Game Theory for Real-Time Synthesis:
 Decision, Approximation, and Randomness

Benjamin Monmege
Aix-Marseille Université Habilitation à diriger des recherches, 29 avril 2022

Eugène Asarin Université de Paris, France (Examinateur)
Béatrice Bérard Sorbonne Université, France (Présidente)
Véronique Bruyère Université de Mons, Belgique (Rapporteuse)
Marcin Jurdziński University of Warwick, UK (Rapporteur)
Nicolas Markey CNRS, Irisa, France (Rapporteur)
Pierre-Alain Reynier Aix-Marseille Université, France (Examinateur)
Yann Vaxès Aix-Marseille Université, France (Examinateur)

Formal methods for reliable critical software

Code \& model-checking

Formal methods
for reliable
critical software

Game theory for synthesis

Code \& model-checking Controller player vs. environment player

Time constraints
Formal methods
for reliable
critical software
Game theory for synthesis

Code \& model-checking
Controller player vs. environment player

Time constraints

Formal methods
for reliable
critical software

Game theory for synthesis

Measure quality

Methodology

Environment || Controller?? \models Specif

Methodology

Real-time requirements/environment \Longrightarrow real-time controller

Methodology

Real-time requirements/environment \Longrightarrow real-time controller

Among all valid controllers, choose a cheap/efficient one

Methodology

Real-time requirements/environment \Longrightarrow real-time controller

Among all valid controllers, choose a cheap/efficient one

Methodology

Real-time requirements/environment \Longrightarrow real-time controller
Two-player timed game
Among all valid controllers, choose a cheap/efficient one

Methodology

Environment || Controller?? \vDash Specif

Two-player game

Real-time requirements/environment \Longrightarrow real-time controller
Two-player timed game
Among all valid controllers, choose a cheap/efficient one Two-player weighted timed game

Methodology

Environment $\| \quad$ Controller?? \models Specif
 Two-player game

Real-time requirements/environment \Longrightarrow real-time controller

> Two-player timed game

Among all valid controllers, choose a cheap/efficient one Two-player weighted timed game

Production/consumption of resources: negative weights

Timed games $\& \leqslant 0$ weights
T. Brihaye
G. Geeraerts
S. K. Narayanan
L. Manasa
A. Trivedi

Untimed \& total payoff
T. Brihaye
G. Geeraerts
A. Haddad

Timed games $\& \leqslant 0$ weights
T. Brihaye
G. Geeraerts
S. K. Narayanan
L. Manasa
A. Trivedi

1 clock
T. Brihaye
G. Geeraerts
A. Haddad
E. Lefaucheux

Untimed \& total payoff
T. Brihaye
G. Geeraerts
A. Haddad

Timed games $\& \leqslant 0$ weights
T. Brihaye
G. Geeraerts
S. K. Narayanan
L. Manasa
A. Trivedi

1 clock

> T. Brihaye
> G. Geeraerts
> A. Haddad
> E. Lefaucheux

Untimed \& total payoff
T. Brihaye
G. Geeraerts
A. Haddad

Timed games $\& \leqslant 0$ weights
T. Brihaye
G. Geeraerts
S. K. Narayanan
L. Manasa
A. Trivedi

Divergence, approximation, robustness

1 clock

> T. Brihaye
> G. Geeraerts
> A. Haddad
> E. Lefaucheux

Untimed \& total payoff
T. Brihaye
G. Geeraerts
A. Haddad

Randomisation
Timed games $\& \leqslant 0$ weights
T. Brihaye
G. Geeraerts
S. K. Narayanan
L. Manasa
A. Trivedi

Divergence, approximation, robustness

Randomisation
J. Parreaux (PhD) P.-A. Reynier
T. Brihaye
G. Geeraerts
S. K. Narayanan
L. Manasa
A. Trivedi

Timed games $\& \leqslant 0$ weights
T. Brihaye
G. Geeraerts
S. K. Narayanan
L. Manasa
A. Trivedi

Divergence, approximation, robustness

1 clock
T. Brihaye
G. Geeraerts
A. Haddad
E. Lefaucheux

Untimed \& total payoff
T. Brihaye
G. Geeraerts
A. Haddad

Timed games $\& \leqslant 0$ weights
T. Brihaye
G. Geeraerts
S. K. Narayanan
L. Manasa
A. Trivedi

MITL

T. Brihaye

M. Estiévenart
G. Geeraerts H.-M. Ho
A. Milchior
N. Sznajder

Evolutionary Games
T. Brihaye
G. Geeraerts M. Hallet
B. Quoitin

Randomisation
J. Parreaux (PhD)
P.-A. Reynier

Divergence, approximation, robustness

```
    D. Busatto-Gaston (PhD)
    P.-A. Reynier
        O. Sankur
```

Marseille
ANR Project TickTac

1 clock
T. Brihaye
G. Geeraerts
A. Haddad
E. Lefaucheux

Untimed \& total payoff
T. Brihaye G. Geeraerts
A. Haddad

Timed games $\& \leqslant 0$ weights

T. Brihaye

G. Geeraerts
S. K. Narayanan
L. Manasa
A. Trivedi

MITL

T. Brihaye
M. Estiévenart
G. Geeraerts H.-M. Ho
A. Milchior
N. Sznajder

Transducers \& WA
ANR Project Delta
N. Baudru
L.-M. Dando

N. Lhote

T. Lopez (PhD)
P.-A. Reynier
J.-M. Talbot

Randomisation
J. Parreaux (PhD)
P.-A. Reynier
P.-A. Reynier

Divergence, approximation, robustness
T. Brihaye
G. Geeraerts
M. Hallet
B. Quoitin
D. Busatto-Gaston (PhD)
P.-A. Reynier
O. Sankur

Part I : Weighted games

Weighted games

Weighted graph with vertices partitioned between 2 players + reachability objective

Weighted games

v_{1}

Weighted games

Weighted graph with vertices partitioned between 2 players + reachability objective

Weighted games

Weighted graph with vertices partitioned between 2 players + reachability objective

Weighted games

Weighted graph with vertices partitioned between 2 players + reachability objective

Weighted games

Weighted graph with vertices partitioned between 2 players + reachability objective

Weighted games

Weighted graph with vertices partitioned between 2 players + reachability objective

Weighted games

Weighted graph with vertices partitioned between 2 players + reachability objective

Weighted games

Strategies and objectives

Strategy for a player: map finite executions to the transition to fire

Strategies and objectives

Strategy for a player: map finite executions to the transition to fire Objective of player \bigcirc : reach © and minimise the weight Objective of player \square : avoid © or, if not possible, maximise the weight

Strategies and objectives

Strategy for a player: map finite executions to the transition to fire
Objective of player \bigcirc : reach \odot and minimise the weight Objective of player \square : avoid \odot or, if not possible, maximise the weight Main object of interest:
$\operatorname{Val}(v)=\inf _{\sigma_{\text {Min }} \in \operatorname{Strat}{ }^{\text {Min }}} \sup _{\sigma_{\text {Max }} \in \operatorname{Strat}} \operatorname{Max}^{\operatorname{Wig}} \operatorname{Weight}\left(\operatorname{Exec}\left(v, \sigma_{\text {Min }}, \sigma_{\text {Max }}\right)\right) \in \mathbb{Z} \cup\{ \pm \infty\}$
What weight can players guarantee? Following which strategies?

