/h −0.5 × 20 c€/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1: discretisation of time, resolution via a weighted game
Solution 2: thin time behaviours, resolution via a weighted timed game
Solution 3: allow for randomisation in the behaviours?

Back to appendix

Example of divergent weighted game

,v1

v2

v3

v4

v5
v6

v7

v8

v9

−1
−1

−1

−10

−1

1

1

−1

−12

Min = #, Max = 2
Back to appendix

Example of divergent weighted game

+∞

+∞

,v1

v2

v3

v4

v5
v6

v7

v8

v9

−1
−1

−1

−10

−1

1

1

−1

−12

Min = #, Max = 2
Back to appendix

Example of divergent weighted game

+∞

+∞

+∞

+∞

,v1

v2

v3

v4

v5
v6

v7

v8

v9

−1
−1

−1

−10

−1

1

1

−1

−12

Min = #, Max = 2
Back to appendix

Example of divergent weighted game

+∞

+∞

0

+∞

,v1

v2

v3

v4

v5
v6

v7

v8

v9

−1
−1

−1

−10

−1

1

1

−1

−12

Min = #, Max = 2
Back to appendix

Example of divergent weighted game

+∞

+∞

0

2

,v1

v2

v3

v4

v5
v6

v7

v8

v9

−1
−1

−1

−10

−1

1

1

−1

−12

Min = #, Max = 2
Back to appendix

Example of divergent weighted game

+∞

1

+∞

0

2

,v1

v2

v3

v4

v5
v6

v7

v8

v9

−1
−1

−1

−10

−1

1

1

−1

−12

Min = #, Max = 2
Back to appendix

Example of divergent weighted game

+∞

1

1

+∞

0

2

,v1

v2

v3

v4

v5
v6

v7

v8

v9

−1
−1

−1

−10

−1

1

1

−1

−12

Min = #, Max = 2
Back to appendix

Example of divergent weighted game

−∞ −∞

−∞

+∞

1

1

+∞

0

2

,v1

v2

v3

v4

v5
v6

v7

v8

v9

−1
−1

−1

−10

−1

1

1

−1

−12

Min = #, Max = 2
Back to appendix

Example of divergent weighted game

−∞ −9

−∞

+∞

1

1

+∞

0

2

,v1

v2

v3

v4

v5
v6

v7

v8

v9

−1
−1

−1

−10

−1

1

1

−1

−12

Min = #, Max = 2
Back to appendix

Example of divergent weighted game

−∞ −9

−9

+∞

1

1

+∞

0

2

,v1

v2

v3

v4

v5
v6

v7

v8

v9

−1
−1

−1

−10

−1

1

1

−1

−12

Min = #, Max = 2
Back to appendix

A fundamental tool: region abstraction

Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ⇠ c with c 2 {0, 1, 2}
y ⇠ c with c 2 {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; an equivalence of finite index

a time-abstract bisimulation

23/100

▶ compatibility between regions and guards
▶ compatibility between regions and delays
▶ → equivalence relation of finite index

Min = #, Max = 2
Back to appendix

A fundamental tool: region abstraction

Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ⇠ c with c 2 {0, 1, 2}
y ⇠ c with c 2 {0, 1, 2}

The path
x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; an equivalence of finite index

a time-abstract bisimulation

23/100

▶ compatibility between regions and guards

▶ compatibility between regions and delays
▶ → equivalence relation of finite index

Min = #, Max = 2
Back to appendix

A fundamental tool: region abstraction

Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ⇠ c with c 2 {0, 1, 2}
y ⇠ c with c 2 {0, 1, 2}

The path
x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints
“compatibility” between regions and time elapsing

; an equivalence of finite index

a time-abstract bisimulation

23/100

▶ compatibility between regions and guards
▶ compatibility between regions and delays

▶ → equivalence relation of finite index

Min = #, Max = 2
Back to appendix

A fundamental tool: region abstraction

Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ⇠ c with c 2 {0, 1, 2}
y ⇠ c with c 2 {0, 1, 2}

The path
x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints
“compatibility” between regions and time elapsing

; an equivalence of finite index

a time-abstract bisimulation

23/100

▶ compatibility between regions and guards
▶ compatibility between regions and delays

