
Logics for
Weighted Automata

Benjamin Monmege

Aix-Marseille Université, Laboratoire d’Informatique et Systèmes

Gala 2019 IIT Bombay

Software Verification

Software Verification

Critical Software
• communication systems
• e-commerce
• health databases
• energy production

Software Verification

Critical Software
• communication systems
• e-commerce
• health databases
• energy productionTO�
BE�
�VE
RIF
IED

Software Verification

Critical Software
• communication systems
• e-commerce
• health databases
• energy productionTO�
BE�
�VE
RIF
IED

Property to be verified

Software Verification

Critical Software
• communication systems
• e-commerce
• health databases
• energy productionTO�
BE�
�VE
RIF
IED

Is the property verified
or not by the software?

Property to be verified

Software Verification

Critical Software
• communication systems
• e-commerce
• health databases
• energy productionTO�
BE�
�VE
RIF
IED

Is the property verified
or not by the software?

Property to be verified

• May an error state be reached?
• Is there a book written by X, rented by Y?
• Does this leader election protocol permit to elect the leader?

Software Verification

Critical Software
• communication systems
• e-commerce
• health databases
• energy productionTO�
BE�
�VE
RIF
IED

Is the property verified
or not by the software?

Property to be verified

• May an error state be reached?
• Is there a book written by X, rented by Y?
• Does this leader election protocol permit to elect the leader?

• What is the probability for an error state to be reached?
• How many books, written by X, have been rented by Y?
• What is the maximal delay ensuring that this leader
election protocol permits the election?

From Boolean to Quantitative Verification

Formal Verification

Critical Software
• communication systems
• e-commerce
• health databases
• energy productionTO�

BE�
�VE
RIF
IED

Is the property verified
or not by the software?

Property to be verified

Formal Verification

Critical Software
• communication systems
• e-commerce
• health databases
• energy productionTO�

BE�
�VE
RIF
IED

Formal Model

Property to be verified

ababcaabb

ababcaabb

a

b

c

a

c c

Is the property verified
or not by the model?

Formal Verification

Critical Software
• communication systems
• e-commerce
• health databases
• energy productionTO�

BE�
�VE
RIF
IED

Formal Model

Property to be verified

(a+ b)?c(ac)+

FG (pU q)

ababcaabb

ababcaabb

a

b

c

a

c c

Formal Specification

Is the property verified
or not by the model?

Qualitative/Quantitative
Qualitative, Boolean: [Büchi 60, Elgot 61, Trakhtenbrot 61]

Automata MSO logic

Qualitative/Quantitative
Qualitative, Boolean: [Büchi 60, Elgot 61, Trakhtenbrot 61]

Quantitative, weights

Automata MSO logic

Weighted
Automata

Qualitative/Quantitative
Qualitative, Boolean: [Büchi 60, Elgot 61, Trakhtenbrot 61]

Quantitative, weights

Automata MSO logic

Weighted
Automata ???

Qualitative/Quantitative
Qualitative, Boolean: [Büchi 60, Elgot 61, Trakhtenbrot 61]

Quantitative, weights

Automata MSO logic

Weighted
Automata ???

Find suitable weighted MSO logic

Qualitative/Quantitative
Qualitative, Boolean: [Büchi 60, Elgot 61, Trakhtenbrot 61]

Quantitative, weights

Automata MSO logic

Weighted
Automata ???

Find suitable weighted MSO logic

Focus on definability / qualitative

Qualitative/Quantitative
Qualitative, Boolean: [Büchi 60, Elgot 61, Trakhtenbrot 61]

Quantitative, weights

Automata MSO logic

Weighted
Automata ???

Find suitable weighted MSO logic

Focus on definability / qualitative

Focus on computation / quantitative

Weighted Automata

0 1 2

a, 0

b, 0

a, 1

b, 0 b, 0

a, 0

b, 0

0 1

Σ, 1

a, 1

b,−1

Σ, 1

[Schützenberger 61]

Weighted Automata

0 1 2

a, 0

b, 0

a, 1

b, 0 b, 0

a, 0

b, 0

0 1

Σ, 1

a, 1

b,−1

Σ, 1

(Z,+,×,0,1)

[Schützenberger 61]

Weighted Automata

0 1 2

a, 0

b, 0

a, 1

b, 0 b, 0

a, 0

b, 0

0 1

Σ, 1

a, 1

b,−1

Σ, 1

(Z,+,×,0,1)

0 a,1⎯ →⎯⎯ 1 b,1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1 1

[Schützenberger 61]

Weighted Automata

0 1 2

a, 0

b, 0

a, 1

b, 0 b, 0

a, 0

b, 0

0 1

Σ, 1

a, 1

b,−1

Σ, 1

(Z,+,×,0,1)

0 a,1⎯ →⎯⎯ 1 b,1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

0 a,1⎯ →⎯⎯ 0 b,−1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

1

-1

[Schützenberger 61]

Weighted Automata

0 1 2

a, 0

b, 0

a, 1

b, 0 b, 0

a, 0

b, 0

0 1

Σ, 1

a, 1

b,−1

Σ, 1

(Z,+,×,0,1)

0 a,1⎯ →⎯⎯ 1 b,1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

0 a,1⎯ →⎯⎯ 0 b,−1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

0 a,1⎯ →⎯⎯ 0 b,1⎯ →⎯⎯ 0 a,1⎯ →⎯⎯ 1

1

-1

1

[Schützenberger 61]

Weighted Automata

0 1 2

a, 0

b, 0

a, 1

b, 0 b, 0

a, 0

b, 0

0 1

Σ, 1

a, 1

b,−1

Σ, 1

(Z,+,×,0,1)

0 a,1⎯ →⎯⎯ 1 b,1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

0 a,1⎯ →⎯⎯ 0 b,−1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

0 a,1⎯ →⎯⎯ 0 b,1⎯ →⎯⎯ 0 a,1⎯ →⎯⎯ 1

1

-1

1

Semantics of aba: 1+(-1)+1 = 1
[Schützenberger 61]

Weighted Automata

0 1 2

a, 0

b, 0

a, 1

b, 0 b, 0

a, 0

b, 0

0 1

Σ, 1

a, 1

b,−1

Σ, 1

(Z,+,×,0,1)

0 a,1⎯ →⎯⎯ 1 b,1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

0 a,1⎯ →⎯⎯ 0 b,−1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

0 a,1⎯ →⎯⎯ 0 b,1⎯ →⎯⎯ 0 a,1⎯ →⎯⎯ 1

1

-1

1

Semantics of aba: 1+(-1)+1 = 1

#a(w) - #b(w)

[Schützenberger 61]

Weighted Automata

0 1 2

a, 0

b, 0

a, 1

b, 0 b, 0

a, 0

b, 0

0 1

Σ, 1

a, 1

b,−1

Σ, 1

(Z,+,×,0,1) (Z∪{−∞},max,+,−∞,0)

0 a,1⎯ →⎯⎯ 1 b,1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

0 a,1⎯ →⎯⎯ 0 b,−1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

0 a,1⎯ →⎯⎯ 0 b,1⎯ →⎯⎯ 0 a,1⎯ →⎯⎯ 1

1

-1

1

Semantics of aba: 1+(-1)+1 = 1

#a(w) - #b(w)

[Schützenberger 61]

Weighted Automata

0 1 2

a, 0

b, 0

a, 1

b, 0 b, 0

a, 0

b, 0

0 1

Σ, 1

a, 1

b,−1

Σ, 1

(Z,+,×,0,1) (Z∪{−∞},max,+,−∞,0)