State of the art

- one-player: shortest path in a weighted graph... polynomial algo.

State of the art

- one-player: shortest path in a weighted graph... polynomial algo.
- two players, $\geqslant 0$ weights: polynomial algo.
(Khachiyan, Boros, Borys, Elbassioni, Gurvich, Rudolf, and Zhao 2008)

State of the art

- one-player: shortest path in a weighted graph... polynomial algo.
- two players, $\geqslant 0$ weights: polynomial algo.
(Khachiyan, Boros, Borys, Elbassioni, Gurvich, Rudolf, and Zhao 2008)
- two players, arbitrary weights?

State of the art

- one-player: shortest path in a weighted graph... polynomial algo.
- two players, $\geqslant 0$ weights: polynomial algo.
(Khachiyan, Boros, Borys, Elbassioni, Gurvich, Rudolf, and Zhao 2008)
- two players, arbitrary weights?

- Value $-\infty$: detection is as hard as solving parity games (NP \cap co-NP)

State of the art

- one-player: shortest path in a weighted graph... polynomial algo.
- two players, $\geqslant 0$ weights: polynomial algo.
(Khachiyan, Boros, Borys, Elbassioni, Gurvich, Rudolf, and Zhao 2008)
- two players, arbitrary weights?

- Value $-\infty$: detection is as hard as solving parity games (NP \cap co-NP)

State of the art

- one-player: shortest path in a weighted graph... polynomial algo.
- two players, $\geqslant 0$ weights: polynomial algo.
(Khachiyan, Boros, Borys, Elbassioni, Gurvich, Rudolf, and Zhao 2008)
- two players, arbitrary weights?

- Value $-\infty$: detection is as hard as solving parity games (NP $\cap \mathbf{c o}-\mathbf{N P}$)
- \bigcirc needs memory

Pseudo-polynomial time algorithm

Joint work with T. Brihaye, G. Geeraerts and A. Haddad
Value iteration algorithm: compute $\mathcal{F}^{i}(+\infty) \ldots$

$$
\mathcal{F}(\boldsymbol{x})_{v}= \begin{cases}\min _{e=\left(v, a, v^{\prime}\right) \in E}\left(\text { Weight }(e)+\boldsymbol{x}_{v^{\prime}}\right) & \text { if } v \in V_{\mathrm{Min}} \\ \max _{e=\left(v, a, v^{\prime}\right) \in E}\left(\text { Weight }(e)+\boldsymbol{x}_{v^{\prime}}\right) & \text { if } v \in V_{\mathrm{Max}}\end{cases}
$$

$$
\text { horizon } 0 \text { : } \quad+\infty \quad+\infty
$$

Pseudo-polynomial time algorithm

Joint work with T. Brihaye, G. Geeraerts and A. Haddad
Value iteration algorithm: compute $\mathcal{F}^{i}(+\infty) \ldots$

$$
\mathcal{F}(\boldsymbol{x})_{v}= \begin{cases}\min _{e=\left(v, a, v^{\prime}\right) \in E}\left(\text { Weight }(e)+\boldsymbol{x}_{v^{\prime}}\right) & \text { if } v \in V_{\mathrm{Min}} \\ \max _{e=\left(v, a, v^{\prime}\right) \in E}\left(\text { Weight }(e)+\boldsymbol{x}_{v^{\prime}}\right) & \text { if } v \in V_{\mathrm{Max}}\end{cases}
$$

$$
\begin{array}{ccc}
\text { horizon } 0 \text { : } & +\infty & +\infty \\
\text { horizon } 1: & +\infty & 0
\end{array}
$$

Pseudo-polynomial time algorithm

Joint work with T. Brihaye, G. Geeraerts and A. Haddad
Value iteration algorithm: compute $\mathcal{F}^{i}(+\infty) \ldots$

$$
\mathcal{F}(\boldsymbol{x})_{v}= \begin{cases}\min _{e=\left(v, a, v^{\prime}\right) \in E}\left(\text { Weight }(e)+\boldsymbol{x}_{v^{\prime}}\right) & \text { if } v \in V_{\mathrm{Min}} \\ \max _{e=\left(v, a, v^{\prime}\right) \in E}\left(\text { Weight }(e)+\boldsymbol{x}_{v^{\prime}}\right) & \text { if } v \in V_{\mathrm{Max}}\end{cases}
$$

$$
\begin{array}{ccc}
\text { horizon } 0: & +\infty & +\infty \\
\text { horizon 1: } & +\infty & 0 \\
\text { horizon } 2: & -1 & 0
\end{array}
$$

Pseudo-polynomial time algorithm

Joint work with T. Brihaye, G. Geeraerts and A. Haddad
Value iteration algorithm: compute $\mathcal{F}^{i}(+\infty) \ldots$

$$
\mathcal{F}(\boldsymbol{x})_{v}= \begin{cases}\min _{e=\left(v, a, v^{\prime}\right) \in E}\left(\text { Weight }(e)+\boldsymbol{x}_{v^{\prime}}\right) & \text { if } v \in V_{\mathrm{Min}} \\ \max _{e=\left(v, a, v^{\prime}\right) \in E}\left(\text { Weight }(e)+\boldsymbol{x}_{v^{\prime}}\right) & \text { if } v \in V_{\mathrm{Max}}\end{cases}
$$

$$
\begin{array}{ccc}
\text { horizon } 0: & +\infty & +\infty \\
\text { horizon 1: } & +\infty & 0 \\
\text { horizon } 2: & -1 & 0 \\
\text { horizon 3: } & -1 & -1
\end{array}
$$

Pseudo-polynomial time algorithm

Joint work with T. Brihaye, G. Geeraerts and A. Haddad
Value iteration algorithm: compute $\mathcal{F}^{i}(+\infty) \ldots$

$$
\mathcal{F}(\boldsymbol{x})_{v}= \begin{cases}\min _{e=\left(v, a, v^{\prime}\right) \in E}\left(\text { Weight }(e)+\boldsymbol{x}_{v^{\prime}}\right) & \text { if } v \in V_{\mathrm{Min}} \\ \max _{e=\left(v, a, v^{\prime}\right) \in E}\left(\text { Weight }(e)+\boldsymbol{x}_{v^{\prime}}\right) & \text { if } v \in V_{\mathrm{Max}}\end{cases}
$$

$$
\begin{array}{ccc}
\text { horizon } 0: & +\infty & +\infty \\
\text { horizon 1: } & +\infty & 0 \\
\text { horizon 2: } & -1 & 0 \\
\text { horizon 3: } & -1 & -1 \\
\text { horizon 4: } & -2 & -1
\end{array}
$$

