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Real-time requirements/environment =⇒ real-time controller
Two-player timed game

Among all valid controllers, choose a cheap/efficient one
Two-player weighted timed game

Production/consumption of resources: negative weights
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Part I : Weighted games



Weighted games

v1

v2 v3

v4 v5

, v6

0

1

0

0

1

0

1

2

Weighted graph with
vertices partitioned between

2 players
+ reachability objective

v1
↘−→v4

→−→v5
←−→v4

→−→v5
↗−→,

1 +1 +2 = 4

v1
↗−→v2

→−→v3

⟲

−→v3

⟲

−→v3 · · ·
· · · = +∞ (, not reached)

Weight of a path:
{

+∞ if , not reached
total weight until , otherwise

Min = #, Max = 2 6/28
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Strategies and objectives

v1

v2 v3

v4 v5

, v6
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Strategy for a player: map finite executions to the transition to fire

Objective of player #: reach , and minimise the weight
Objective of player 2: avoid , or, if not possible, maximise the weight

Main object of interest:
Val(v) = inf

σMin∈StratMin
sup

σMax∈StratMax
Weight(Exec(v , σMin, σMax)) ∈ Z ∪ {±∞}

What weight can players guarantee? Following which strategies?

Min = #, Max = 2 7/28
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State of the art

▶ one-player: shortest path in a weighted graph... polynomial algo.

▶ two players, ⩾ 0 weights: polynomial algo.
(Khachiyan, Boros, Borys, Elbassioni, Gurvich, Rudolf, and Zhao 2008)

▶ two players, arbitrary weights?

,
−1

0

,

−1

−50

0

0

▶ Value −∞: detection is as hard as solving parity games
(NP ∩ co-NP)

▶ # needs memory

Min = #, Max = 2 8/28
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Pseudo-polynomial time algorithm
Joint work with T. Brihaye, G. Geeraerts and A. Haddad
Value iteration algorithm: compute F i(+∞)...

F(x)v =


min

e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMin

max
e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMax

,

−1

−W

0

0

2 #
horizon 0: +∞ +∞

horizon 1: +∞ 0
horizon 2: −1 0
horizon 3: −1 −1
horizon 4: −2 −1

. . . . . .
horizon 2W + 1: −W −W
horizon 2W + 2: −W −W

st
ra

te
gy

of
#

Theorem:
We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies: # may require (pseudo-polynomial) memory
to play optimally, 2 has optimal memoryless strategy.

Min = #, Max = 2 9/28
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Large polynomial fragment: divergent weighted games
Joint work with D. Busatto-Gaston and P.-A. Reynier

Divergence property (in the underlying graph):
Every cycle has total weight either ⩽ −1 or ⩾ 1

Characterisation: all the simple cycles of an SCC have the same sign
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v6
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vf

−1
−1

−1

−10

−1

1

1

−1

−12

Theorem:
Deciding if a weighted game is divergent is in PTIME.

Theorem:
We can compute in polynomial time the value of a divergent weighted
game, as well as optimal strategies for both players.
▶ Value computation SCC by SCC, bottom-up
▶ in positive SCC, the "value iteration" algo converges in linear time
▶ in negative SCC, detection of vertices of value −∞ in polynomial

time, and then the "value iteration" algo converges in linear time
with initialisation at −∞
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Part II : Weighted timed games



Weighted timed games

v1

v2 v3

v4 v5

, v6

x > 0
x := 0

x ⩽ 1

x ⩽ 2

x < 1
x := 0

x > 1

x ⩾ 1
x := 0

x ⩾ 1
x := 0

x ⩾ 1

Timed automaton with
vertices partitioned between

2 players
+ reachability objective

(v1, 0) 0.4,↘−−−−→(v4, 0.4) 0.6,→−−−−→(v5, 0) 1.5,←−−−−→(v4, 0) 1.1,→−−−−→(v5, 0) 2,↗−−−→(,, 2)
1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

(v1, 0) 0.2,↗−−−−→(v2, 0) 0.9,→−−−−→(v3, 0.9) 0.2,

⟲

−−−−→(v3, 0) 0.9,

⟲

−−−−→(v3, 0) · · ·
1×0.2+0 +2×0.9+0 −1×0.2+0 −1×0.9+0 · · · = +∞

Weight of an execution :
{

+∞ if , not reached
total weight until , otherwise
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Strategies and objectives

1 v1
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0
x ⩾ 1
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0

x ⩾ 1
2

Strategy for a player: map finite executions to a delay and a transition

Val(v , x) = inf
σMin∈StratMin

sup
σMax∈StratMax

Weight(Exec(v , x , σMin, σMax)) ∈ R
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State of the art

Decision problem: ∃ a strategy of # reaching , with a weight ⩽ K?