0 a,1⎯ →⎯⎯ 1 b,1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

0 a,1⎯ →⎯⎯ 0 b,−1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

0 a,1⎯ →⎯⎯ 0 b,1⎯ →⎯⎯ 0 a,1⎯ →⎯⎯ 1

1

-1

1

Semantics of aba: 1+(-1)+1 = 1

#a(w) - #b(w)

1 a,1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1 b,0⎯ →⎯⎯ 2 a,0⎯ →⎯⎯ 2 2

[Schützenberger 61]

Weighted Automata

0 1 2

a, 0

b, 0

a, 1

b, 0 b, 0

a, 0

b, 0

0 1

Σ, 1

a, 1

b,−1

Σ, 1

(Z,+,×,0,1) (Z∪{−∞},max,+,−∞,0)

0 a,1⎯ →⎯⎯ 1 b,1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

0 a,1⎯ →⎯⎯ 0 b,−1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

0 a,1⎯ →⎯⎯ 0 b,1⎯ →⎯⎯ 0 a,1⎯ →⎯⎯ 1

1

-1

1

Semantics of aba: 1+(-1)+1 = 1

#a(w) - #b(w)

1 a,1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1 b,0⎯ →⎯⎯ 2 a,0⎯ →⎯⎯ 2

0 a,0⎯ →⎯⎯ 0 a,0⎯ →⎯⎯ 0 b,0⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

2

1

[Schützenberger 61]

Weighted Automata

0 1 2

a, 0

b, 0

a, 1

b, 0 b, 0

a, 0

b, 0

0 1

Σ, 1

a, 1

b,−1

Σ, 1

(Z,+,×,0,1) (Z∪{−∞},max,+,−∞,0)

0 a,1⎯ →⎯⎯ 1 b,1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

0 a,1⎯ →⎯⎯ 0 b,−1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

0 a,1⎯ →⎯⎯ 0 b,1⎯ →⎯⎯ 0 a,1⎯ →⎯⎯ 1

1

-1

1

Semantics of aba: 1+(-1)+1 = 1

#a(w) - #b(w)

1 a,1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1 b,0⎯ →⎯⎯ 2 a,0⎯ →⎯⎯ 2

0 a,0⎯ →⎯⎯ 0 a,0⎯ →⎯⎯ 0 b,0⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

2

1

Semantics of aaba: max(2,1) = 2
[Schützenberger 61]

Weighted Automata

0 1 2

a, 0

b, 0

a, 1

b, 0 b, 0

a, 0

b, 0

0 1

Σ, 1

a, 1

b,−1

Σ, 1

(Z,+,×,0,1) (Z∪{−∞},max,+,−∞,0)

0 a,1⎯ →⎯⎯ 1 b,1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

0 a,1⎯ →⎯⎯ 0 b,−1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

0 a,1⎯ →⎯⎯ 0 b,1⎯ →⎯⎯ 0 a,1⎯ →⎯⎯ 1

1

-1

1

Semantics of aba: 1+(-1)+1 = 1

#a(w) - #b(w) max size of a’s blocks

1 a,1⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1 b,0⎯ →⎯⎯ 2 a,0⎯ →⎯⎯ 2

0 a,0⎯ →⎯⎯ 0 a,0⎯ →⎯⎯ 0 b,0⎯ →⎯⎯ 1 a,1⎯ →⎯⎯ 1

2

1

Semantics of aaba: max(2,1) = 2
[Schützenberger 61]

How to Specify Quantitative Properties?

How to Specify Quantitative Properties?
Weighted Monadic Second Order Logic [Droste&Gastin 05]
generalized to trees [Droste&Vogler 06], infinite words [Droste&Rahonis 07],
nested words [Mathissen 10] or pictures [Fichtner 11]

How to Specify Quantitative Properties?
Weighted Monadic Second Order Logic [Droste&Gastin 05]
generalized to trees [Droste&Vogler 06], infinite words [Droste&Rahonis 07],
nested words [Mathissen 10] or pictures [Fichtner 11]

Weighted Regular Expressions over finite words
[Kleene 56, Schützenberger 61]

How to Specify Quantitative Properties?
Weighted Monadic Second Order Logic [Droste&Gastin 05]
generalized to trees [Droste&Vogler 06], infinite words [Droste&Rahonis 07],
nested words [Mathissen 10] or pictures [Fichtner 11]

Weighted Regular Expressions over finite words
[Kleene 56, Schützenberger 61]

Weighted Temporal Logics:
PCTL [Hansson&Jonsson 94], WLTL [Mandrali 12]

How to Specify Quantitative Properties?
Weighted Monadic Second Order Logic [Droste&Gastin 05]
generalized to trees [Droste&Vogler 06], infinite words [Droste&Rahonis 07],
nested words [Mathissen 10] or pictures [Fichtner 11]

Weighted Regular Expressions over finite words
[Kleene 56, Schützenberger 61]

Weighted Temporal Logics:
PCTL [Hansson&Jonsson 94], WLTL [Mandrali 12]

• Core weighted logic for weighted automata

• Enhancing the logic to handle more properties: FO vs pebbles

• Deciding weighted FO logic

• A special case: the transducers

Weighted MSO
ϕ ::= s | Pa(x) | x ! y | x ∈ X | ¬Pa(x) | ¬(x ! y) | ¬(x ∈ X)

| ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃X ϕ | ∀X ϕ

[Droste&Gastin 2005]

Weighted MSO
ϕ ::= s | Pa(x) | x ! y | x ∈ X | ¬Pa(x) | ¬(x ! y) | ¬(x ∈ X)

| ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃X ϕ | ∀X ϕ

[Droste&Gastin 2005]

Negation restricted to
atomic formulae

Weighted MSO
ϕ ::= s | Pa(x) | x ! y | x ∈ X | ¬Pa(x) | ¬(x ! y) | ¬(x ∈ X)

| ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃X ϕ | ∀X ϕ

[Droste&Gastin 2005]

Negation restricted to
atomic formulae

Arbitrary constants
from a semiring

Inspired from the boolean semiring

ϕ ::= s | Pa(x) | x ! y | x ∈ X | ¬Pa(x) | ¬(x ! y) | ¬(x ∈ X)

| ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃X ϕ | ∀X ϕ

Semantics in a semiring S = (S,+,×, 0, 1)

Atomic formulae: 0,1

disjunction, existential quantifications: sum

conjunction, universal quantifications: product

B = ({0, 1},∨,∧, 0, 1)

Weighted MSO

[Droste&Gastin 2005]

ϕ ::= s | Pa(x) | x ! y | x ∈ X | ¬Pa(x) | ¬(x ! y) | ¬(x ∈ X)

| ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃X ϕ | ∀X ϕ

Examples

ϕ1 = ∃xPa(x)

[[ϕ1]](w) = |w|a

Weighted MSO

[Droste&Gastin 2005]

ϕ ::= s | Pa(x) | x ! y | x ∈ X | ¬Pa(x) | ¬(x ! y) | ¬(x ∈ X)

| ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃X ϕ | ∀X ϕ

Examples

ϕ1 = ∃xPa(x)

[[ϕ1]](w) = |w|a

ϕ2 = ∀x ∃y (y ! x ∧ Pa(y))

[[ϕ2]](abaab) = 1× 1× 2× 3× 3

[[ϕ2]](an) = n!

Weighted MSO

[Droste&Gastin 2005]

ϕ ::= s | Pa(x) | x ! y | x ∈ X | ¬Pa(x) | ¬(x ! y) | ¬(x ∈ X)

| ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃X ϕ | ∀X ϕ

Examples

ϕ1 = ∃xPa(x)

[[ϕ1]](w) = |w|a

ϕ2 = ∀x ∃y (y ! x ∧ Pa(y))

[[ϕ2]](abaab) = 1× 1× 2× 3× 3

[[ϕ2]](an) = n!