Pseudo-polynomial time algorithm

Joint work with T. Brihaye, G. Geeraerts and A. Haddad
Value iteration algorithm: compute $\mathcal{F}^{i}(+\infty) \ldots$

$$
\mathcal{F}(\boldsymbol{x})_{v}= \begin{cases}\min _{e=\left(v, a, v^{\prime}\right) \in E}\left(\text { Weight }(e)+\boldsymbol{x}_{v^{\prime}}\right) & \text { if } v \in V_{\mathrm{Min}} \\ \max _{e=\left(v, a, v^{\prime}\right) \in E}\left(\text { Weight }(e)+\boldsymbol{x}_{v^{\prime}}\right) & \text { if } v \in V_{\mathrm{Max}}\end{cases}
$$

$$
\begin{array}{rcc}
\text { horizon 0: } & +\infty & +\infty \\
\text { horizon 1: } & +\infty & 0 \\
\text { horizon 2: } & -1 & 0 \\
\text { horizon 3: } & -1 & -1 \\
\text { horizon 4: } & -2 & -1 \\
& \cdots & \cdots \\
\text { horizon } 2 W+1: & -W & -W
\end{array}
$$

Pseudo-polynomial time algorithm

Joint work with T. Brihaye, G. Geeraerts and A. Haddad
Value iteration algorithm: compute $\mathcal{F}^{i}(+\infty) \ldots$

$$
\mathcal{F}(\boldsymbol{x})_{v}= \begin{cases}\min _{e=\left(v, a, v^{\prime}\right) \in E}\left(\text { Weight }(e)+\boldsymbol{x}_{v^{\prime}}\right) & \text { if } v \in V_{\mathrm{Min}} \\ \max _{e=\left(v, a, v^{\prime}\right) \in E}\left(\text { Weight }(e)+\boldsymbol{x}_{v^{\prime}}\right) & \text { if } v \in V_{\mathrm{Max}}\end{cases}
$$

Pseudo-polynomial time algorithm

Joint work with T. Brihaye, G. Geeraerts and A. Haddad
Value iteration algorithm: compute $\mathcal{F}^{i}(+\infty) \ldots$

$$
\mathcal{F}(\boldsymbol{x})_{v}= \begin{cases}\min _{e=\left(v, a, v^{\prime}\right) \in E}\left(\text { Weight }(e)+\boldsymbol{x}_{v^{\prime}}\right) & \text { if } v \in V_{\mathrm{Min}} \\ \max _{e=\left(v, a, v^{\prime}\right) \in E}\left(\text { Weight }(e)+\boldsymbol{x}_{v^{\prime}}\right) & \text { if } v \in V_{\mathrm{Max}}\end{cases}
$$

Theorem:

We can compute in pseudo-polynomial time the value of a weighted game, as well as optimal strategies: O may require (pseudo-polynomial) memory to play optimally, \square has optimal memoryless strategy.

Large polynomial fragment: divergent weighted games

Joint work with D. Busatto-Gaston and P.-A. Reynier
Divergence property (in the underlying graph):
Every cycle has total weight either $\leqslant-1$ or $\geqslant 1$

Large polynomial fragment: divergent weighted games
Joint work with D. Busatto-Gaston and P.-A. Reynier
Divergence property (in the underlying graph):
Every cycle has total weight either $\leqslant-1$ or $\geqslant 1$
Characterisation: all the simple cycles of an SCC have the same sign

Large polynomial fragment: divergent weighted games

Joint work with D. Busatto-Gaston and P.-A. Reynier
Divergence property (in the underlying graph):
Every cycle has total weight either $\leqslant-1$ or $\geqslant 1$
Characterisation: all the simple cycles of an SCC have the same sign

Theorem:

Deciding if a weighted game is divergent is in PTIME.

Large polynomial fragment: divergent weighted games

Joint work with D. Busatto-Gaston and P.-A. Reynier
Divergence property (in the underlying graph):
Every cycle has total weight either $\leqslant-1$ or $\geqslant 1$
Characterisation: all the simple cycles of an SCC have the same sign

Theorem:

Deciding if a weighted game is divergent is in PTIME.

Theorem:

We can compute in polynomial time the value of a divergent weighted game, as well as optimal strategies for both players.

Large polynomial fragment: divergent weighted games

Joint work with D. Busatto-Gaston and P.-A. Reynier
Divergence property (in the underlying graph):
Every cycle has total weight either $\leqslant-1$ or $\geqslant 1$
Characterisation: all the simple cycles of an SCC have the same sign

Theorem:

Deciding if a weighted game is divergent is in PTIME.

Theorem:

We can compute in polynomial time the value of a divergent weighted game, as well as optimal strategies for both players.

- Value computation SCC by SCC, bottom-up

Large polynomial fragment: divergent weighted games

Joint work with D. Busatto-Gaston and P.-A. Reynier
Divergence property (in the underlying graph):
Every cycle has total weight either $\leqslant-1$ or $\geqslant 1$
Characterisation: all the simple cycles of an SCC have the same sign

Theorem:

Deciding if a weighted game is divergent is in PTIME.

Theorem:

We can compute in polynomial time the value of a divergent weighted game, as well as optimal strategies for both players.

- Value computation SCC by SCC, bottom-up
- in positive SCC, the "value iteration" algo converges in linear time

Large polynomial fragment: divergent weighted games

Joint work with D. Busatto-Gaston and P.-A. Reynier
Divergence property (in the underlying graph):
Every cycle has total weight either $\leqslant-1$ or $\geqslant 1$
Characterisation: all the simple cycles of an SCC have the same sign

Theorem:

Deciding if a weighted game is divergent is in PTIME.

Theorem:

We can compute in polynomial time the value of a divergent weighted game, as well as optimal strategies for both players.

- Value computation SCC by SCC, bottom-up
- in positive SCC, the "value iteration" algo converges in linear time
- in negative SCC, detection of vertices of value $-\infty$ in polynomial time, and then the "value iteration" algo converges in linear time with initialisation at $-\infty$

Part II: Weighted timed games

Weighted timed games

Timed automaton with vertices partitioned between 2 players

+ reachability objective

Weighted timed games

Timed automaton with vertices partitioned between 2 players

+ reachability objective

Weighted timed games

$$
\left(v_{1}, 0\right) \xrightarrow{0.4, \searrow}\left(v_{4}, 0.4\right)
$$

Timed automaton with vertices partitioned between 2 players

+ reachability objective

Weighted timed games

$$
\left(v_{1}, 0\right) \xrightarrow{0.4, \searrow}\left(v_{4}, 0.4\right) \xrightarrow{0.6, \rightarrow}\left(v_{5}, 0\right)
$$

Timed automaton with vertices partitioned between 2 players

+ reachability objective

Weighted timed games

Timed automaton with vertices partitioned between 2 players

+ reachability objective

$$
\left(v_{1}, 0\right) \xrightarrow{0.4, \searrow}\left(v_{4}, 0.4\right) \xrightarrow{0.6, \rightarrow}\left(v_{5}, 0\right) \xrightarrow{1.5, \leftarrow}\left(v_{4}, 0\right)
$$

Weighted timed games

Timed automaton with vertices partitioned between 2 players

+ reachability objective

$$
\left(v_{1}, 0\right) \xrightarrow{0.4, \searrow}\left(v_{4}, 0.4\right) \xrightarrow{0.6, \rightarrow}\left(v_{5}, 0\right) \xrightarrow{1.5, \leftarrow}\left(v_{4}, 0\right) \xrightarrow{1.1, \rightarrow}\left(v_{5}, 0\right)
$$

