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Methodology
i

|[Environment| || |Controller??| =  Specif

Two-player game

Real-time requirements/environment = real-time controller

Two-player timed game

Among all valid controllers, choose a cheap/efficient one

Two-player weighted timed game

Production/consumption of resources: negative weights
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Weighted games

0
v2 0 3 Weighted graph with
O—' ) vertices partitioned between
2 players
© v + reachability objective

1
V1l>V4:>V5:>V4i>Vsi>©
1 +1 +2 =4

V14V21>V3Q>V39>V3
= 400 (© not reached)

) +00 if © not reached
Weight of a path: i i i
total weight until ®  otherwise

Min = O, Max = 0O
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Strategies and objectives

0

V3

V2
: O
0 1
Vi @ 3
1 v \i/cv.s)/
1
Strategy for a player: map finite executions to the transition to fire

Objective of player O: reach ® and minimise the weight
Objective of player O: avoid © or, if not possible, maximise the weight

Main object of interest:
Val(v) = inf sup  Weight(Exec(v, omin, omax)) € Z U {£o0}

OMin €StratMin OMax €StratMax
What weight can players guarantee? Following which strategies?

Min = O, Max = 0 7/28
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State of the art

» one-player: shortest path in a weighted graph... polynomial algo.

> two players, > 0 weights: polynomial algo.
(Khachiyan, Boros, Borys, Elbassioni, Gurvich, Rudolf, and Zhao 2008)

> two players, arbitrary weights?

-1

» Value —oo: detection is as hard as solving parity games
(NP Nco-NP)

» O needs memory

Min = O, Max = 0O 8/28
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Pseudo-polynomial time algorithm

Joint work with T. Brihaye, G. Geeraerts and A. Haddad
Value iteration algorithm: compute F'(400)...

min Weight(e) + x,-
iy, - d eeiee (VB T x)
Y max__ (Weight(e) + x,/)

e=(v,a,v/)EE

horizon 0:
horizon 1:
horizon 2:
horizon 3:
horizon 4:

horizon 2W + 1:
horizon 2W + 2:

Theorem:

We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies: O may require (pseudo-polynomial) memory

if v.€ Win
if v € Vax
O O
+oo 400
+00 0

-1 0

-1 -1
-2 -1
-w -w
-w W

to play optimally, O has optimal memoryless strategy.

Min = O, Max = 0O

strategy of O

9/28



Large polynomial fragment: divergent weighted games
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Joint work with D. Busatto-Gaston and P.-A. Reynier

Divergence property (in the underlying graph):
Every cycle has total weight either < —1or > 1

Characterisation: all the simple cycles of an SCC have the same sign

Theorem:

Deciding if a weighted game is divergent is in PTIME.

We can compute in polynomial time the value of a divergent weighted
game, as well as optimal strategies for both players.

» Value computation SCC by SCC, bottom-up
» in positive SCC, the "value iteration" algo converges in linear time
» in negative SCC, detection of vertices of value —oo in polynomial

time, and then the "value iteration" algo converges in linear time
with initialisation at —oo

10/28
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Weighted timed games

x <1

Timed automaton with
vertices partitioned between
2 players

+ reachability objective

+ linear weights on vertices
+ discrete weights on

transitions
0.4, 0.6,— 1.5,+ 1.1,— 2, N
(v1,0) 2% (1, 0.9) (vs,0) (va,0) (v5,0)275(@, 2)
1x0.4+1 —3x0.640 +1x1.540 —3x1.140 +1x2+2 =138
0.2, " 0.9,— 0.2, 0.9,
(v1,0) (v2,0) (v3,0.9) (v3,0) (v3,0)
1x0.2+0 +2x0.9+0 —1x0.240 —1x0.9+0 cee = 400
+00 if ® not reached

Weight of an execution : ) ] ]
total weight until ©®  otherwise
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Strategies and objectives