▶ One-player case (Weighted timed automata): PSPACE-complete
▶ Algorithm based on regions (Bouyer, Brinksma, and Larsen 2004;

Bouyer, Brihaye, Bruyère, and Raskin 2007);
▶ and hardness shown for timed automata with ⩾ 2 clocks (Fearnley

and Jurdziński 2013; Haase, Ouaknine, and Worrell 2012)

▶ 2-player WTGs: undecidable (Brihaye, Bruyère, and Raskin 2005; Bouyer,
Brihaye, and Markey 2006), even with only ⩾ 0 weights and 3 clocks
(only 2 clocks needed with arbitrary weights (Brihaye, Geeraerts,
Narayanan Krishna, Manasa, Monmege, and Trivedi 2014))

▶ Decidability results for WTGs with arbitrary weights?
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State of the art: one clock, ⩾ 0 weights

(Fearnley, Ibsen-Jensen, and Savani 2020): PSPACE-hard
(Bouyer, Larsen, Markey, and Rasmussen 2006; Rutkowski 2011; Hansen, Ibsen-Jensen, and

Miltersen 2013): exponential time algo
▶ simplification of 1-clock WTGs:

▶ clock bounded by 1, no guards, no resets

▶ for simple WTGs: compute value functions Val(v , x).
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of

3

16/28



State of the art: one clock, ⩾ 0 weights

(Fearnley, Ibsen-Jensen, and Savani 2020): PSPACE-hard
(Bouyer, Larsen, Markey, and Rasmussen 2006; Rutkowski 2011; Hansen, Ibsen-Jensen, and

Miltersen 2013): exponential time algo
▶ simplification of 1-clock WTGs:

▶ clock bounded by 1, no guards, no resets
▶ for simple WTGs: compute value functions Val(v , x).

3
v2

9
v4

9v1 6
v3

0 v5

,

3

x1

9
v1(x)

x1

9

6
5

3

1
3

2
3

v2(x)

x1

8

6
5

3

1
3

2
3

v3(x)

x1

5

3

2
3

v4(x)

x1

5

v5(x)

1

2 4

53

⊥

r1 = 9

r2 = 3 r4 = 9

r5 = 0

r3 = 6

c(5,⊥) = 5

c(3,1) = 3

Figure 1: Example of an SPTG, showing value functions and an optimal strategy profile.

current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of

3

16/28



Simple WTGs with arbitrary weights
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Simple WTGs with arbitrary weights
Joint work with T. Brihaye, G. Geeraerts, A. Haddad and E. Lefaucheux
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Theorem:
For every simple WTG, all value functions are piecewise affine, with at most
an exponential number of cutpoints, and can be computed in exponential
time.
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For every simple WTG, all value functions are piecewise affine, with at
most a pseudo-polynomial number of cutpoints, and can be computed
in pseudo-polynomial time.

For general 1-clock WTGs?
▶ removing guards: previously used techniques work!
▶ removing resets: previously, bound the number of resets...
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One-clock WTG with arbitrary weights NEW!
Joint work with J. Parreaux and P.-A. Reynier

New idea: limit the number of resets (to at most once for each
transition), after having blown up exponentially the WTG
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Theorem:
For every 1-clock WTG, all value functions can be computed in time ex-
ponential in the number of locations and in the largest transition weight,
and polynomial in other weights.
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State of the art: ⩾ 0 weights

⩾ 0 weights and strictly non-Zeno-cost cycles: 2-exp algo
(Bouyer, Cassez, Fleury, and Larsen 2004; Alur, Bernadsky, and Madhusudan 2004)

Value iteration algorithm: compute F i(+∞)...

F(x)(v,ν) =


sup

(v,ν)
d,t−−→(v′,ν′)

(
d × Weight(v) + Weight(t) + x(v′,ν′)

)
if v ∈ VMax

inf
(v,ν)

d,t−−→(v′,ν′)

(
d × Weight(v) + Weight(t) + x(v′,ν′)

)
if v ∈ VMin
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Extension to negative weights

Joint work with D. Busatto-Gaston and P.-A. Reynier

Divergence property:
Every execution following a cycle of the region automaton has a
total weight either ⩽ −1 or ⩾ 1

Characterisation: all simple cycles of an SCC of the region automaton
have the same sign

Theorem:
Deciding if a WTG is divergent is PSPACE-complete.