Weighted timed games

Timed automaton with vertices partitioned between 2 players + reachability objective

$$
\left(v_{1}, 0\right) \xrightarrow{0.4, \searrow}\left(v_{4}, 0.4\right) \xrightarrow{0.6, \rightarrow}\left(v_{5}, 0\right) \xrightarrow{1.5, \leftarrow}\left(v_{4}, 0\right) \xrightarrow{1.1, \rightarrow}\left(v_{5}, 0\right) \xrightarrow{2, \nearrow}(\odot, 2)
$$

Weighted timed games

Timed automaton with vertices partitioned between 2 players + reachability objective + linear weights on vertices + discrete weights on transitions

$$
\left.\left(v_{1}, 0\right) \xrightarrow[\mathbf{1} \times 0.4+\mathbf{1}]{\substack{0.4, \searrow}}\left(v_{4}, 0.4\right) \xrightarrow{0.6, \rightarrow}\left(v_{5}, 0\right) \xrightarrow{1.5, \leftarrow}\left(v_{4}, 0\right) \xrightarrow{1.1, \rightarrow}\left(v_{5}, 0\right) \xrightarrow{2, \nearrow}(\odot, 2) \xrightarrow{3 \times 0.6+\mathbf{0}}+\mathbf{1 \times 1 . 5 + \mathbf { 0 }} \quad-\mathbf{3 \times 1 . 1 + \mathbf { 0 }}+\mathbf{1 \times 2 + 2}, 2\right)=1.8
$$

Weighted timed games

Strategies and objectives

Strategy for a player: map finite executions to a delay and a transition

Strategies and objectives

Strategy for a player: map finite executions to a delay and a transition
$\operatorname{Val}(v, x)=\inf _{\sigma_{\text {Min }} \in S_{\text {trat }}{ }^{\text {Min }}} \sup _{\sigma_{\text {Max }} \in \operatorname{Strat}{ }^{\text {Max }}} \operatorname{Weight}\left(\operatorname{Exec}\left(v, x, \sigma_{\text {Min }}, \sigma_{\text {Max }}\right)\right) \in \overline{\mathbb{R}}$

State of the art

Decision problem: \exists a strategy of \bigcirc reaching \odot with a weight $\leqslant K$?

State of the art

Decision problem: \exists a strategy of \bigcirc reaching (\cdot) with a weight $\leqslant K$?

- One-player case (Weighted timed automata): PSPACE-complete
- Algorithm based on regions (Bouyer, Brinksma, and Larsen 2004; Bouyer, Brihaye, Bruyère, and Raskin 2007);
- and hardness shown for timed automata with $\geqslant 2$ clocks (Fearnley and Jurdzíński 2013; Haase, Ouaknine, and Worrell 2012)

State of the art

Decision problem: \exists a strategy of \bigcirc reaching (\cdot) with a weight $\leqslant K$?

- One-player case (Weighted timed automata): PSPACE-complete
- Algorithm based on regions (Bouyer, Brinksma, and Larsen 2004; Bouyer, Brihaye, Bruyère, and Raskin 2007);
- and hardness shown for timed automata with $\geqslant 2$ clocks (Fearnley and Jurdziński 2013; Haase, Ouaknine, and Worrell 2012)
- 2-player WTGs: undecidable (Brihaye, Bruyère, and Raskin 2005; Bouyer, Brihaye, and Markey 2006), even with only $\geqslant 0$ weights and 3 clocks (only 2 clocks needed with arbitrary weights (Brihaye, Geeraerts, Narayanan Krishna, Manasa, Monmege, and Trivedi 2014))

State of the art

Decision problem: \exists a strategy of \bigcirc reaching (\cdot) with a weight $\leqslant K$?

- One-player case (Weighted timed automata): PSPACE-complete
- Algorithm based on regions (Bouyer, Brinksma, and Larsen 2004; Bouyer, Brihaye, Bruyère, and Raskin 2007);
- and hardness shown for timed automata with $\geqslant 2$ clocks (Fearnley and Jurdziński 2013; Haase, Ouaknine, and Worrell 2012)
- 2-player WTGs: undecidable (Brihaye, Bruyère, and Raskin 2005; Bouyer, Brihaye, and Markey 2006), even with only $\geqslant 0$ weights and 3 clocks (only 2 clocks needed with arbitrary weights (Brihaye, Geeraerts, Narayanan Krishna, Manasa, Monmege, and Trivedi 2014))
- Decidability results for WTGs with arbitrary weights?
\odot

State of the art: one clock, $\geqslant 0$ weights

(Fearnley, Ibsen-Jensen, and Savani 2020): PSPACE-hard
(Bouyer, Larsen, Markey, and Rasmussen 2006; Rutkowski 2011; Hansen, Ibsen-Jensen, and Miltersen 2013): exponential time algo

- simplification of 1 -clock WTGs:
- clock bounded by 1 , no guards, no resets

State of the art: one clock, $\geqslant 0$ weights

(Fearnley, Ibsen-Jensen, and Savani 2020): PSPACE-hard
(Bouyer, Larsen, Markey, and Rasmussen 2006; Rutkowski 2011; Hansen, Ibsen-Jensen, and Miltersen 2013): exponential time algo

- simplification of 1-clock WTGs:
- clock bounded by 1, no guards, no resets
- for simple WTGs: compute value functions $\operatorname{Val}(v, x)$.

Simple WTGs with arbitrary weights

Simple WTGs with arbitrary weights

Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

Simple WTGs with arbitrary weights

Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

$$
\operatorname{Val}\left(v_{4}, x\right)=\sup _{0 \leqslant t \leqslant 1-x} 3 t-7=3(1-x)-7=-3 x-4
$$

Simple WTGs with arbitrary weights

Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

Simple WTGs with arbitrary weights

Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

$$
\operatorname{Val}\left(v_{4}, x\right)=-3 x-4, \quad \operatorname{Val}\left(v_{7}, x\right)=-16(1-x)
$$

Simple WTGs with arbitrary weights

Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

$$
\begin{gathered}
\operatorname{Val}\left(v_{4}, x\right)=-3 x-4, \quad \operatorname{Val}\left(v_{7}, x\right)=-16(1-x), \\
\operatorname{Val}\left(v_{3}, x\right)=\min (-3 x-4,-16(1-x)+6)
\end{gathered}
$$

Simple WTGs with arbitrary weights

Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

$$
\begin{gathered}
\operatorname{Val}\left(v_{4}, x\right)=-3 x-4, \quad \operatorname{Val}\left(v_{7}, x\right)=-16(1-x) \\
\operatorname{Val}\left(v_{3}, x\right)=\min (-3 x-4,-16(1-x)+6)
\end{gathered}
$$

Theorem:

For every simple WTG, all value functions are piecewise affine, with at most an exponential number of cutpoints, and can be computed in exponential time.