Strategy for a player: map finite executions to a delay and a transition

Val(v,x) = inf sup  Weight(Exec(v, X, omin, OMax)) € R

omin€StratMn o e ipatax
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» 2-player WTGs: undecidable (Brihaye, Bruyére, and Raskin 2005; Bouyer,
Brihaye, and Markey 2006), even with only > 0 weights and 3 clocks
(only 2 clocks needed with arbitrary weights (Brihaye, Geeraerts,
Narayanan Krishna, Manasa, Monmege, and Trivedi 2014))

» Decidability results for WTGs with arbitrary weights?
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State of the art: one clock, > 0 weights

(Fearnley, Ibsen-Jensen, and Savani 2020): PSPACE-hard
(Bouyer, Larsen, Markey, and Rasmussen 2006; Rutkowski 2011; Hansen, Ibsen-Jensen, and
Miltersen 2013): exponential time algo

» simplification of 1-clock WTGs:
» clock bounded by 1, no guards, no resets

16/28



State of the art: one clock, > 0 weights

(Fearnley, Ibsen-Jensen, and Savani 2020): PSPACE-hard
(Bouyer, Larsen, Markey, and Rasmussen 2006; Rutkowski 2011; Hansen, Ibsen-Jensen, and
Miltersen 2013): exponential time algo
» simplification of 1-clock WTGs:
» clock bounded by 1, no guards, no resets
» for simple WTGs: compute value functions Val(v, x).
e

va(),
V2 V4 Au
3 6
3 ——(9) :
3 3
b, e,
3 S g
a2 e ow e -
s
V3 6
5
3
e,
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Simple WTGs with arbitrary

—10

Val(£3,x)
0

—16
Val(£7,x)
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Simple WTGs with arbitrary weights

Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux
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Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

V4
—7

Val(va, x) = supgerc1x 3t —7=3(1—x) —7=-3x—4
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Simple WTGs with arbitrary weights

Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

Val(va, x) = =3x — 4, Val(v7, x) = —=16(1 — x),
Val(vs, x) = min(—3x — 4, —16(1 — x) + 6)

Theorem:

For every simple WTG, all value functions are piecewise affine, with at most
an exponential number of cutpoints, and can be computed in exponential
time.
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Val(vs, x) = min(—3x — 4, —16(1 — x) + 6)

Theorem:

For every simple WTG, all value functions are piecewise affine, with at
most a pseudo-polynomial number of cutpoints, and can be computed
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Simple WTGs with arbitrary weights

Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

6

For every simple WTG, all value functions are piecewise affine, with at
most a pseudo-polynomial number of cutpoints, and can be computed
in pseudo-polynomial time.

For general 1-clock WTGs?
» removing guards: previously used techniques work!
P removing resets: previously, bound the number of resets...
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One-clock WTG with arbitrary weights NEW!

Joint work with J. Parreaux and P.-A. Reynier

New idea: limit the number of resets (to at most once for each
transition), after having blown up exponentially the WTG
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One-clock WTG with arbitrary weights NEW!

Joint work with J. Parreaux and P.-A. Reynier

New idea: limit the number of resets (to at most once for each
transition), after having blown up exponentially the WTG

For every 1-clock WTG, all value functions can be computed in time ex-
ponential in the number of locations and in the largest transition weight,
and polynomial in other weights.
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State of the art: > 0 weights

> 0 weights and strictly non-Zeno-cost cycles: 2-exp algo
(Bouyer, Cassez, Fleury, and Larsen 2004; Alur, Bernadsky, and Madhusudan 2004)

Value iteration algorithm: compute F/(+00)...

sup (d x Weight(v) + Weight(t) + x(v/,,,r)) if v € Vmax

Fx) iy = 4 000
' inf (d x Weight(v) + Weight(t) + x(v/,,,/)) if v € Vi
d,
(Vo) = (v )
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Extension to negative weights

Joint work with D. Busatto-Gaston and P.-A. Reynier
Divergence property:

Every execution following a cycle of the region automaton has a
total weight either < —1or > 1
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Extension to negative weights

Joint work with D. Busatto-Gaston and P.-A. Reynier

Divergence property:
Every execution following a cycle of the region automaton has a
total weight either < —1or > 1

Characterisation: all simple cycles of an SCC of the region automaton
have the same sign

Theorem:
Deciding if a WTG is divergent is PSPACE-complete.