▶ → equivalence relation of finite index

Min = #, Max = 2
Back to appendix

A fundamental tool: region abstraction
Introduction Decidability Implementation Other problems Timed control Conclusion

Regions Extensions WTA

The region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ⇠ c with c 2 {0, 1, 2}
y ⇠ c with c 2 {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints
“compatibility” between regions and time elapsing

; an equivalence of finite index

a time-abstract bisimulation

23/100

▶ compatibility between regions and guards
▶ compatibility between regions and delays

▶ → equivalence relation of finite index

Min = #, Max = 2
Back to appendix

A fundamental tool: region abstraction
Introduction Decidability Implementation Other problems Timed control Conclusion

Regions Extensions WTA

The region abstraction

clock x

clock y

0
0

1

1

2

2

0
0

1

1

2

2

clock y

clock x

only constraints: x ⇠ c with c 2 {0, 1, 2}
y ⇠ c with c 2 {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints
“compatibility” between regions and time elapsing

; an equivalence of finite index

a time-abstract bisimulation

23/100

▶ compatibility between regions and guards
▶ compatibility between regions and delays
▶ → equivalence relation of finite index

Min = #, Max = 2
Back to appendix

A fundamental tool: region abstraction

Min = #, Max = 2
Back to appendix

A fundamental tool: region abstraction

Min = #, Max = 2
Back to appendix

A fundamental tool: region abstraction

Min = #, Max = 2
Back to appendix

Corner-point abstraction
▶ Main tool to solve one-player WTG: refinement of regions via corner

point abstraction / ε-graph (Bouyer, Brinksma, and Larsen 2004; Bouyer,
Brihaye, Bruyère, and Raskin 2007)

– ν ≈ ν′;
– ν̄i < ε iff ν̄′

i < ε for all i ∈ {1, . . . , n} with νi ≤ ci;
– 1 − ε < ν̄i iff 1 − ε < ν̄′

i for all i ∈ {1, . . . , n} with νi ≤ ci.

Fig. 6 indicates the partition induced by the ε-equivalence for the timed automaton of Fig. 2.

x1

x2

Fig. 6. The ε-equivalence ≈ε

The relation ≈ε is extended to the states of TA as done previously with ≈. An equivalence class is called an
ε-region. The ε-region to which a state q belongs is denoted [q]ε and the set of all ε-regions is denoted by Rε.

In order to define the ε-region graph of a timed automatonA, we do not need all the ε-regions of Rε (contrarily to
the construction of RA). Due to Lemma 3, we only need to consider the ε-regions [(l, ν)]ε whose clock values ν are
close enough to n-tuples of integers (the dashed zones on Fig. 6).

Definition 12. Given a timed automatonA and ε ∈]0, 1
2], the set of acceptable ε-regions, denoted Sε, is defined by

Sε =
{
[(l, ν)]ε | ∀i ∈ {1, . . . , n} : νi ≤ ci ⇒ (ν̄i < ε or 1 − ε < ν̄i)

}
.

Remark 14. If rε = [(l, ν)]ε is an ε-region of Sε, then there exists a unique region r ∈ R, equal to [(l, ν)], such that
rε ⊆ r. In the sequel, rε always denotes an ε-region included in the region r.13

Remark 15. Using the representation introduced in Remark 5, we can visualize an ε-region rε as on Fig. 7 (when r
is a bounded region). We observe that the fractional parts ν̄i of the clock values are either less than ε or greater than
1 − ε. We thus introduce the following notation14

Low(rε) = {xi | νi ≤ ci and ν̄i < ε};

High(rε) = {xi | νi ≤ ci and 1 − ε < ν̄i}.

This graphical representation of the ε-regions is very helpful in the proofs below.

0 1

ν̄1 · · · ν̄i ν̄i+1 · · · ν̄n

ε 1 − ε

Fig. 7. Representation of the region 0 < ν̄1 < · · · < ν̄i < ε ≤ 1 − ε < ν̄i+1 < · · · < ν̄n

13 Similarly if δ ≤ ε, we will also use notation rδ , rε, r with rδ ⊆ rε ⊆ r.
14 Notice that the sets Low(rε) and High(rε) are disjoint since ε ≤ 1

2
.