Simple WTGs with arbitrary weights

Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

$$
\begin{gathered}
\operatorname{Val}\left(v_{4}, x\right)=-3 x-4, \quad \operatorname{Val}\left(v_{7}, x\right)=-16(1-x) \\
\operatorname{Val}\left(v_{3}, x\right)=\min (-3 x-4,-16(1-x)+6)
\end{gathered}
$$

Theorem: NEW!

For every simple WTG, all value functions are piecewise affine, with at most a pseudo-polynomial number of cutpoints, and can be computed in pseudo-polynomial time.

Simple WTGs with arbitrary weights

Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux

Theorem: NEW!

For every simple WTG, all value functions are piecewise affine, with at most a pseudo-polynomial number of cutpoints, and can be computed in pseudo-polynomial time.

For general 1-clock WTGs?

- removing guards: previously used techniques work!
- removing resets: previously, bound the number of resets...

One-clock WTG with arbitrary weights

Joint work with J. Parreaux and P.-A. Reynier
New idea: limit the number of resets (to at most once for each transition), after having blown up exponentially the WTG

One-clock WTG with arbitrary weights

Joint work with J. Parreaux and P.-A. Reynier
New idea: limit the number of resets (to at most once for each transition), after having blown up exponentially the WTG

One-clock WTG with arbitrary weights

Joint work with J. Parreaux and P.-A. Reynier
New idea: limit the number of resets (to at most once for each transition), after having blown up exponentially the WTG

Theorem:

For every 1-clock WTG, all value functions can be computed in time exponential in the number of locations and in the largest transition weight, and polynomial in other weights.

State of the art: $\geqslant 0$ weights

$\geqslant 0$ weights and strictly non-Zeno-cost cycles: 2-exp algo
(Bouyer, Cassez, Fleury, and Larsen 2004; Alur, Bernadsky, and Madhusudan 2004)
Value iteration algorithm: compute $\mathcal{F}^{i}(+\infty) \ldots$

Extension to negative weights

Joint work with D. Busatto-Gaston and P.-A. Reynier
Divergence property:
Every execution following a cycle of the region automaton has a total weight either $\leqslant-1$ or $\geqslant 1$

Extension to negative weights

Joint work with D. Busatto-Gaston and P.-A. Reynier
Divergence property:
Every execution following a cycle of the region automaton has a total weight either $\leqslant-1$ or $\geqslant 1$

Characterisation: all simple cycles of an SCC of the region automaton have the same sign

Extension to negative weights

Joint work with D. Busatto-Gaston and P.-A. Reynier
Divergence property:
Every execution following a cycle of the region automaton has a total weight either $\leqslant-1$ or $\geqslant 1$

Characterisation: all simple cycles of an SCC of the region automaton have the same sign

Theorem:

Deciding if a WTG is divergent is PSPACE-complete.

Extension to negative weights

Joint work with D. Busatto-Gaston and P.-A. Reynier
Divergence property:
Every execution following a cycle of the region automaton has a total weight either $\leqslant-1$ or $\geqslant 1$

Characterisation: all simple cycles of an SCC of the region automaton have the same sign

Theorem:

Deciding if a WTG is divergent is PSPACE-complete.

Theorem:

The value problem on divergent WTG is in 3-EXP, and is EXP-hard.

What about cycles of weight $=0$?

- Adding cycles of weight $=0$ to divergent WTG: undecidable but approximable (Bouyer, Jaziri, and Markey 2015)

What about cycles of weight $=0$?

- Adding cycles of weight $=0$ to divergent WTG: undecidable but approximable (Bouyer, Jaziri, and Markey 2015)

Joint work with D. Busatto-Gaston and P.-A. Reynier
Almost-divergent WTG: every SCC of the region automaton is

$$
\text { either }(\geqslant 1 \text { or }=0), \quad \text { or }(\leqslant-1 \text { or }=0)
$$

What about cycles of weight $=0$?

- Adding cycles of weight $=0$ to divergent WTG: undecidable but approximable (Bouyer, Jaziri, and Markey 2015)
Joint work with D. Busatto-Gaston and P.-A. Reynier
Almost-divergent WTG: every SCC of the region automaton is

$$
\text { either }(\geqslant 1 \text { or }=0), \quad \text { or }(\leqslant-1 \text { or }=0)
$$

What about cycles of weight $=0$?

- Adding cycles of weight $=0$ to divergent WTG: undecidable but approximable (Bouyer, Jaziri, and Markey 2015)
Joint work with D. Busatto-Gaston and P.-A. Reynier
Almost-divergent WTG: every SCC of the region automaton is

$$
\text { either }(\geqslant 1 \text { or }=0), \quad \text { or }(\leqslant-1 \text { or }=0)
$$

Theorem:

Approximation is decidable for almost-divergent WTGs: (semi-)symbolic algorithm that does not rely on an a-priori discretisation of the regions with a fixed granularity $1 / N$.

Part III : Trade memory for randomisation

How to define stochastic strategies?

(Bertrand, Bouyer, Brihaye, Menet, Baier, Grösser, and Jurdzínski 2014)

Deterministic strategy
Choose an edge and a delay

How to define stochastic strategies?

(Bertrand, Bouyer, Brihaye, Menet, Baier, Grösser, and Jurdziński 2014)

Deterministic strategy
Choose an edge and a delay
$\ln \left(v_{1}, 0\right)$
Choose a with $t=\frac{1}{3}$

How to define stochastic strategies?

(Bertrand, Bouyer, Brihaye, Menet, Baier, Grösser, and Jurdziński 2014)

Deterministic strategy
Choose an edge and a delay
$\ln \left(v_{1}, 0\right)$
Choose a with $t=\frac{1}{3}$

Probabilistic strategy
Distribution over possible choices

How to define stochastic strategies?

(Bertrand, Bouyer, Brihaye, Menet, Baier, Grösser, and Jurdziński 2014)

Deterministic strategy
Choose an edge and a delay
$\ln \left(v_{1}, 0\right)$
Choose a with $t=\frac{1}{3}$

Probabilistic strategy

Distribution over possible choices

1. Edge: finite distribution

How to define stochastic strategies?

(Bertrand, Bouyer, Brihaye, Menet, Baier, Grösser, and Jurdziński 2014)

Deterministic strategy
Choose an edge and a delay
$\ln \left(v_{1}, 0\right)$
Choose a with $t=\frac{1}{3}$

Probabilistic strategy

Distribution over possible choices

1. Edge: finite distribution
2. Delay: infinite distribution

How to define stochastic strategies?

(Bertrand, Bouyer, Brihaye, Menet, Baier, Grösser, and Jurdziński 2014)

Deterministic strategy
Choose an edge and a delay
Probabilistic strategy
Distribution over possible choices

1. Edge: finite distribution
2. Delay: infinite distribution

How to define stochastic strategies?

(Bertrand, Bouyer, Brihaye, Menet, Baier, Grösser, and Jurdziński 2014)

Deterministic strategy
Choose an edge and a delay
Probabilistic strategy
Distribution over possible choices

1. Edge: finite distribution
2. Delay: infinite distribution

How to define stochastic strategies?