The value problem on divergent WTG is in 3-EXP, and is EXP-hard.

22/28



What about cycles of weight = 07

» Adding cycles of weight = 0 to divergent WTG: undecidable but
approximable (Bouyer, Jaziri, and Markey 2015)

23/28



What about cycles of weight = 07

» Adding cycles of weight = 0 to divergent WTG: undecidable but
approximable (Bouyer, Jaziri, and Markey 2015)

Joint work with D. Busatto-Gaston and P.-A. Reynier
Almost-divergent WTG: every SCC of the region automaton is

either (> 1 or = 0), or (< —1lor=0)

23/28



What about cycles of weight = 07

» Adding cycles of weight = 0 to divergent WTG: undecidable but
approximable (Bouyer, Jaziri, and Markey 2015)
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Almost-divergent WTG: every SCC of the region automaton is
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What about cycles of weight = 07

» Adding cycles of weight = 0 to divergent WTG: undecidable but
approximable (Bouyer, Jaziri, and Markey 2015)

Joint work with D. Busatto-Gaston and P.-A. Reynier
Almost-divergent WTG: every SCC of the region automaton is

either (> 1 or = 0), or (< —1lor=0)

stop leaf

=3
Theorem:

Approximation is decidable for almost-divergent WTGs: (semi-)symbolic
algorithm that does not rely on an a-priori discretisation of the regions
with a fixed granularity 1/N.

23/28



Part Il : Trade memory for randomisation



How to define stochastic strategies?

(Bertrand, Bouyer, Brihaye, Menet, Baier, Grésser, and Jurdzinski 2014)
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Deterministic strategy In (v1,0)
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Deterministic strategy In (v1,0)

Choose an edge and a delay Choose a with t = %
Probabilistic strategy In (v1,0)

Distribution over possible choices Choose between a or b with B(%)
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Choose an edge and a delay

Probabilistic strategy
Distribution over possible choices
1. Edge: finite distribution
2. Delay: infinite distribution

Min = O, Max = 0O

In (v1,0)

Choose a with t = 1

3

In (Vl,O)
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How to define stochastic strategies?

(Bertrand, Bouyer, Brihaye, Menet, Baier, Grésser, and Jurdzinski 2014)

Vo 2,1<{x<2,x:=0,-1 Vi

Deterministic strategy
Choose an edge and a delay

Probabilistic strategy
Distribution over possible choices
1. Edge: finite distribution
2. Delay: infinite distribution

Min = O, Max = 0O

In (v1,0)

Choose a with t = 1

3

In (Vl, 0)

Choose between a or b with B(3)
> a: choose t with ¢([0,1])
» b: choose t = 1.5

25/28
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Trade memory for randomisation

Joint work with J. Parreaux and P.-A. Reynier

aaaaaaaaa

Probabilistic

Deterministic

Memoryless Finite memory Infinite memory

Theorem:
Val = pVal = mVal in weighted (untimed) games and in divergent WTG.

26/28



Conclusion

reset-acyclic IWTG
pseudo-poly
PSPACE-hard

27/28



Conclusion

reset-acyclic IWTG
pseudo-poly
PSPACE-hard

IWTG
exp / & 2-exp

(+) (=)
PSPACE-hard

27/28



Conclusion

1BIWTG
poly / pseudo-poly

reset-acyclic IWTG
pseudo-poly
PSPACE-hard

IWTG
exp / & 2-exp

(+) (=)
PSPACE-hard

Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi
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Conclusion

WTG
undec / undec
> 3 clocks / = 2 clocks

almost-divergent WTG
approx / approx

. elementary complexity

divergent WTG
2-exp / 3-exp
exp-hard

/\/\a

2 clocks?