15

Min = #, Max = 2
Back to appendix

One-clock Bi-WTGs (1BiWTGs)
Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi
Weights of locations {p−, p+} included in {0, +d , −d}, d ∈ N

1 v1[x ⩽ 1]

1
v2

[x ⩽ 2]
−1

v3

[x ⩽ 2]

−1
v4

[x ⩽ 2]
1
v5

[x ⩽ 2]

, v6

x > 0
x := 0, 0

x ⩽ 1, 1

x ⩽ 2, 0

x < 1, x := 0, 0

x > 1, 1

x ⩾ 1
x := 0, 0

x ⩾ 1
x := 0, 0

x ⩾ 1, 2

Min = #, Max = 2
Back to appendix

One-clock Bi-WTGs (1BiWTGs)
Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi
Weights of locations {p−, p+} included in {0, +d , −d}, d ∈ N

1 v1[x ⩽ 1]

1
v2

[x ⩽ 2]
−1

v3

[x ⩽ 2]

−1
v4

[x ⩽ 2]
1
v5

[x ⩽ 2]

, v6

x > 0
x := 0, 0

x ⩽ 1, 1

x ⩽ 2, 0

x < 1, x := 0, 0

x > 1, 1

x ⩾ 1
x := 0, 0

x ⩾ 1
x := 0, 0

x ⩾ 1, 2

Region abstraction:

0 1 2(0, 1) (1, 2) (2, +∞)

Min = #, Max = 2
Back to appendix

One-clock Bi-WTGs (1BiWTGs)
Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi
Weights of locations {p−, p+} included in {0, +d , −d}, d ∈ N

1 v1[x ⩽ 1]

1
v2

[x ⩽ 2]
−1

v3

[x ⩽ 2]

−1
v4

[x ⩽ 2]
1
v5

[x ⩽ 2]

, v6

x > 0
x := 0, 0

x ⩽ 1, 1

x ⩽ 2, 0

x < 1, x := 0, 0

x > 1, 1

x ⩾ 1
x := 0, 0

x ⩾ 1
x := 0, 0

x ⩾ 1, 2

Corner-point abstraction:

0 1 2(0, 1) (1, 2) (2, +∞)

Min = #, Max = 2
Back to appendix

One-clock Bi-WTGs (1BiWTGs)
Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi
Weights of locations {p−, p+} included in {0, +d , −d}, d ∈ N

1 v1[x ⩽ 1]

1
v2

[x ⩽ 2]
−1

v3

[x ⩽ 2]

−1
v4

[x ⩽ 2]
1
v5

[x ⩽ 2]

, v6

x > 0
x := 0, 0

x ⩽ 1, 1

x ⩽ 2, 0

x < 1, x := 0, 0

x > 1, 1

x ⩾ 1
x := 0, 0

x ⩾ 1
x := 0, 0

x ⩾ 1, 2

{0}

{0} [0, η] [1−η, 1) [1, 1+η] [2−η, 2]

{0} (0, η] [1−η, 1) {1} {0}

,

0

1 1
2

2

0 1

1
2

0
0

0

1 1 1

0
0

−1
−1

1

3

0 1 2(0, 1) (1, 2) (2, +∞)

Min = #, Max = 2
Back to appendix

One-clock Bi-WTGs (1BiWTGs)
Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi
Weights of locations {p−, p+} included in {0, +d , −d}, d ∈ N

1 v1[x ⩽ 1]

1
v2

[x ⩽ 2]
−1

v3

[x ⩽ 2]

−1
v4

[x ⩽ 2]
1
v5

[x ⩽ 2]

, v6

x > 0
x := 0, 0

x ⩽ 1, 1

x ⩽ 2, 0

x < 1, x := 0, 0

x > 1, 1

x ⩾ 1
x := 0, 0

x ⩾ 1
x := 0, 0

x ⩾ 1, 2

{0}

{0} [0, η] [1−η, 1) [1, 1+η] [2−η, 2]

{0} (0, η] [1−η, 1) {1} {0}

,

0

1 1
2

2

0 1

1
2

0
0

0

1 1 1

0
0

−1
−1

1

3

0 1 2(0, 1) (1, 2) (2, +∞)

Theorem:
Computation of the values of a 1BiWTG and synthesis of ε-optimal strate-
gies in pseudo-polynomial time (polynomial time if ⩾ 0 weights only).