(Bertrand, Bouyer, Brihaye, Menet, Baier, Grösser, and Jurdziński 2014)

Deterministic strategy
Choose an edge and a delay
Probabilistic strategy
Distribution over possible choices

1. Edge: finite distribution
2. Delay: infinite distribution
$\ln \left(v_{1}, 0\right)$
Choose a with $t=\frac{1}{3}$
$\ln \left(v_{1}, 0\right)$
Choose between a or b with $\mathcal{B}\left(\frac{1}{2}\right)$

- a: choose t with $\mathcal{U}([0,1[)$
- b: choose $t=1.5$

Trade memory for randomisation

Joint work with J. Parreaux and P.-A. Reynier

Trade memory for randomisation

Joint work with J. Parreaux and P.-A. Reynier

Trade memory for randomisation

Joint work with J. Parreaux and P.-A. Reynier

Trade memory for randomisation

Joint work with J. Parreaux and P.-A. Reynier

Trade memory for randomisation

Joint work with J. Parreaux and P.-A. Reynier

Theorem:
Val $=\mathrm{pVal}=\mathrm{mVal}$ in weighted (untimed) games and in divergent WTG.

Conclusion

Conclusion

Conclusion

Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi

Conclusion

Conclusion

Conclusion

WTG

Conclusion

WTG

Conclusion

WTG

Conclusion

WTG

Perspectives

Poly-time algorithms in weighted games

Perspectives

Poly-time algorithms in weighted games

Evolutionary game theory on graphs

Perspectives

Poly-time algorithms in weighted games

Evolutionary game theory on graphs

Play with less visibility:

- robustness to environmental perturbations
- randomisation with interval of delays
- incomplete information

Appendix

Case study

Example of divergent weighted game

Region and corner-point abstractions

1-clock Bi-WTGs

Bounding the number of resets needed to solve 1-clock WTGs is not easy

Randomisation emulates memory

Case study

states to record which device is on/off: computation of the total power

Case study

states to record which device is on/off: computation of the total power

Power consumption:

100W (1.5 c€/h in peak-hour, $1.2 \mathrm{c} € / \mathrm{h}$ in offpeak-hour)

2500W (37.5 c $€ / \mathrm{h}$ in peak-hour, $30 \mathrm{c} € / \mathrm{h}$ in offpeak-hour)

2000W (24 c€/h in offpeak-hour)

Case study

Peak-hour	Offpeak-hour	
$15 \mathrm{c€} / \mathrm{kWh}$	$12 \mathrm{c} € / \mathrm{kWh}$	Reselling: $20 \mathrm{c} \in / \mathrm{kWh}$
rate: \quad total power $\times 15 \mathrm{c} € / \mathrm{h}$	total power $\times 12 \mathrm{c} € / \mathrm{h}$	$-0.5 \times 20 \mathrm{c€} / \mathrm{h}$

states to record which device is on/off: computation of the total power

Case study

	Peak-hour	Offpeak-hour	Solar panels \#
	$15 \mathrm{c€} / \mathrm{kWh}$	$12 \mathrm{c} € / \mathrm{kWh}$	Reselling: $20 \mathrm{c} € / \mathrm{kWh}$
rate:	total power $\times 15 \mathrm{c}$ ¢ $/ \mathrm{h}$	total power $\times 12 \mathrm{c}$ ¢ $/ \mathrm{h}$	$-0.5 \times 20 \mathrm{c€} / \mathrm{h}$

states to record which device is on/off: computation of the total power

Controller: chooses contract (discrete cost for the monthly subscription) and exact consumption (what, when...)

Case study

Peak-hour	Offpeak-hour	
$15 \mathrm{c} € / \mathrm{kWh}$	$12 \mathrm{c} € / \mathrm{kWh}$	Reselling: $20 \mathrm{c} € / \mathrm{kWh}$
rate: \quad total power $\times 15 \mathrm{c} € / \mathrm{h}$	total power $\times 12 \mathrm{c} € / \mathrm{h}$	$-0.5 \times 20 \mathrm{c€} / \mathrm{h}$

states to record which device is on/off: computation of the total power
Environment: user profile, weather profile 澹 / 党
Controller: chooses contract (discrete cost for the monthly subscription) and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Case study

states to record which device is on/off: computation of the total power
Environment: user profile, weather profile 㴆 / 气"
Controller: chooses contract (discrete cost for the monthly subscription) and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost
Solution 1: discretisation of time, resolution via a weighted game Solution 2: thin time behaviours, resolution via a weighted timed game Solution 3: allow for randomisation in the behaviours?

Example of divergent weighted game

A fundamental tool: region abstraction

A fundamental tool: region abstraction

- compatibility between regions and guards

A fundamental tool: region abstraction

The path

- can be fired from
- cannot be fired from
- compatibility between regions and guards
- compatibility between regions and delays

A fundamental tool: region abstraction

The path

- can be fired from
- cannot be fired from
- compatibility between regions and guards
- compatibility between regions and delays

A fundamental tool: region abstraction

- compatibility between regions and guards
- compatibility between regions and delays

A fundamental tool: region abstraction

- compatibility between regions and guards
- compatibility between regions and delays
$\rightarrow \rightarrow$ equivalence relation of finite index

A fundamental tool: region abstraction

clock y

- region R defined by:

$$
\left\{\begin{array}{l}
0<x<1 \\
0<y<1 \\
y<x
\end{array}\right.
$$

A fundamental tool: region abstraction

A fundamental tool: region abstraction

clock y

Corner-point abstraction

- Main tool to solve one-player WTG: refinement of regions via corner point abstraction / ε-graph (Bouyer, Brinksma, and Larsen 2004; Bouyer, Brihaye, Bruyère, and Raskin 2007)

One-clock Bi-WTGs (1BiWTGs)

Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi Weights of locations $\left\{p^{-}, p^{+}\right\}$included in $\{0,+d,-d\}, d \in \mathbb{N}$

$$
x<1, x:=0,0
$$

One-clock Bi-WTGs (1BiWTGs)

Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi Weights of locations $\left\{p^{-}, p^{+}\right\}$included in $\{0,+d,-d\}, d \in \mathbb{N}$

$$
x<1, x:=0,0
$$

Region abstraction:

One-clock Bi-WTGs (1BiWTGs)

Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi Weights of locations $\left\{p^{-}, p^{+}\right\}$included in $\{0,+d,-d\}, d \in \mathbb{N}$

$$
x<1, x:=0,0
$$

Corner-point abstraction:

One-clock Bi-WTGs (1BiWTGs)

Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi Weights of locations $\left\{p^{-}, p^{+}\right\}$included in $\{0,+d,-d\}, d \in \mathbb{N}$

One-clock Bi-WTGs (1BiWTGs)

Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi Weights of locations $\left\{p^{-}, p^{+}\right\}$included in $\{0,+d,-d\}, d \in \mathbb{N}$

Theorem:

Computation of the values of a 1 BiWTG and synthesis of ε-optimal strategies in pseudo-polynomial time (polynomial time if $\geqslant 0$ weights only).

1BiWTG: maximal fragment for corner-point abstraction

Generalisation by E. Lefaucheux: two rates $\left\{p^{-}, p^{+}\right\}$included in $\{0,+d,-c\}(d, c \in \mathbb{N})$
In more general settings, players may need to play far from corners...