Too big to be computed by a
weighted automaton

Weighted MSO

[Droste&Gastin 2005]

ϕ ::= s | Pa(x) | x ! y | x ∈ X | ¬Pa(x) | ¬(x ! y) | ¬(x ∈ X)

| ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃X ϕ | ∀X ϕ

Examples

ϕ1 = ∃xPa(x)

[[ϕ1]](w) = |w|a

ϕ2 = ∀x ∃y (y ! x ∧ Pa(y))

[[ϕ2]](abaab) = 1× 1× 2× 3× 3

[[ϕ2]](an) = n!

Too big to be computed by a
weighted automaton

Need to restrict weighted MSO

Weighted MSO

[Droste&Gastin 2005]

ϕ ::= s | Pa(x) | x ! y | x ∈ X | ¬Pa(x) | ¬(x ! y) | ¬(x ∈ X)

| ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃X ϕ | ∀X ϕ

Theorem: weighted automata = restricted wMSO

Weighted MSO

[Droste&Gastin 2005]

ϕ ::= s | Pa(x) | x ! y | x ∈ X | ¬Pa(x) | ¬(x ! y) | ¬(x ∈ X)

| ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃X ϕ | ∀X ϕ

Theorem: weighted automata = restricted wMSO

Weighted MSO

[Droste&Gastin 2005]

ϕ ::= s | Pa(x) | x ! y | x ∈ X | ¬Pa(x) | ¬(x ! y) | ¬(x ∈ X)

| ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃X ϕ | ∀X ϕ

Theorem: weighted automata = restricted wMSO

φ almost boolean

Weighted MSO

[Droste&Gastin 2005]

ϕ ::= s | Pa(x) | x ! y | x ∈ X | ¬Pa(x) | ¬(x ! y) | ¬(x ∈ X)

| ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃X ϕ | ∀X ϕ

Theorem: weighted automata = restricted wMSO

φ almost boolean
commutativity

Weighted MSO

[Droste&Gastin 2005]

Core weighted MSO logic

[Gastin&Monmege 2015]

Boolean fragment

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Core weighted MSO logic

[Gastin&Monmege 2015]

Boolean fragment

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Step formulae Ψ ::= s | ϕ ?Ψ : Ψ

Core weighted MSO logic

[Gastin&Monmege 2015]

Boolean fragment

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Step formulae Ψ ::= s | ϕ ?Ψ : Ψ

if … then … else …

Core weighted MSO logic

[Gastin&Monmege 2015]

Boolean fragment

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Step formulae Ψ ::= s | ϕ ?Ψ : Ψ

if … then … else …Pa(x) ? 1 : 0

Core weighted MSO logic

[Gastin&Monmege 2015]

Boolean fragment

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Step formulae Ψ ::= s | ϕ ?Ψ : Ψ

if … then … else …Pa(x) ? 1 : 0

Pa(x) ? 1 : (Pb(x) ?−1 : 0)

Core weighted MSO logic

[Gastin&Monmege 2015]

Boolean fragment

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Step formulae Ψ ::= s | ϕ ?Ψ : Ψ

if … then … else …Pa(x) ? 1 : 0

x ∈ X1 ? s1 : (x ∈ X2 ? s2 : · · ·(x ∈ Xn−1 ? sn−1 : sn) · · ·)

Pa(x) ? 1 : (Pb(x) ?−1 : 0)

Core weighted MSO logic

[Gastin&Monmege 2015]

Boolean fragment

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Step formulae Ψ ::= s | ϕ ?Ψ : Ψ

if … then … else …Pa(x) ? 1 : 0

x ∈ X1 ? s1 : (x ∈ X2 ? s2 : · · ·(x ∈ Xn−1 ? sn−1 : sn) · · ·)

[[Ψ]](w,σ) = s some value occurring in Ψ

Pa(x) ? 1 : (Pb(x) ?−1 : 0)

Pa(x) ? 1 : (Pb(x) ?−1 : 0)

Boolean fragment

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Step formulae Ψ ::= s | ϕ ?Ψ : Ψ

if … then … else …Pa(x) ? 1 : 0

x ∈ X1 ? s1 : (x ∈ X2 ? s2 : · · ·(x ∈ Xn−1 ? sn−1 : sn) · · ·)

[[Ψ]](w,σ) = s some value occurring in Ψ

A step formula takes finitely many values

For each value, the pre-image is MSO-definable

Core weighted MSO logic

Boolean fragment

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Step formulae Ψ ::= s | ϕ ?Ψ : Ψ

core wMSO Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

x Φ |
∑

X Φ |
∏

x Ψ

Core weighted MSO logic

Boolean fragment

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Step formulae Ψ ::= s | ϕ ?Ψ : Ψ

core wMSO Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

x Φ |
∑

X Φ |
∏

x Ψ

no constants

Core weighted MSO logic

Boolean fragment

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Step formulae Ψ ::= s | ϕ ?Ψ : Ψ

core wMSO Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

x Φ |
∑

X Φ |
∏

x Ψ

if … then … else …

no constants

Core weighted MSO logic

Boolean fragment

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Step formulae Ψ ::= s | ϕ ?Ψ : Ψ

core wMSO Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

x Φ |
∑

X Φ |
∏

x Ψ

if … then … else …
Assigns a value from Ψ

to each position

no constants

Core weighted MSO logic

Boolean fragment

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Step formulae Ψ ::= s | ϕ ?Ψ : Ψ

core wMSO Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

x Φ |
∑

X Φ |
∏

x Ψ

if … then … else …
Assigns a value from Ψ

to each position

{|
∏

x Ψ |}(w,σ) = {{([[Ψ]](w,σ[x !→ i]))i}} ∈ N〈R!〉

no constants

singleton multiset

Core weighted MSO logic

Boolean fragment

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Step formulae Ψ ::= s | ϕ ?Ψ : Ψ

core wMSO Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

x Φ |
∑

X Φ |
∏

x Ψ

{|
∏

x Ψ |}(w,σ) = {{([[Ψ]](w,σ[x !→ i]))i}} ∈ N〈R!〉

Semantics

sums over multisets

Core weighted MSO logic

{| 0 |}(w,σ)=∅

Multisets of weight structures

Abstract semantics

wgt(ρ) = s1s2 · · · sn

{|A|}(w) = {{wgt(ρ) | ρ run on w}}

multiset

A run generates a sequence of weights

Multisets of weight structures

Abstract semantics

wgt(ρ) = s1s2 · · · sn

{|A|}(w) = {{wgt(ρ) | ρ run on w}}

{|A|} : Σ! → N〈R!〉

weights of A

multiset

A run generates a sequence of weights

Multisets of weight structures

Abstract semantics

wgt(ρ) = s1s2 · · · sn

{|A|}(w) = {{wgt(ρ) | ρ run on w}}

{|A|} : Σ! → N〈R!〉

weights of A

Aggregation aggr : N〈R!〉 → S

multiset

A run generates a sequence of weights

A run generates a sequence of weights

multiset

Abstract semantics

wgt(ρ) = s1s2 · · · sn

{|A|}(w) = {{wgt(ρ) | ρ run on w}}

{|A|} : Σ! → N〈R!〉

weights of A

Aggregation aggr : N〈R!〉 → S

Semiring: sum-product
aggrsp(A) =

∑∏

A =
∑

r1···rn∈A r1 × · · ·× rn

Multisets of weight structures

[Droste&Perevoshchikov 2014]