Min = #, Max = 2
Back to appendix

1BiWTG: maximal fragment for corner-point abstraction

Generalisation by E. Lefaucheux: two rates {p−, p+} included in
{0, +d , −c} (d , c ∈ N)
In more general settings, players may need to play far from corners...

▶ With 3 weights in {−1, 0, +1}: value 1/2...

0 1
−1

−1
,x ⩽ 1

x = 1, x := 0

x ⩽ 1 x = 1

x = 1

▶ With 2 weights in {−1, 0, +1} but 2 clocks: value 1/2...

0 0
1

0

0

1
,x ⩽ 1, y := 0

y = 0

y = 0

x = 1

x = 1

y = 1

y = 1

Min = #, Max = 2
Back to appendix

1BiWTG: maximal fragment for corner-point abstraction

Generalisation by E. Lefaucheux: two rates {p−, p+} included in
{0, +d , −c} (d , c ∈ N)
In more general settings, players may need to play far from corners...

▶ With 3 weights in {−1, 0, +1}: value 1/2...

0 1
−1

−1
,x ⩽ 1

x = 1, x := 0

x ⩽ 1 x = 1

x = 1

▶ With 2 weights in {−1, 0, +1} but 2 clocks: value 1/2...

0 0
1

0

0

1
,x ⩽ 1, y := 0

y = 0

y = 0

x = 1

x = 1

y = 1

y = 1

Min = #, Max = 2
Back to appendix

Bounding the number of resets needed is not easy

−1 0

1

,

x = 1, x := 0

W

x ⩽ 1

x = 1

Player # can guarantee (i.e., ensure to be below) value ε for all ε > 0...

... but cannot obtain 0: hence, no optimal strategy...

... moreover, to obtain ε, # needs to loop at least W + ⌈1/ log ε⌉ times
before reaching ,

Min = #, Max = 2
Back to appendix

Bounding the number of resets needed is not easy

−1 0

1

,

x = 1, x := 0

W

x ⩽ 1

x = 1

Player # can guarantee (i.e., ensure to be below) value ε for all ε > 0...

... but cannot obtain 0: hence, no optimal strategy...

... moreover, to obtain ε, # needs to loop at least W + ⌈1/ log ε⌉ times
before reaching ,

Min = #, Max = 2
Back to appendix

Bounding the number of resets needed is not easy

−1 0

1

,

x = 1, x := 0

W

x ⩽ 1

x = 1

Player # can guarantee (i.e., ensure to be below) value ε for all ε > 0...

... but cannot obtain 0: hence, no optimal strategy...

... moreover, to obtain ε, # needs to loop at least W + ⌈1/ log ε⌉ times
before reaching ,

Min = #, Max = 2
Back to appendix

Bounding the number of resets needed is not easy

−1 0

1

,

x = 1, x := 0

W

x ⩽ 1

x = 1

Player # can guarantee (i.e., ensure to be below) value ε for all ε > 0...

... but cannot obtain 0: hence, no optimal strategy...

... moreover, to obtain ε, # needs to loop at least W + ⌈1/ log ε⌉ times
before reaching ,