- With 3 weights in $\{-1,0,+1\}$: value $1 / 2 \ldots$

1BiWTG: maximal fragment for corner-point abstraction

Generalisation by E. Lefaucheux: two rates $\left\{p^{-}, p^{+}\right\}$included in $\{0,+d,-c\}(d, c \in \mathbb{N})$
In more general settings, players may need to play far from corners...

- With 3 weights in $\{-1,0,+1\}$: value $1 / 2 \ldots$

- With 2 weights in $\{-1,0,+1\}$ but 2 clocks: value $1 / 2 \ldots$

Bounding the number of resets needed is not easy

Bounding the number of resets needed is not easy

Player \bigcirc can guarantee (i.e., ensure to be below) value ε for all $\varepsilon>0 \ldots$

Bounding the number of resets needed is not easy

Player \bigcirc can guarantee (i.e., ensure to be below) value ε for all $\varepsilon>0$...
... but cannot obtain 0: hence, no optimal strategy...

Bounding the number of resets needed is not easy

Player \bigcirc can guarantee (i.e., ensure to be below) value ε for all $\varepsilon>0$...
... but cannot obtain 0 : hence, no optimal strategy...
... moreover, to obtain ε, \bigcirc needs to loop at least $W+\lceil 1 / \log \varepsilon\rceil$ times before reaching ©

Randomisation emulates memory

Let $\left(\sigma_{\text {Min }}^{1}, \sigma_{\text {Min }}^{2}, K\right)$ be an optimal switching strategy,

Randomisation emulates memory

Let $\left(\sigma_{\text {Min }}^{1}, \sigma_{\text {Min }}^{2}, K\right)$ be an optimal switching strategy,

Randomisation emulates memory

Let $\left(\sigma_{\text {Min }}^{1}, \sigma_{\text {Min }}^{2}, K\right)$ be an optimal switching strategy, for all $p \in(0,1)$,

$$
\eta^{p}=p \times \sigma_{\text {Min }}^{1}+(1-p) \times \sigma_{\text {Min }}^{2}
$$

Randomisation emulates memory

Let $\left(\sigma_{\text {Min }}^{1}, \sigma_{\text {Min }}^{2}, K\right)$ be an optimal switching strategy, for all $p \in(0,1)$,

$$
\eta^{p}=p \times \sigma_{\text {Min }}^{1}+(1-p) \times \sigma_{\text {Min }}^{2}
$$

- For all $\left.\sigma_{\text {Max }}, \mathbb{P}_{v}^{\eta^{p}, \sigma_{\operatorname{Max}}}(\diamond)\right)=1$
- For all $\sigma_{\text {Max }}, \mathbb{E}_{v}^{\eta^{p}, \sigma_{\text {Max }}}<\infty$
- Max has a best response $\sigma_{\text {Max }}$ memoryless and deterministic

Randomisation emulates memory

Let $\left(\sigma_{\text {Min }}^{1}, \sigma_{\text {Min }}^{2}, K\right)$ be an optimal switching strategy, for all $p \in(0,1)$,

$$
\eta^{p}=p \times \sigma_{\text {Min }}^{1}+(1-p) \times \sigma_{\text {Min }}^{2}
$$

- For all $\left.\sigma_{\mathrm{Max}}, \mathbb{P}_{\vee}^{p}, \sigma_{\mathrm{Max}}(\diamond)\right)=1$
- For all $\sigma_{\mathrm{Max}}, \mathbb{E}_{v}^{\eta^{p}, \sigma_{\mathrm{Max}}}<\infty$
- Max has a best response $\sigma_{\text {Max }}$ memoryless and deterministic

Randomisation emulates memory

Let $\left(\sigma_{\text {Min }}^{1}, \sigma_{\text {Min }}^{2}, K\right)$ be an optimal switching strategy, for all $p \in(0,1)$,

$$
\eta^{p}=p \times \sigma_{\text {Min }}^{1}+(1-p) \times \sigma_{\text {Min }}^{2}
$$

- For all $\left.\sigma_{\text {Max }}, \mathbb{P}_{v}^{\eta^{p}, \sigma_{\operatorname{Max}}}(\diamond)\right)=1$
- For all $\sigma_{\text {Max }}, \mathbb{E}_{v}^{\eta^{p}, \sigma_{\text {Max }}}<\infty$
- Max has a best response $\sigma_{\text {Max }}$ memoryless and deterministic

Randomisation emulates memory

Let $\left(\sigma_{\text {Min }}^{1}, \sigma_{\text {Min }}^{2}, K\right)$ be an optimal switching strategy, for all $p \in(0,1)$,

$$
\eta^{p}=p \times \sigma_{\text {Min }}^{1}+(1-p) \times \sigma_{\text {Min }}^{2}
$$

- For all $\left.\sigma_{\text {Max }}, \mathbb{P}_{v}^{\eta^{p}, \sigma_{\operatorname{Max}}}(\diamond)\right)=1$
- For all $\sigma_{\text {Max }}, \mathbb{E}_{v}^{\eta^{p}, \sigma_{\text {Max }}}<\infty$
- Max has a best response $\sigma_{\text {Max }}$ memoryless and deterministic

Randomisation emulates memory

Let $\left(\sigma_{\text {Min }}^{1}, \sigma_{\text {Min }}^{2}, K\right)$ be an optimal switching strategy, for all $p \in(0,1)$,

$$
\eta^{p}=p \times \sigma_{\operatorname{Min}}^{1}+(1-p) \times \sigma_{\operatorname{Min}}^{2}
$$

- For all $\left.\sigma_{\text {Max }}, \mathbb{P}_{v}^{\eta^{p}, \sigma_{M a x}}(\diamond)\right)=1$
- For all $\sigma_{\text {Max }}, \mathbb{E}_{v}^{\eta^{p}, \sigma_{\text {Max }}}<\infty$
- Max has a best response $\sigma_{\text {Max }}$ memoryless and deterministic

Randomisation emulates memory

Let $\left(\sigma_{\text {Min }}^{1}, \sigma_{\text {Min }}^{2}, K\right)$ be an optimal switching strategy, for all $p \in(0,1)$,

$$
\eta^{p}=p \times \sigma_{\text {Min }}^{1}+(1-p) \times \sigma_{\text {Min }}^{2}
$$

- For all $\left.\sigma_{\text {Max }}, \mathbb{P}_{v}^{\eta^{p}, \sigma_{\operatorname{Max}}}(\diamond)\right)=1$
- For all $\sigma_{\text {Max }}, \mathbb{E}_{v}^{\eta^{p}, \sigma_{\text {Max }}}<\infty$
- Max has a best response $\sigma_{\text {Max }}$ memoryless and deterministic

Randomisation emulates memory

Let $\left(\sigma_{\text {Min }}^{1}, \sigma_{\text {Min }}^{2}, K\right)$ be an optimal switching strategy, for all $p \in(0,1)$,

$$
\eta^{p}=p \times \sigma_{\text {Min }}^{1}+(1-p) \times \sigma_{\text {Min }}^{2}
$$