Theorem:
The value problem on divergent WTG is in 3-EXP, and is EXP-hard.
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What about cycles of weight = 0?
▶ Adding cycles of weight = 0 to divergent WTG: undecidable but

approximable (Bouyer, Jaziri, and Markey 2015)

Joint work with D. Busatto-Gaston and P.-A. Reynier
Almost-divergent WTG: every SCC of the region automaton is

either (⩾ 1 or = 0), or (⩽ −1 or = 0)
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Theorem:
Approximation is decidable for almost-divergent WTGs: (semi-)symbolic
algorithm that does not rely on an a-priori discretisation of the regions
with a fixed granularity 1/N.
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Part III : Trade memory for randomisation



How to define stochastic strategies?
(Bertrand, Bouyer, Brihaye, Menet, Baier, Grösser, and Jurdziński 2014)
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Perspectives

Poly-time algorithms in weighted games

Uta stansburiana - The side-blotched lizard

The populations for these lizards cycle on a six year basis.

When he read that lizards of the species Uta stansburia

were essentially engaged in a game with rock-paper-scissors

structure John Maynard Smith exclaimed :

They have read my book!

Other dynamics

Evolutionary game theory on graphs

Play with less visibility:
▶ robustness to environmental perturbations
▶ randomisation with interval of delays
▶ incomplete information
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Appendix

Case study

Example of divergent weighted game

Region and corner-point abstractions

1-clock Bi-WTGs

Bounding the number of resets needed to solve 1-clock WTGs is not easy

Randomisation emulates memory

Back to appendix



Case study

Peak-hour Offpeak-hour

Solar panels

15 c€/kWh 12 c€/kWh

Reselling: 20 c€/kWh

rate: total power × 15 c€/h total power × 12 c€/h

−0.5 × 20 c€/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1: discretisation of time, resolution via a weighted game
Solution 2: thin time behaviours, resolution via a weighted timed game
Solution 3: allow for randomisation in the behaviours?

Back to appendix
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A fundamental tool: region abstraction

Introduction Decidability Implementation Other problems Timed control Conclusion
Regions Extensions WTA

The region abstraction
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only constraints: x ⇠ c with c 2 {0, 1, 2}
y ⇠ c with c 2 {0, 1, 2}The path

x=1 y=1

- can be fired from
- cannot be fired from

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

; an equivalence of finite index

a time-abstract bisimulation

23/100

▶ compatibility between regions and guards
▶ compatibility between regions and delays
▶ → equivalence relation of finite index

Min = #, Max = 2
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Corner-point abstraction
▶ Main tool to solve one-player WTG: refinement of regions via corner

point abstraction / ε-graph (Bouyer, Brinksma, and Larsen 2004; Bouyer,
Brihaye, Bruyère, and Raskin 2007)

– ν ≈ ν′;
– ν̄i < ε iff ν̄′

i < ε for all i ∈ {1, . . . , n} with νi ≤ ci;
– 1 − ε < ν̄i iff 1 − ε < ν̄′

i for all i ∈ {1, . . . , n} with νi ≤ ci.

Fig. 6 indicates the partition induced by the ε-equivalence for the timed automaton of Fig. 2.

x1

x2

Fig. 6. The ε-equivalence ≈ε

The relation ≈ε is extended to the states of TA as done previously with ≈. An equivalence class is called an
ε-region. The ε-region to which a state q belongs is denoted [q]ε and the set of all ε-regions is denoted by Rε.

In order to define the ε-region graph of a timed automatonA, we do not need all the ε-regions of Rε (contrarily to
the construction of RA). Due to Lemma 3, we only need to consider the ε-regions [(l, ν)]ε whose clock values ν are
close enough to n-tuples of integers (the dashed zones on Fig. 6).

Definition 12. Given a timed automatonA and ε ∈]0, 1
2 ], the set of acceptable ε-regions, denoted Sε, is defined by

Sε =
{
[(l, ν)]ε | ∀i ∈ {1, . . . , n} : νi ≤ ci ⇒ (ν̄i < ε or 1 − ε < ν̄i)

}
.