Min = #, Max = 2
Back to appendix

Randomisation emulates memory
Let (σ1

Min, σ2
Min, K) be an optimal switching strategy,

for all p ∈ (0, 1),
ηp = p × σ1

Min + (1 − p) × σ2
Min

,

−1

−10

0

0

p, 0

1 − p, 0

▶ For all σMax, Pηp ,σMax
v (⋄,) = 1

▶ For all σMax, Eηp ,σMax
v < ∞

▶ Max has a best response σMax
memoryless and deterministic

Min = #, Max = 2
Back to appendix

Randomisation emulates memory
Let (σ1

Min, σ2
Min, K) be an optimal switching strategy,

for all p ∈ (0, 1),
ηp = p × σ1

Min + (1 − p) × σ2
Min

,

−1

−10

0

0

p, 0

1 − p, 0

▶ For all σMax, Pηp ,σMax
v (⋄,) = 1

▶ For all σMax, Eηp ,σMax
v < ∞

▶ Max has a best response σMax
memoryless and deterministic

Min = #, Max = 2
Back to appendix

Randomisation emulates memory
Let (σ1

Min, σ2
Min, K) be an optimal switching strategy, for all p ∈ (0, 1),

ηp = p × σ1
Min + (1 − p) × σ2

Min

,

−1

−10

0

0

p, 0

1 − p, 0

▶ For all σMax, Pηp ,σMax
v (⋄,) = 1

▶ For all σMax, Eηp ,σMax
v < ∞

▶ Max has a best response σMax
memoryless and deterministic

Min = #, Max = 2
Back to appendix

Randomisation emulates memory
Let (σ1

Min, σ2
Min, K) be an optimal switching strategy, for all p ∈ (0, 1),

ηp = p × σ1
Min + (1 − p) × σ2

Min

,

−1

−10

0

0

p, 0

1 − p, 0

▶ For all σMax, Pηp ,σMax
v (⋄,) = 1

▶ For all σMax, Eηp ,σMax
v < ∞

▶ Max has a best response σMax
memoryless and deterministic

Min = #, Max = 2
Back to appendix

Randomisation emulates memory
Let (σ1

Min, σ2
Min, K) be an optimal switching strategy, for all p ∈ (0, 1),

ηp = p × σ1
Min + (1 − p) × σ2

Min

,

−1

−10

0

0

p, 0

1 − p, 0

▶ For all σMax, Pηp ,σMax
v (⋄,) = 1

▶ For all σMax, Eηp ,σMax
v < ∞

▶ Max has a best response σMax
memoryless and deterministic

9/10 1 pmValη
p
(#)

0

−9
−10

−10p

−p
1−p

Min = #, Max = 2
Back to appendix

Randomisation emulates memory
Let (σ1

Min, σ2
Min, K) be an optimal switching strategy, for all p ∈ (0, 1),

ηp = p × σ1
Min + (1 − p) × σ2

Min

,

−1

−10

0

0

p, 0

1 − p, 0

▶ For all σMax, Pηp ,σMax
v (⋄,) = 1

▶ For all σMax, Eηp ,σMax
v < ∞

▶ Max has a best response σMax
memoryless and deterministic

9/10 1 pmValη
p
(#)

0

−9
−10

−10p

−p
1−p

Min = #, Max = 2
Back to appendix

Randomisation emulates memory
Let (σ1

Min, σ2
Min, K) be an optimal switching strategy, for all p ∈ (0, 1),

ηp = p × σ1
Min + (1 − p) × σ2

Min

,

−1

−10

0

0

p, 0

1 − p, 0

▶ For all σMax, Pηp ,σMax
v (⋄,) = 1

▶ For all σMax, Eηp ,σMax
v < ∞

▶ Max has a best response σMax
memoryless and deterministic

9/10 1 pmValη
p
(#)

0

−9
−10

+∞

−10p

−p
1−p

Min = #, Max = 2
Back to appendix

Randomisation emulates memory
Let (σ1

Min, σ2
Min, K) be an optimal switching strategy, for all p ∈ (0, 1),

ηp = p × σ1
Min + (1 − p) × σ2

Min

,

−1

−10

0

0

p, 0

1 − p, 0

▶ For all σMax, Pηp ,σMax
v (⋄,) = 1

▶ For all σMax, Eηp ,σMax
v < ∞

▶ Max has a best response σMax
memoryless and deterministic

9/10 1 pmValη
p
(#)

0

−9
−10

+∞

−10p

−p
1−p

Min = #, Max = 2
Back to appendix

Randomisation emulates memory
Let (σ1

Min, σ2
Min, K) be an optimal switching strategy, for all p ∈ (0, 1),

ηp = p × σ1
Min + (1 − p) × σ2

Min

,

−1

−10

0

0

p, 0

1 − p, 0

▶ For all σMax, Pηp ,σMax
v (⋄,) = 1

▶ For all σMax, Eηp ,σMax
v < ∞

▶ Max has a best response σMax
memoryless and deterministic

9/10 1 pmValη
p
(#)