- For all $\left.\sigma_{\mathrm{Max}}, \mathbb{P}_{\vee}^{\eta^{p}, \sigma_{\mathrm{Max}}}(\diamond)\right)=1$
- For all $\sigma_{\text {Max }}, \mathbb{E}_{v}^{\eta^{p}, \sigma_{\text {Max }}}<\infty$
- Max has a best response $\sigma_{\text {Max }}$ memoryless and deterministic

$$
\lim _{\substack{p \rightarrow 1 \\ p<1}} \mathrm{mVal} \eta^{\eta^{p}} \leqslant \mathrm{Val}
$$

References I

居
Alur, Rajeev, Mikhail Bernadsky, and P. Madhusudan (2004).
"Optimal Reachability for Weighted Timed Games". In: Proceedings
of the 31st International Colloquium on Automata, Languages and
Programming (ICALP'04). Vol. 3142. LNCS. Springer, pp. 122-133.
囲 Bertrand, Nathalie, Patricia Bouyer, Thomas Brihaye, Quentin Menet, Christel Baier, Marcus Grösser, and Marcin Jurdziński (2014). "Stochastic Timed Automata". In: Log. Methods Comput. Sci. 10.4.
Bouyer, Patricia, Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin (2007). "On the Optimal Reachability Problem of Weighted Timed Automata". In: Formal Methods in System Design 31.2, pp. 135-175.
(Bouyer, Patricia, Thomas Brihaye, and Nicolas Markey (2006). "Improved Undecidability Results on Weighted Timed Automata". In: Information Processing Letters 98.5, pp. 188-194.
(Bouyer, Patricia, Ed Brinksma, and Kim G. Larsen (2004). "Staying Alive as Cheaply as Possible". In: Hybrid Systems: Computation and Control. Springer, pp. 203-218.

References II

R
Bouyer, Patricia, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen (2004). "Optimal Strategies in Priced Timed Game Automata". In: Proceedings of the 24th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS'04). Vol. 3328. LNCS. Springer, pp. 148-160.
Bouyer, Patricia, Samy Jaziri, and Nicolas Markey (2015). "On the Value Problem in Weighted Timed Games". In: Proceedings of the 26th International Conference on Concurrency Theory (CONCUR'15). Vol. 42. Leibniz International Proceedings in Informatics.
Leibniz-Zentrum für Informatik, pp. 311-324. DOI:
10.4230/LIPIcs. CONCUR. 2015.311.

Rouyer, Patricia, Kim G. Larsen, Nicolas Markey, and Jacob Illum Rasmussen (2006). "Almost Optimal Strategies in One-Clock Priced Timed Games". In: Proceedings of the 26th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS'06). Vol. 4337. Lecture Notes in Computer Science. Springer, pp. 345-356.

References III

Brihaye, Thomas, Véronique Bruyère, and Jean-François Raskin (2005). "On Optimal Timed Strategies". In: Proceedings of the Third international conference on Formal Modeling and Analysis of Timed Systems (FORMATS'05). Vol. 3829. Lecture Notes in Computer Science. Springer, pp. 49-64.
比 Brihaye, Thomas, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, and Benjamin Monmege (2015). "Simple Priced Timed Games Are Not That Simple". In: Proceedings of the 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS'15). Vol. 45. LIPIcs. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, pp. 278-292.
Brihaye, Thomas, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege (2016). "Pseudopolynomial Iterative Algorithm to Solve Total-Payoff Games and Min-Cost Reachability Games". In: Acta Informatica. DOI: 10.1007/s00236-016-0276-z.

References IV

Brihaye, Thomas, Gilles Geeraerts, Shankara Narayanan Krishna, Lakshmi Manasa, Benjamin Monmege, and Ashutosh Trivedi (2014). "Adding Negative Prices to Priced Timed Games". In: Proceedings of the 25th International Conference on Concurrency Theory (CONCUR'14). Vol. 8704. Springer, pp. 560-575. Doi: 10.1007/978-3-662-44584-6_38.

Busatto-Gaston, Damien, Benjamin Monmege, and Pierre-Alain Reynier (Apr. 2017). "Optimal Reachability in Divergent Weighted Timed Games". In: Proceedings of the 20th International Conference on Foundations of Software Science and Computation Structures (FoSSaCS'17). Ed. by Javier Esparza and Andrzej S. Murawski. Vol. 10203. Lecture Notes in Computer Science. Uppsala, Sweden: Springer, pp. 162-178. DOI: 10.1007/978-3-662-54458-7_10.

References V

居 Fearnley, John, Rasmus Ibsen-Jensen, and Rahul Savani (2020). "One-Clock Priced Timed Games are PSPACE-hard". In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Sciences (LICS'20). ACM, pp. 397-409. Doi: 10.1145/3373718. 3394772.

围 Fearnley, John and Marcin Jurdziński (2013). "Reachability in Two-Clock Timed Automata Is PSPACE-Complete". In: Proceedings of ICALP'13. Vol. 7966. Lecture Notes in Computer Science. Springer, pp. 212-223.
[1 Haase, Christoph, Joël Ouaknine, and James Worrell (2012). "On the Relationship Between Reachability Problems in Timed and Counter Automata". In: Proceedings of RP'12, pp. 54-65.
Ransen, Thomas Dueholm, Rasmus Ibsen-Jensen, and Peter Bro Miltersen (2013). "A Faster Algorithm for Solving One-Clock Priced Timed Games". In: Proceedings of the 24th International Conference on Concurrency Theory (CONCUR'13). Vol. 8052. LNCS. Springer, pp. 531-545.

References VI

Khachiyan, Leonid, Endre Boros, Konrad Borys, Khaled Elbassioni, Vladimir Gurvich, Gabor Rudolf, and Jihui Zhao (2008). "On Short Paths Interdiction Problems: Total and Node-Wise Limited Interdiction". In: Theory of Computing Systems 43.2, pp. 204-233. DOI: $10.1007 / \mathrm{s} 00224-007-9025-6$.
R Monmege, Benjamin, Julie Parreaux, and Pierre-Alain Reynier (Sept. 2020). "Reaching Your Goal Optimally by Playing at Random with No Memory". In: Proceedings of the 31st International Conference on Concurrency Theory (CONCUR 2020). Ed. by Igor Konnov and Laura Kovács. Vol. 171. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 26:1-26:21. DOI: 10.4230/LIPIcs.CONCUR.2020.26.

易
Monmege, Benjamin, Julie Parreaux, and Pierre-Alain Reynier (2021). "Playing Stochastically in Weighted Timed Games to Emulate Memory". In: 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Ed. by Nikhil Bansal, Emanuela Merelli, and James Worrell. Vol. 198. Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 137:1-137:17. DOI: 10.4230/LIPIcs.ICALP. 2021.137.

References VII

Rutkowski, Michał (2011). "Two-Player Reachability-Price Games on Single-Clock Timed Automata". In: Proceedings of the Ninth Workshop on Quantitative Aspects of Programming Languages (QAPL'11). Vol. 57. Electronic Proceedings in Theoretical Computer Science, pp. 31-46.