A run generates a sequence of weights

multiset

Abstract semantics

wgt(ρ) = s1s2 · · · sn

{|A|}(w) = {{wgt(ρ) | ρ run on w}}

{|A|} : Σ! → N〈R!〉

weights of A

Aggregation aggr : N〈R!〉 → S

Semiring: sum-product
aggrsp(A) =

∑∏

A =
∑

r1···rn∈A r1 × · · ·× rn

Valuation monoid: sum-valuation
aggrsv(A) =

∑

Val(A) =
∑

r1···rn∈A Val(r1 · · · rn)

Multisets of weight structures

[Droste&Perevoshchikov 2014]

A run generates a sequence of weights

multiset

Abstract semantics

wgt(ρ) = s1s2 · · · sn

{|A|}(w) = {{wgt(ρ) | ρ run on w}}

{|A|} : Σ! → N〈R!〉

weights of A

Aggregation aggr : N〈R!〉 → S

Semiring: sum-product
aggrsp(A) =

∑∏

A =
∑

r1···rn∈A r1 × · · ·× rn

Valuation monoid: sum-valuation
aggrsv(A) =

∑

Val(A) =
∑

r1···rn∈A Val(r1 · · · rn)

Multisets of weight structures

Average value
Discounted value…

[Droste&Perevoshchikov 2014]

Abstract semantics

wgt(ρ) = s1s2 · · · sn

{|A|}(w) = {{wgt(ρ) | ρ run on w}}

{|A|} : Σ! → N〈R!〉

weights of A

Aggregation aggr : N〈R!〉 → S

Concrete semantics [[A]] = aggr ◦ {|A|} : Σ! → S

multiset

Multisets of weight structures
A run generates a sequence of weights

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Ψ ::= s | ϕ ?Ψ : Ψ

Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

x Φ |
∑

X Φ |
∏

x Ψ

Theorem: weighted automata = core wMSO

[Gastin&Monmege 2015]

Core weighted MSO logic

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Ψ ::= s | ϕ ?Ψ : Ψ

Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

x Φ |
∑

X Φ |
∏

x Ψ

Theorem: weighted automata = core wMSO

{|− |} : Σ! → N〈R!〉Abstract semantics

[Gastin&Monmege 2015]

Core weighted MSO logic

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Ψ ::= s | ϕ ?Ψ : Ψ

Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

x Φ |
∑

X Φ |
∏

x Ψ

Theorem: weighted automata = core wMSO

{|− |} : Σ! → N〈R!〉Abstract semantics

Concrete semantics [[−]] = aggr ◦ {|− |} : Σ! → S

[Gastin&Monmege 2015]

Core weighted MSO logic

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Ψ ::= s | ϕ ?Ψ : Ψ

Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

x Φ |
∑

X Φ |
∏

x Ψ

Theorem: weighted automata = core wMSO

{|− |} : Σ! → N〈R!〉Abstract semantics

Concrete semantics [[−]] = aggr ◦ {|− |} : Σ! → S
Easy constructive proofs

preservation of the constants

no restriction on core wMSO

no hypotheses on weights

[Gastin&Monmege 2015]

Core weighted MSO logic

Extensions
More general models

than words:
trees, nested words,

labelled graphs,
infinite words…

Other logics: other
manageable fragment of

wMSO formula than
core wMSO

More powerful automata: finding
equivalent fragments of wMSO

Logical Specifications: Query Examples

IIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQ

Logical Specifications: Query Examples

IIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQ

Is there a line of green pixels?

Logical Specifications: Query Examples

IIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQ

Is there a line of green pixels?

How many lines of green pixels are there?

Logical Specifications: Query Examples

IIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQ

Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

Logical Specifications: Query Examples

IIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQ

Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

What is the average lightness?

Logical Specifications: Query Examples

IIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQ

What is the size of the biggest monochromatic rectangle?

Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

What is the average lightness?

Modelling a picture as a graph

IIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQ

Modelling a picture as a graph

IIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQ

Modelling a picture as a graph

IIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQIIIIIIIIIIIIIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQQQQQQQQ

G = (V, (Ed)d2D,�)

22

V set of vertices

� labels of vertices

G = (V, (Ed)d2D,�)

22

V set of vertices

� labels of vertices

D set of directions

D = {!, #} [{ , "}

G = (V, (Ed)d2D,�)

22

V set of vertices

� labels of vertices

D set of directions

Ed set of d-edges

D = {!, #} [{ , "}

G = (V, (Ed)d2D,�)

22

V set of vertices

� labels of vertices

D set of directions

Ed set of d-edges

D = {!, #} [{ , "}

deterministic
(hence bounded degree)

G = (V, (Ed)d2D,�)

22

Examples
Words

Ranked Trees

Nested Words
(Unranked Trees)

Mazurkiewicz Traces Pictures Graphs of bounded degree

Labyrinths ...

Logical Specifications: Query Examples
Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

What is the average lightness?

What is the size of the biggest monochromatic rectangle?

Logical Specifications: Query Examples
Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

What is the average lightness?

What is the size of the biggest monochromatic rectangle?

∃x∀y[(R*→(x, y) ∨ R*→(y, x)) ⇒ P (y)]?1 : 0

Boolean fragment: first-order logic

' ::= > | (x = y) | init(x) | final(x) | Pa(x) | Rd(x, y) | R?
d(x, y) |

¬' | ' _ ' | ' ^ ' | 9x' | 8x'

G,� |= >
G,� |= (x = y) iff. �(x) = �(y)
G,� |= init(x) iff. �(x) = v(i)

G,� |= final(x) iff. �(x) = v(f)

G,� |= Pa(x) iff. �(�(x)) = a
G,� |= Rd(x, y) iff. (�(x),�(y)) 2 Ed

G,� |= R?
d(x, y) iff. there is a d-path from �(x) to �(y)

G,� |= ¬' iff. G,� 6|= '
G,� |= '1 _ '2 iff. G,� |= '1 or G,� |= '2

G,� |= 9x' iff. G,�[x 7! v] |= ' for some v 2 V

Logical Specifications: Query Examples
Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

What is the average lightness?

What is the size of the biggest monochromatic rectangle?

∃x∀y[(R*→(x, y) ∨ R*→(y, x)) ⇒ P (y)]?1 : 0

Logical Specifications: Query Examples
Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

What is the average lightness?

What is the size of the biggest monochromatic rectangle?

∃x∀y[(R*→(x, y) ∨ R*→(y, x)) ⇒ P (y)]?1 : 0

¬∃z R→(z, x) ∧ ∀y R*→(x, y) ⇒ P (y)?1 : 0∑
x

Logical Specifications: Query Examples
Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

What is the average lightness?

What is the size of the biggest monochromatic rectangle?

∃x∀y[(R*→(x, y) ∨ R*→(y, x)) ⇒ P (y)]?1 : 0

¬∃z R→(z, x) ∧ ∀y R*→(x, y) ⇒ P (y)?1 : 0∑
x

(∑
x

¬∃yR→(y, x)?1 : 0) (∑
x

¬∃yR↓(y, x)?1 : 0)×

(N,+,⇥, 0, 1)

Logical Specifications: Query Examples
Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

What is the average lightness?

What is the size of the biggest monochromatic rectangle?

∃x∀y[(R*→(x, y) ∨ R*→(y, x)) ⇒ P (y)]?1 : 0

¬∃z R→(z, x) ∧ ∀y R*→(x, y) ⇒ P (y)?1 : 0∑
x

(∑
x

¬∃yR→(y, x)?1 : 0) (∑
x

¬∃yR↓(y, x)?1 : 0)×

(N [{�1},max,+,�1, 0)

(N,+,⇥, 0, 1)

Logical Specifications: Query Examples
Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

What is the average lightness?

What is the size of the biggest monochromatic rectangle?