0

−9
−10

+∞

−10p

−p
1−p

Min = #, Max = 2
Back to appendix

Randomisation emulates memory
Let (σ1

Min, σ2
Min, K) be an optimal switching strategy, for all p ∈ (0, 1),

ηp = p × σ1
Min + (1 − p) × σ2

Min

−10 −10

,
0

−1

−10

0

0

p, 0

1 − p, 0

▶ For all σMax, Pηp ,σMax
v (⋄,) = 1

▶ For all σMax, Eηp ,σMax
v < ∞

▶ Max has a best response σMax
memoryless and deterministic

9/10 1 pmValη
p
(#)

0

−9
−10

+∞

−10p

−p
1−p

lim
p→1
p<1

mValη
p
⩽ Val

Min = #, Max = 2
Back to appendix

References I

Alur, Rajeev, Mikhail Bernadsky, and P. Madhusudan (2004).
“Optimal Reachability for Weighted Timed Games”. In: Proceedings
of the 31st International Colloquium on Automata, Languages and
Programming (ICALP’04). Vol. 3142. LNCS. Springer, pp. 122–133.
Bertrand, Nathalie, Patricia Bouyer, Thomas Brihaye,

Quentin Menet, Christel Baier, Marcus Grösser, and
Marcin Jurdziński (2014). “Stochastic Timed Automata”. In: Log.
Methods Comput. Sci. 10.4.
Bouyer, Patricia, Thomas Brihaye, Véronique Bruyère, and

Jean-François Raskin (2007). “On the Optimal Reachability Problem
of Weighted Timed Automata”. In: Formal Methods in System
Design 31.2, pp. 135–175.
Bouyer, Patricia, Thomas Brihaye, and Nicolas Markey (2006).

“Improved Undecidability Results on Weighted Timed Automata”. In:
Information Processing Letters 98.5, pp. 188–194.
Bouyer, Patricia, Ed Brinksma, and Kim G. Larsen (2004). “Staying

Alive as Cheaply as Possible”. In: Hybrid Systems: Computation and
Control. Springer, pp. 203–218.

References II

Bouyer, Patricia, Franck Cassez, Emmanuel Fleury, and
Kim G. Larsen (2004). “Optimal Strategies in Priced Timed Game
Automata”. In: Proceedings of the 24th Conference on Foundations
of Software Technology and Theoretical Computer Science
(FSTTCS’04). Vol. 3328. LNCS. Springer, pp. 148–160.
Bouyer, Patricia, Samy Jaziri, and Nicolas Markey (2015). “On the

Value Problem in Weighted Timed Games”. In: Proceedings of the
26th International Conference on Concurrency Theory (CONCUR’15).
Vol. 42. Leibniz International Proceedings in Informatics.
Leibniz-Zentrum für Informatik, pp. 311–324. doi:
10.4230/LIPIcs.CONCUR.2015.311.
Bouyer, Patricia, Kim G. Larsen, Nicolas Markey, and

Jacob Illum Rasmussen (2006). “Almost Optimal Strategies in
One-Clock Priced Timed Games”. In: Proceedings of the 26th
Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’06). Vol. 4337. Lecture Notes in
Computer Science. Springer, pp. 345–356.

https://doi.org/10.4230/LIPIcs.CONCUR.2015.311

References III

Brihaye, Thomas, Véronique Bruyère, and Jean-François Raskin
(2005). “On Optimal Timed Strategies”. In: Proceedings of the Third
international conference on Formal Modeling and Analysis of Timed
Systems (FORMATS’05). Vol. 3829. Lecture Notes in Computer
Science. Springer, pp. 49–64.
Brihaye, Thomas, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux,

and Benjamin Monmege (2015). “Simple Priced Timed Games Are
Not That Simple”. In: Proceedings of the 35th IARCS Annual
Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’15). Vol. 45. LIPIcs. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, pp. 278–292.
Brihaye, Thomas, Gilles Geeraerts, Axel Haddad, and

Benjamin Monmege (2016). “Pseudopolynomial Iterative Algorithm
to Solve Total-Payoff Games and Min-Cost Reachability Games”. In:
Acta Informatica. doi: 10.1007/s00236-016-0276-z.