Remark 14. If rε = [(l, ν)]ε is an ε-region of Sε, then there exists a unique region r ∈ R, equal to [(l, ν)], such that
rε ⊆ r. In the sequel, rε always denotes an ε-region included in the region r.13

Remark 15. Using the representation introduced in Remark 5, we can visualize an ε-region rε as on Fig. 7 (when r
is a bounded region). We observe that the fractional parts ν̄i of the clock values are either less than ε or greater than
1 − ε. We thus introduce the following notation14

Low(rε) = {xi | νi ≤ ci and ν̄i < ε};

High(rε) = {xi | νi ≤ ci and 1 − ε < ν̄i}.

This graphical representation of the ε-regions is very helpful in the proofs below.

0 1

ν̄1 · · · ν̄i ν̄i+1 · · · ν̄n

ε 1 − ε

Fig. 7. Representation of the region 0 < ν̄1 < · · · < ν̄i < ε ≤ 1 − ε < ν̄i+1 < · · · < ν̄n

13 Similarly if δ ≤ ε, we will also use notation rδ , rε, r with rδ ⊆ rε ⊆ r.
14 Notice that the sets Low(rε) and High(rε) are disjoint since ε ≤ 1

2
.
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One-clock Bi-WTGs (1BiWTGs)
Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi
Weights of locations {p−, p+} included in {0, +d , −d}, d ∈ N

1 v1[x ⩽ 1]

1
v2

[x ⩽ 2]
−1

v3

[x ⩽ 2]

−1
v4

[x ⩽ 2]
1
v5

[x ⩽ 2]

, v6

x > 0
x := 0, 0

x ⩽ 1, 1

x ⩽ 2, 0

x < 1, x := 0, 0

x > 1, 1

x ⩾ 1
x := 0, 0

x ⩾ 1
x := 0, 0

x ⩾ 1, 2

Min = #, Max = 2
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x > 1, 1

x ⩾ 1
x := 0, 0
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Region abstraction:

0 1 2(0, 1) (1, 2) (2, +∞)
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Corner-point abstraction:
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One-clock Bi-WTGs (1BiWTGs)
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{0}

{0} [0, η] [1−η, 1) [1, 1+η] [2−η, 2]

{0} (0, η] [1−η, 1) {1} {0}
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0

1 1
2

2

0 1

1
2

0
0

0

1 1 1

0
0

−1
−1

1
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One-clock Bi-WTGs (1BiWTGs)
Joint work with T. Brihaye, G. Geeraerts, S. K. Narayanan, L. Manasa and A. Trivedi
Weights of locations {p−, p+} included in {0, +d , −d}, d ∈ N
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x := 0, 0
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{0} [0, η] [1−η, 1) [1, 1+η] [2−η, 2]

{0} (0, η] [1−η, 1) {1} {0}

,

0

1 1
2

2

0 1

1
2

0
0

0

1 1 1

0
0

−1
−1

1

3

0 1 2(0, 1) (1, 2) (2, +∞)

Theorem:
Computation of the values of a 1BiWTG and synthesis of ε-optimal strate-
gies in pseudo-polynomial time (polynomial time if ⩾ 0 weights only).
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1BiWTG: maximal fragment for corner-point abstraction

Generalisation by E. Lefaucheux: two rates {p−, p+} included in
{0, +d , −c} (d , c ∈ N)
In more general settings, players may need to play far from corners...

▶ With 3 weights in {−1, 0, +1}: value 1/2...

0 1
−1

−1
,x ⩽ 1

x = 1, x := 0

x ⩽ 1 x = 1

x = 1

▶ With 2 weights in {−1, 0, +1} but 2 clocks: value 1/2...

0 0
1

0

0

1
,x ⩽ 1, y := 0

y = 0

y = 0

x = 1

x = 1

y = 1

y = 1

Min = #, Max = 2
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Bounding the number of resets needed is not easy

−1 0

1

,

x = 1, x := 0

W

x ⩽ 1

x = 1

Player # can guarantee (i.e., ensure to be below) value ε for all ε > 0...

... but cannot obtain 0: hence, no optimal strategy...

... moreover, to obtain ε, # needs to loop at least W + ⌈1/ log ε⌉ times
before reaching ,

Min = #, Max = 2
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Randomisation emulates memory
Let (σ1

Min, σ2
Min, K ) be an optimal switching strategy,

for all p ∈ (0, 1),
ηp = p × σ1

Min + (1 − p) × σ2
Min

,

−1

−10

0

0

p, 0

1 − p, 0

▶ For all σMax, Pηp ,σMax
v (⋄,) = 1

▶ For all σMax, Eηp ,σMax
v < ∞

▶ Max has a best response σMax
memoryless and deterministic

Min = #, Max = 2
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