∃x∀y[(R*→(x, y) ∨ R*→(y, x)) ⇒ P (y)]?1 : 0

¬∃z R→(z, x) ∧ ∀y R*→(x, y) ⇒ P (y)?1 : 0∑
x

(∑
x

¬∃yR→(y, x)?1 : 0) (∑
x

¬∃yR↓(y, x)?1 : 0)×

∑
x

P (x)?100 : 0 + ∑
x

P (x)?150 : 0 + ∑
x

P (x)?220 : 0

(N [{�1},max,+,�1, 0)

(N,+,⇥, 0, 1)

Logical Specifications: Query Examples
Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

What is the average lightness?

What is the size of the biggest monochromatic rectangle?

∃x∀y[(R*→(x, y) ∨ R*→(y, x)) ⇒ P (y)]?1 : 0

¬∃z R→(z, x) ∧ ∀y R*→(x, y) ⇒ P (y)?1 : 0∑
x

(∑
x

¬∃yR→(y, x)?1 : 0) (∑
x

¬∃yR↓(y, x)?1 : 0)×

∑
x

P (x)?100 : 0 + ∑
x

P (x)?150 : 0 + ∑
x

P (x)?220 : 0

max
x,y

φmono(x, y)?1 : 0 + (∑
z

φrect(x, y, z)?1 : 0)

(N [{�1},max,+,�1, 0)

(N,+,⇥, 0, 1)

Logical Specifications: Query Examples
Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

x

y

What is the average lightness?

What is the size of the biggest monochromatic rectangle?

∃x∀y[(R*→(x, y) ∨ R*→(y, x)) ⇒ P (y)]?1 : 0

¬∃z R→(z, x) ∧ ∀y R*→(x, y) ⇒ P (y)?1 : 0∑
x

(∑
x

¬∃yR→(y, x)?1 : 0) (∑
x

¬∃yR↓(y, x)?1 : 0)×

∑
x

P (x)?100 : 0 + ∑
x

P (x)?150 : 0 + ∑
x

P (x)?220 : 0

max
x,y

φmono(x, y)?1 : 0 + (∑
z

φrect(x, y, z)?1 : 0)

(N [{�1},max,+,�1, 0)

(N,+,⇥, 0, 1)

Logical Specifications: Query Examples
Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

x

y

What is the average lightness?

What is the size of the biggest monochromatic rectangle?

z

∃x∀y[(R*→(x, y) ∨ R*→(y, x)) ⇒ P (y)]?1 : 0

¬∃z R→(z, x) ∧ ∀y R*→(x, y) ⇒ P (y)?1 : 0∑
x

(∑
x

¬∃yR→(y, x)?1 : 0) (∑
x

¬∃yR↓(y, x)?1 : 0)×

∑
x

P (x)?100 : 0 + ∑
x

P (x)?150 : 0 + ∑
x

P (x)?220 : 0

max
x,y

φmono(x, y)?1 : 0 + (∑
z

φrect(x, y, z)?1 : 0)

Weighted FO logic

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Ψ ::= s | ϕ ?Ψ : Ψ

Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

x Φ |
∑

X Φ |
∏

x Ψ

Weighted FO logic

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Φ ::= s ϕ?Φ :Φ Φ+Φ Φ×Φ Φ
x∑ Φ

x∏

Reintroduction of
 the product Unconditional product

quantification

We can keep Boolean
MSO or restrict to FO…

Weighted FO logic

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Φ ::= s ϕ?Φ :Φ Φ+Φ Φ×Φ Φ
x∑ Φ

x∏

Reintroduction of
 the product Unconditional product

quantification

We can keep Boolean
MSO or restrict to FO…

ϕ2 = ∀x ∃y (y ! x ∧ Pa(y)) [[ϕ2]](an) = n!

Weighted FO logic

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Φ ::= s ϕ?Φ :Φ Φ+Φ Φ×Φ Φ
x∑ Φ

x∏

Reintroduction of
 the product Unconditional product

quantification

We can keep Boolean
MSO or restrict to FO…

2
y∏x∏!"# $
%&(w)= 2

|w|2

A = (Q,A, I, δ, T)

I ∈ SQ T ∈ SQ

δ : Q× Test×Move×Q→ S

Run as a finite sequence of configurations (W,σ, q, i,π)

σ : Peb→ pos(W)

π ∈ (Peb× pos(W))∗
with free pebbles

and a stack of currently dropped pebbles

Pebble weighted automata

Move = D ∪ {dropx, lift ∣ x ∈ Peb}

Pebble Weighted Automata: An Example

→+ ↓

dropx

→+ ↓

+γ(→+ ↓)

−γ(→+ ↓)

−γ→

+γ→

→+ ↓

dropy

?←

?↑

?↑

(x?∧ ?)→

?→

?↓

?↓

y?

lift

lift

→+ ↓

� =
X

c

(+c)c?

x y

Pebble automata over words and trees: [Globerman&Harel 96], [Engelfriet&Hoogeboom 99]

(Z [{�1},max,+,�1, 0)

©GasTeX

Pebble Weighted Automata: An Example

→+ ↓

dropx

→+ ↓

+γ(→+ ↓)

−γ(→+ ↓)

−γ→

+γ→

→+ ↓

dropy

?←

?↑

?↑

(x?∧ ?)→

?→

?↓

?↓

y?

lift

lift

→+ ↓

� =
X

c

(+c)c?

x y

Pebble automata over words and trees: [Globerman&Harel 96], [Engelfriet&Hoogeboom 99]

(Z [{�1},max,+,�1, 0)

©GasTeX

Pebble Weighted Automata: An Example

→+ ↓

dropx

→+ ↓

+γ(→+ ↓)

−γ(→+ ↓)

−γ→

+γ→

→+ ↓

dropy

?←

?↑

?↑

(x?∧ ?)→

?→

?↓

?↓

y?

lift

lift

→+ ↓

� =
X

c

(+c)c?

x

y

Pebble automata over words and trees: [Globerman&Harel 96], [Engelfriet&Hoogeboom 99]

(Z [{�1},max,+,�1, 0)

©GasTeX

Pebble Weighted Automata: An Example

→+ ↓

dropx

→+ ↓

+γ(→+ ↓)

−γ(→+ ↓)

−γ→

+γ→

→+ ↓

dropy

?←

?↑

?↑

(x?∧ ?)→

?→

?↓

?↓

y?

lift

lift

→+ ↓

� =
X

c

(+c)c?

x

y

Pebble automata over words and trees: [Globerman&Harel 96], [Engelfriet&Hoogeboom 99]

(Z [{�1},max,+,�1, 0)

©GasTeX

Pebble Weighted Automata: An Example

→+ ↓

dropx

→+ ↓

+γ(→+ ↓)

−γ(→+ ↓)

−γ→

+γ→

→+ ↓

dropy

?←

?↑

?↑

(x?∧ ?)→

?→

?↓

?↓

y?

lift

lift

→+ ↓

� =
X

c

(+c)c?

x

y

+ 220

Pebble automata over words and trees: [Globerman&Harel 96], [Engelfriet&Hoogeboom 99]

(Z [{�1},max,+,�1, 0)

©GasTeX

Pebble Weighted Automata: An Example

→+ ↓

dropx

→+ ↓

+γ(→+ ↓)

−γ(→+ ↓)

−γ→

+γ→

→+ ↓

dropy

?←

?↑

?↑

(x?∧ ?)→

?→

?↓

?↓

y?

lift

lift

→+ ↓

� =
X

c

(+c)c?

x

y

+ 220 - 0

Pebble automata over words and trees: [Globerman&Harel 96], [Engelfriet&Hoogeboom 99]

(Z [{�1},max,+,�1, 0)