https://doi.org/10.1007/s00236-016-0276-z

References IV

Brihaye, Thomas, Gilles Geeraerts, Shankara Narayanan Krishna,
Lakshmi Manasa, Benjamin Monmege, and Ashutosh Trivedi (2014).
“Adding Negative Prices to Priced Timed Games”. In: Proceedings of
the 25th International Conference on Concurrency Theory
(CONCUR’14). Vol. 8704. Springer, pp. 560–575. doi:
10.1007/978-3-662-44584-6_38.
Busatto-Gaston, Damien, Benjamin Monmege, and

Pierre-Alain Reynier (Apr. 2017). “Optimal Reachability in Divergent
Weighted Timed Games”. In: Proceedings of the 20th International
Conference on Foundations of Software Science and Computation
Structures (FoSSaCS’17). Ed. by Javier Esparza and
Andrzej S. Murawski. Vol. 10203. Lecture Notes in Computer
Science. Uppsala, Sweden: Springer, pp. 162–178. doi:
10.1007/978-3-662-54458-7_10.

https://doi.org/10.1007/978-3-662-44584-6_38
https://doi.org/10.1007/978-3-662-54458-7_10

References V

Fearnley, John, Rasmus Ibsen-Jensen, and Rahul Savani (2020).
“One-Clock Priced Timed Games are PSPACE-hard”. In: Proceedings
of the 35th Annual ACM/IEEE Symposium on Logic in Computer
Sciences (LICS’20). ACM, pp. 397–409. doi:
10.1145/3373718.3394772.
Fearnley, John and Marcin Jurdziński (2013). “Reachability in

Two-Clock Timed Automata Is PSPACE-Complete”. In: Proceedings
of ICALP’13. Vol. 7966. Lecture Notes in Computer Science.
Springer, pp. 212–223.
Haase, Christoph, Joël Ouaknine, and James Worrell (2012). “On

the Relationship Between Reachability Problems in Timed and
Counter Automata”. In: Proceedings of RP’12, pp. 54–65.
Hansen, Thomas Dueholm, Rasmus Ibsen-Jensen, and

Peter Bro Miltersen (2013). “A Faster Algorithm for Solving
One-Clock Priced Timed Games”. In: Proceedings of the 24th
International Conference on Concurrency Theory (CONCUR’13).
Vol. 8052. LNCS. Springer, pp. 531–545.

https://doi.org/10.1145/3373718.3394772

References VI
Khachiyan, Leonid, Endre Boros, Konrad Borys, Khaled Elbassioni,

Vladimir Gurvich, Gabor Rudolf, and Jihui Zhao (2008). “On Short
Paths Interdiction Problems: Total and Node-Wise Limited
Interdiction”. In: Theory of Computing Systems 43.2, pp. 204–233.
doi: 10.1007/s00224-007-9025-6.
Monmege, Benjamin, Julie Parreaux, and Pierre-Alain Reynier (Sept.

2020). “Reaching Your Goal Optimally by Playing at Random with
No Memory”. In: Proceedings of the 31st International Conference on
Concurrency Theory (CONCUR 2020). Ed. by Igor Konnov and
Laura Kovács. Vol. 171. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 26:1–26:21. doi: 10.4230/LIPIcs.CONCUR.2020.26.
Monmege, Benjamin, Julie Parreaux, and Pierre-Alain Reynier

(2021). “Playing Stochastically in Weighted Timed Games to
Emulate Memory”. In: 48th International Colloquium on Automata,
Languages, and Programming (ICALP 2021). Ed. by Nikhil Bansal,
Emanuela Merelli, and James Worrell. Vol. 198. Leibniz International
Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 137:1–137:17. doi:
10.4230/LIPIcs.ICALP.2021.137.

https://doi.org/10.1007/s00224-007-9025-6
https://doi.org/10.4230/LIPIcs.CONCUR.2020.26
https://doi.org/10.4230/LIPIcs.ICALP.2021.137

References VII

Rutkowski, Michał (2011). “Two-Player Reachability-Price Games on
Single-Clock Timed Automata”. In: Proceedings of the Ninth
Workshop on Quantitative Aspects of Programming Languages
(QAPL’11). Vol. 57. Electronic Proceedings in Theoretical Computer
Science, pp. 31–46.

	Case study
	Example of divergent weighted game
	Region and corner-point abstractions
	1-clock Bi-WTGs
	Bounding the number of resets needed to solve 1-clock WTGs is not easy
	Randomisation emulates memory
	References