1BIWTG
poly / pseudo-poly

reset-acyclic IWTG
pseudo-poly
PSPACE-hard

IWTG
exp / & 2-exp

(+) (=)
PSPACE-hard
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Perspectives

tow papor)

Poly-time algorithms in weighted games  Evolutionary game theory on graphs

Play with less visibility:
» robustness to environmental perturbations

» randomisation with interval of delays

» incomplete information
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Appendix

Case study

Example of divergent weighted game

Region and corner-point abstractions

1-clock Bi-WTGs

Bounding the number of resets needed to solve 1-clock WTGs is not easy

Randomisation emulates memory

» Back to appendix
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15 c€/kWh 12 c€/kWh
rate: total power x 15 c€/h  total power x 12 c€/h

states to record which device is on/off: computation of the total power

Power consumption:
i |

ba
>

~ 100W (1.5 c€/h in peak-hour, 1.2 c€/h in offpeak-hour)

> = _ 2500W (37.5 c€/h in peak-hour, 30 c€/h in offpeak-hour)

> Lj 2000W (24 c€/h in offpeak-hour)
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Case study

Peak-hour Offpeak-hour Solar panels ﬁ\
S
15 c€/kWh 12 c€/kWh Reselling: 20 c€/kWh
rate:  total power X 15 c€/h  total power x 12 c€/h —0.5 x 20 c€/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile J
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost
Solution 1: discretisation of time, resolution via a weighted game

Solution 2: thin time behaviours, resolution via a weighted timed game
Solution 3: allow for randomisation in the behaviours?
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A fundamental tool: region abstraction

clock y

0Oe ) ° clock x

» compatibility between regions and guards
» compatibility between regions and delays
» — equivalence relation of finite index

Min = O, Max = O



A fundamental tool: region abstraction

clock y
- region R defined by:
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2 e ° °
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A fundamental tool: region abstraction
clock y

- region R defined by:
0<x<l1
O<yxl1
y < x

- time successors of R

clock x




Corner-point abstraction

» Main tool to solve one-player WTG: refinement of regions via corner
point abstraction / e-graph (Bouyer, Brinksma, and Larsen 2004; Bouyer,
Brihaye, Bruyére, and Raskin 2007)

2

1
©, ©,
v v v v
ty 2 A 2 — Tt 2 = A 2
1 L freeeeetes 1 feee 1
* o 1 2 ¢ o 1 2 * 0o 1 2 ° o 1 2 %

Min = O, Max = O P e—



One-clock Bi-WTGs (1BiWTGs)

Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi
Weights of locations {p~, p*} included in {0,+d,—d}, d €N
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One-clock Bi-WTGs (1BiWTGs)

Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi
Weights of locations {p~, p*} included in {0,+d,—d}, d €N
2

.= == ==
o (01 1 (1,2) 2 (2, +00)

Computation of the values of a 1IBiWTG and synthesis of e-optimal strate-

gies in pseudo-polynomial time (polynomial time if > 0 weights only).
Min = O, Max = O -




1BiIWTG: maximal fragment for corner-point abstraction

Generalisation by E. Lefaucheux: two rates {p~, p*} included in
{0,+d,—c} (d,c € N)
In more general settings, players may need to play far from corners...

> With 3 weights in {—1,0,+1}: value 1/2...
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1BiIWTG: maximal fragment for corner-point abstraction

Generalisation by E. Lefaucheux: two rates {p~, p*} included in
{0,+d,—c} (d,c € N)
In more general settings, players may need to play far from corners...

> With 3 weights in {—1,0,+1}: value 1/2...

+@~®<ﬁ

X*l

> With 2 weights in {—1,0,+1} but 2 clocks: value 1/2...

Min = O, Max = O
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Bounding the number of resets needed is not easy

Player O can guarantee (i.e., ensure to be below) value € for all € > 0...
... but cannot obtain 0: hence, no optimal strategy...

. moreover, to obtain £, O needs to loop at least W + [1/loge] times
before reaching ©

Min = O, Max = O
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Let (014, 0iyins K) be an optimal switching strategy, for all p € (0,1),
= px oy + (1= p) X o,
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