©GasTeX

Pebble Weighted Automata: An Example

→+ ↓

dropx

→+ ↓

+γ(→+ ↓)

−γ(→+ ↓)

−γ→

+γ→

→+ ↓

dropy

?←

?↑

?↑

(x?∧ ?)→

?→

?↓

?↓

y?

lift

lift

→+ ↓

� =
X

c

(+c)c?

x

y

+ 220 - 0

Pebble automata over words and trees: [Globerman&Harel 96], [Engelfriet&Hoogeboom 99]

(Z [{�1},max,+,�1, 0)

©GasTeX

Pebble Weighted Automata: An Example

→+ ↓

dropx

→+ ↓

+γ(→+ ↓)

−γ(→+ ↓)

−γ→

+γ→

→+ ↓

dropy

?←

?↑

?↑

(x?∧ ?)→

?→

?↓

?↓

y?

lift

lift

→+ ↓

� =
X

c

(+c)c?

x

y

+ 220 - 0

Pebble automata over words and trees: [Globerman&Harel 96], [Engelfriet&Hoogeboom 99]

(Z [{�1},max,+,�1, 0)

©GasTeX

Pebble Weighted Automata: An Example

→+ ↓

dropx

→+ ↓

+γ(→+ ↓)

−γ(→+ ↓)

−γ→

+γ→

→+ ↓

dropy

?←

?↑

?↑

(x?∧ ?)→

?→

?↓

?↓

y?

lift

lift

→+ ↓

� =
X

c

(+c)c?

x

y

+ 220 - 0

Pebble automata over words and trees: [Globerman&Harel 96], [Engelfriet&Hoogeboom 99]

(Z [{�1},max,+,�1, 0)

©GasTeX

Pebble Weighted Automata: An Example

→+ ↓

dropx

→+ ↓

+γ(→+ ↓)

−γ(→+ ↓)

−γ→

+γ→

→+ ↓

dropy

?←

?↑

?↑

(x?∧ ?)→

?→

?↓

?↓

y?

lift

lift

→+ ↓

� =
X

c

(+c)c?

x

y

+ 220 - 0

Pebble automata over words and trees: [Globerman&Harel 96], [Engelfriet&Hoogeboom 99]

(Z [{�1},max,+,�1, 0)

©GasTeX

Pebble Weighted Automata: An Example

→+ ↓

dropx

→+ ↓

+γ(→+ ↓)

−γ(→+ ↓)

−γ→

+γ→

→+ ↓

dropy

?←

?↑

?↑

(x?∧ ?)→

?→

?↓

?↓

y?

lift

lift

→+ ↓

� =
X

c

(+c)c?

x

y

+ 220 - 0

Pebble automata over words and trees: [Globerman&Harel 96], [Engelfriet&Hoogeboom 99]

(Z [{�1},max,+,�1, 0)

©GasTeX

Pebble Weighted Automata: An Example

→+ ↓

dropx

→+ ↓

+γ(→+ ↓)

−γ(→+ ↓)

−γ→

+γ→

→+ ↓

dropy

?←

?↑

?↑

(x?∧ ?)→

?→

?↓

?↓

y?

lift

lift

→+ ↓

� =
X

c

(+c)c?

x

y

+ 220 - 0

Pebble automata over words and trees: [Globerman&Harel 96], [Engelfriet&Hoogeboom 99]

(Z [{�1},max,+,�1, 0)

©GasTeX

Pebble Weighted Automata: An Example

→+ ↓

dropx

→+ ↓

+γ(→+ ↓)

−γ(→+ ↓)

−γ→

+γ→

→+ ↓

dropy

?←

?↑

?↑

(x?∧ ?)→

?→

?↓

?↓

y?

lift

lift

→+ ↓

� =
X

c

(+c)c?

x y

+ 220 - 0

Pebble automata over words and trees: [Globerman&Harel 96], [Engelfriet&Hoogeboom 99]

(Z [{�1},max,+,�1, 0)

©GasTeX

Pebble Weighted Automata: An Example

→+ ↓

dropx

→+ ↓

+γ(→+ ↓)

−γ(→+ ↓)

−γ→

+γ→

→+ ↓

dropy

?←

?↑

?↑

(x?∧ ?)→

?→

?↓

?↓

y?

lift

lift

→+ ↓

� =
X

c

(+c)c?

x y

+ 220 - 0

Pebble automata over words and trees: [Globerman&Harel 96], [Engelfriet&Hoogeboom 99]

(Z [{�1},max,+,�1, 0)

©GasTeX

Pebble Weighted Automata: An Example

→+ ↓

dropx

→+ ↓

+γ(→+ ↓)

−γ(→+ ↓)

−γ→

+γ→

→+ ↓

dropy

?←

?↑

?↑

(x?∧ ?)→

?→

?↓

?↓

y?

lift

lift

→+ ↓

� =
X

c

(+c)c?

x y

+ 220 - 0

Weight of the

run: 220

Pebble automata over words and trees: [Globerman&Harel 96], [Engelfriet&Hoogeboom 99]

(Z [{�1},max,+,�1, 0)

©GasTeX

Pebble Weighted Automata: An Example

→+ ↓

dropx

→+ ↓

+γ(→+ ↓)

−γ(→+ ↓)

−γ→

+γ→

→+ ↓

dropy

?←

?↑

?↑

(x?∧ ?)→

?→

?↓

?↓

y?

lift

lift

→+ ↓

� =
X

c

(+c)c?

x y

+ 220 - 0

Weight of the

run: 220Non determinism

Non determinism
resolved by max

Pebble automata over words and trees: [Globerman&Harel 96], [Engelfriet&Hoogeboom 99]

(Z [{�1},max,+,�1, 0)

©GasTeX

Pebble Weighted Automata: An Example

→+ ↓

dropx

→+ ↓

+γ(→+ ↓)

−γ(→+ ↓)

−γ→

+γ→

→+ ↓

dropy

?←

?↑

?↑

(x?∧ ?)→

?→

?↓

?↓

y?

lift

lift

→+ ↓

� =
X

c

(+c)c?

x y

+ 220 - 0

Weight of the

run: 220Non determinism

Max of the weights of the runs:

biggest contrast in a white rectangle

Non determinism
resolved by max

Pebble automata over words and trees: [Globerman&Harel 96], [Engelfriet&Hoogeboom 99]

(Z [{�1},max,+,�1, 0)

©GasTeX

Translation from Logics to Automata

Theorem: Consider a searchable class of graph. Every wFO
formula can then be translated into a Pebble Weighted
Automaton equivalent over this class of graphs.

WFO PWA

Over words: [Bollig&Gastin&Monmege&Zeitoun 2010]
Over nested words: [Bollig&Gastin&Monmege&Zeitoun 2013]

Translation from Logics to Automata

Theorem: Consider a searchable class of graph. Every wFO
formula can then be translated into a Pebble Weighted
Automaton equivalent over this class of graphs.

WFO PWA

Over words: [Bollig&Gastin&Monmege&Zeitoun 2010]
Over nested words: [Bollig&Gastin&Monmege&Zeitoun 2013]

Which complexity?

Translation from Logics to Automata
(N [{+1},+,⇥, 0, 1)∑

x

P (x)

Translation from Logics to Automata
(N [{+1},+,⇥, 0, 1)

use non-determinism to count

• a run per position
• each run has the value of the subformula

∑
x

P (x)

Translation from Logics to Automata
(N [{+1},+,⇥, 0, 1)

use non-determinism to count

• a run per position
• each run has the value of the subformula

AΦ
dropx

lift

¬final?next ¬final?next

∑
x

Φ(x)

Translation from Logics to Automata
(N [{+1},+,⇥, 0, 1)

use non-determinism to count

• a run per position
• each run has the value of the subformula

AΦ
dropx

lift

¬final?next ¬final?next

explore the graph once

∑
x

Φ(x)

Translation from Logics to Automata
(N [{+1},+,⇥, 0, 1)

use non-determinism to count

• a run per position
• each run has the value of the subformula

AΦ
dropx

lift

¬final?next ¬final?next

explore the graph once

∑
x

Φ(x)G = (V, (Ed)d2D,�, v(i), v(f),)

v(i) v(f)



initial vertex final vertex

total order over vertices,
computable with navigating automata

Searchable Graphs

Translation from Logics to Automata
(N [{+1},+,⇥, 0, 1)

use non-determinism to count

• a run per position
• each run has the value of the subformula

AΦ
dropx

lift

¬final?next ¬final?next

explore the graph once

Examples: words, trees,
nested words, Mazurkiewicz

traces, pictures...

∑
x

Φ(x)G = (V, (Ed)d2D,�, v(i), v(f),)

v(i) v(f)



initial vertex final vertex

total order over vertices,
computable with navigating automata

Searchable Graphs

Translation from Logics to Automata
(N [{+1},+,⇥, 0, 1)

use non-determinism to count

• a run per position
• each run has the value of the subformula

AΦ
dropx

lift

¬final?next ¬final?next

explore the graph once

∑
x

Φ(x)

Translation from Logics to Automata

∏
x

Φ(x)

Translation from Logics to Automata

use sequentialization to multiply

• a single accepting run
• multiply the values of subformula along this run

∏
x

Φ(x)

Translation from Logics to Automata

use sequentialization to multiply

• a single accepting run
• multiply the values of subformula along this run

AΦ
dropx

lift

¬final?next

∏
x

Φ(x)

Translation from Logics to Automata

use sequentialization to multiply

• a single accepting run
• multiply the values of subformula along this run

AΦ
dropx

lift

¬final?next

∏
x

Φ(x)

Translation from Logics to Automata

Challenging for the Boolean part:
we need unambiguous automata

Translation from Logics to Automata

Challenging for the Boolean part:
we need unambiguous automata

Use deterministic automata
of size non-elementary...

Translation from Logics to Automata

Challenging for the Boolean part:
we need unambiguous automata

Take advantage of the
navigation and the pebbles to
build linear sized automata

Use deterministic automata
of size non-elementary...

Translation from Logics to Automata
(N [{+1},+,⇥, 0, 1)

(∃x φ(x))?3 : 5

Translation from Logics to Automata
(N [{+1},+,⇥, 0, 1)

use unambiguous non-determinism to check
• a single accepting run
• run has value 3 or 5 depending on the
truth value of the Boolean subformula

(∃x φ(x))?3 : 5

Translation from Logics to Automata
(N [{+1},+,⇥, 0, 1)

use unambiguous non-determinism to check
• a single accepting run
• run has value 3 or 5 depending on the
truth value of the Boolean subformula

(∃x φ(x))?3 : 5

Bϕ

ϕ

ϕdropx
lift

¬final?, next

lift

final?

final?¬final?, next

dropx

5

3

Translation from Logics to Automata
(N [{+1},+,⇥, 0, 1)

use unambiguous non-determinism to check
• a single accepting run
• run has value 3 or 5 depending on the
truth value of the Boolean subformula

unambiguous automaton for formula '(x)

(∃x φ(x))?3 : 5

Bϕ

ϕ

ϕdropx
lift

¬final?, next

lift

final?

final?¬final?, next

dropx

5

3

Translation from Logics to Automata

Theorem: Consider a searchable class of graph. Every wFO
formula can be translated into a Pebble Weighted Automaton
equivalent over this class of graphs.

WFO PWA

Obtained automata are of linear size with
respect to the size of the formula

linear time

Logic equivalent to PWA?
• Weighted FO misses a counting capability…

• Solution: weighted transitive closure operation

Over words: [Bollig&Gastin&Monmege&Zeitoun 2010]

Logic equivalent to PWA?
• Weighted FO misses a counting capability…

• Solution: weighted transitive closure operation

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Transitive closure logics
! For ϕ with at least two first order free variables, define

ϕ
1(x , y) = ϕ(x , y)

ϕ
n(x , y) = ∃z0 · · · ∃zn

(
x = z0 ∧ zn = y ∧ diff(z0, . . . , zn) ∧

[∧
1≤!≤n ϕ(z!−1, z!)

])
.

x yz2 z3 z1

ϕ

ϕ

ϕ ϕ

! The transitive closure operator is defined by TCxyϕ =
∨

n≥1
ϕ

n
.

! Bounded transitive closure : N-TCxyϕ = TCxy (x − N ≤ y ≤ x + N ∧ ϕ)

x yz1 z3 z2

≤ N

≤ N

≤ N

13/17

Over words: [Bollig&Gastin&Monmege&Zeitoun 2010]

Logic equivalent to PWA?
• Weighted FO misses a counting capability…

• Solution: weighted transitive closure operation

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Transitive closure logics
! For ϕ with at least two first order free variables, define

ϕ
1(x , y) = ϕ(x , y)

ϕ
n(x , y) = ∃z0 · · · ∃zn

(
x = z0 ∧ zn = y ∧ diff(z0, . . . , zn) ∧

[∧
1≤!≤n ϕ(z!−1, z!)

])
.

x yz2 z3 z1

ϕ

ϕ

ϕ ϕ

! The transitive closure operator is defined by TCxyϕ =
∨

n≥1
ϕ

n
.

! Bounded transitive closure : N-TCxyϕ = TCxy (x − N ≤ y ≤ x + N ∧ ϕ)

x yz1 z3 z2

≤ N

≤ N

≤ N

13/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Transitive closure logics
! For ϕ with at least two first order free variables, define

ϕ
1(x , y) = ϕ(x , y)

ϕ
n(x , y) = ∃z0 · · · ∃zn

(
x = z0 ∧ zn = y ∧ diff(z0, . . . , zn) ∧

[∧
1≤!≤n ϕ(z!−1, z!)

])
.

x yz2 z3 z1

ϕ

ϕ

ϕ ϕ

! The transitive closure operator is defined by TCxyϕ =
∨

n≥1
ϕ

n
.

! Bounded transitive closure : N-TCxyϕ = TCxy (x − N ≤ y ≤ x + N ∧ ϕ)

x yz1 z3 z2

≤ N

≤ N

≤ N

13/17
Over words: [Bollig&Gastin&Monmege&Zeitoun 2010]

Logic equivalent to PWA?
• Weighted FO misses a counting capability…

• Solution: weighted transitive closure operation

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Transitive closure logics
! For ϕ with at least two first order free variables, define

ϕ
1(x , y) = ϕ(x , y)

ϕ
n(x , y) = ∃z0 · · · ∃zn

(
x = z0 ∧ zn = y ∧ diff(z0, . . . , zn) ∧

[∧
1≤!≤n ϕ(z!−1, z!)

])
.

x yz2 z3 z1

ϕ

ϕ

ϕ ϕ

! The transitive closure operator is defined by TCxyϕ =
∨

n≥1
ϕ

n
.

! Bounded transitive closure : N-TCxyϕ = TCxy (x − N ≤ y ≤ x + N ∧ ϕ)

x yz1 z3 z2

≤ N

≤ N

≤ N

13/17 PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Transitive closure logics
! For ϕ with at least two first order free variables, define

ϕ
1(x , y) = ϕ(x , y)

ϕ
n(x , y) = ∃z0 · · · ∃zn

(
x = z0 ∧ zn = y ∧ diff(z0, . . . , zn) ∧

[∧
1≤!≤n ϕ(z!−1, z!)

])
.

x yz2 z3 z1

ϕ

ϕ

ϕ ϕ

! The transitive closure operator is defined by TCxyϕ =
∨

n≥1
ϕ

n
.

! Bounded transitive closure : N-TCxyϕ = TCxy (x − N ≤ y ≤ x + N ∧ ϕ)

x yz1 z3 z2

≤ N

≤ N

≤ N

13/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Transitive closure logics
! For ϕ with at least two first order free variables, define

ϕ
1(x , y) = ϕ(x , y)

ϕ
n(x , y) = ∃z0 · · · ∃zn

(
x = z0 ∧ zn = y ∧ diff(z0, . . . , zn) ∧

[∧
1≤!≤n ϕ(z!−1, z!)

])
.

x yz2 z3 z1

ϕ

ϕ

ϕ ϕ

! The transitive closure operator is defined by TCxyϕ =
∨

n≥1
ϕ

n
.

! Bounded transitive closure : N-TCxyϕ = TCxy (x − N ≤ y ≤ x + N ∧ ϕ)

x yz1 z3 z2

≤ N

≤ N

≤ N

13/17
Over words: [Bollig&Gastin&Monmege&Zeitoun 2010]

Logic equivalent to PWA?
• Weighted FO misses a counting capability…

• Solution: weighted transitive closure operation

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Transitive closure logics
! For ϕ with at least two first order free variables, define

ϕ
1(x , y) = ϕ(x , y)

ϕ
n(x , y) = ∃z0 · · · ∃zn

(
x = z0 ∧ zn = y ∧ diff(z0, . . . , zn) ∧

[∧
1≤!≤n ϕ(z!−1, z!)

])
.

x yz2 z3 z1

ϕ

ϕ

ϕ ϕ

! The transitive closure operator is defined by TCxyϕ =
∨

n≥1
ϕ

n
.

! Bounded transitive closure : N-TCxyϕ = TCxy (x − N ≤ y ≤ x + N ∧ ϕ)

x yz1 z3 z2

≤ N

≤ N

≤ N

13/17 PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Transitive closure logics
! For ϕ with at least two first order free variables, define

ϕ
1(x , y) = ϕ(x , y)

ϕ
n(x , y) = ∃z0 · · · ∃zn

(
x = z0 ∧ zn = y ∧ diff(z0, . . . , zn) ∧

[∧
1≤!≤n ϕ(z!−1, z!)

])
.

x yz2 z3 z1

ϕ

ϕ

ϕ ϕ

! The transitive closure operator is defined by TCxyϕ =
∨

n≥1
ϕ

n
.

! Bounded transitive closure : N-TCxyϕ = TCxy (x − N ≤ y ≤ x + N ∧ ϕ)

x yz1 z3 z2

≤ N

≤ N

≤ N

13/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Transitive closure logics
! For ϕ with at least two first order free variables, define

ϕ
1(x , y) = ϕ(x , y)

ϕ
n(x , y) = ∃z0 · · · ∃zn

(
x = z0 ∧ zn = y ∧ diff(z0, . . . , zn) ∧

[∧
1≤!≤n ϕ(z!−1, z!)

])
.

x yz2 z3 z1

ϕ

ϕ

ϕ ϕ

! The transitive closure operator is defined by TCxyϕ =
∨

n≥1
ϕ

n
.

! Bounded transitive closure : N-TCxyϕ = TCxy (x − N ≤ y ≤ x + N ∧ ϕ)

x yz1 z3 z2

≤ N

≤ N

≤ N

13/17

Theorem: Weighted First Order logic with weighted
transitive closure and Pebble Weighted Automata are
equivalent for zonable and searchable classes of graphs.

Over words: [Bollig&Gastin&Monmege&Zeitoun 2010]

Logic equivalent to PWA?
• Weighted FO misses a counting capability…

• Solution: weighted transitive closure operation

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Transitive closure logics
! For ϕ with at least two first order free variables, define

ϕ
1(x , y) = ϕ(x , y)

ϕ
n(x , y) = ∃z0 · · · ∃zn

(
x = z0 ∧ zn = y ∧ diff(z0, . . . , zn) ∧

[∧
1≤!≤n ϕ(z!−1, z!)

])
.

x yz2 z3 z1

ϕ

ϕ

ϕ ϕ

! The transitive closure operator is defined by TCxyϕ =
∨

n≥1
ϕ

n
.

! Bounded transitive closure : N-TCxyϕ = TCxy (x − N ≤ y ≤ x + N ∧ ϕ)

x yz1 z3 z2

≤ N

≤ N

≤ N

13/17 PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Transitive closure logics
! For ϕ with at least two first order free variables, define

ϕ
1(x , y) = ϕ(x , y)

ϕ
n(x , y) = ∃z0 · · · ∃zn

(
x = z0 ∧ zn = y ∧ diff(z0, . . . , zn) ∧

[∧
1≤!≤n ϕ(z!−1, z!)

])
.

x yz2 z3 z1

ϕ

ϕ

ϕ ϕ

! The transitive closure operator is defined by TCxyϕ =
∨

n≥1
ϕ

n
.

! Bounded transitive closure : N-TCxyϕ = TCxy (x − N ≤ y ≤ x + N ∧ ϕ)

x yz1 z3 z2

≤ N

≤ N

≤ N

13/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Transitive closure logics
! For ϕ with at least two first order free variables, define

ϕ
1(x , y) = ϕ(x , y)

ϕ
n(x , y) = ∃z0 · · · ∃zn

(
x = z0 ∧ zn = y ∧ diff(z0, . . . , zn) ∧

[∧
1≤!≤n ϕ(z!−1, z!)

])
.

x yz2 z3 z1

ϕ

ϕ

ϕ ϕ

! The transitive closure operator is defined by TCxyϕ =
∨

n≥1
ϕ

n
.

! Bounded transitive closure : N-TCxyϕ = TCxy (x − N ≤ y ≤ x + N ∧ ϕ)

x yz1 z3 z2

≤ N

≤ N

≤ N

13/17

Theorem: Weighted First Order logic with weighted
transitive closure and Pebble Weighted Automata are
equivalent for zonable and searchable classes of graphs.

Examples: words, trees,
nested words, Mazurkiewicz

traces, pictures...

Over words: [Bollig&Gastin&Monmege&Zeitoun 2010]

Deciding wFO?
Input: A pebble weighted automata / A formula of wFO+BTC
Question: Does there exist an equivalent formula in wFO?

Deciding wFO?
Input: A pebble weighted automata / A formula of wFO+BTC
Question: Does there exist an equivalent formula in wFO?

Open

Deciding FO?
Input: A finite automaton
Question: Does there exist an equivalent formula in FO?

Deciding FO?
Input: A finite automaton
Question: Does there exist an equivalent formula in FO?

[Schützenberger 65, McNaughton&Papert 71, Diekert&Gastin 2008]

Deciding FO?

Theorem: For a language L of finite (or infinite) words, TFAE
L is FO definable
L is aperiodic
L is LTL definable
L is accepted by some counter-free automaton
L is accepted by some aperiodic automaton…

Input: A finite automaton
Question: Does there exist an equivalent formula in FO?

[Schützenberger 65, McNaughton&Papert 71, Diekert&Gastin 2008]

Deciding FO?

Theorem: For a language L of finite (or infinite) words, TFAE
L is FO definable
L is aperiodic
L is LTL definable
L is accepted by some counter-free automaton
L is accepted by some aperiodic automaton…

∃m ≥ 1 p um
q ⟺ p um+1

q

Input: A finite automaton
Question: Does there exist an equivalent formula in FO?

[Schützenberger 65, McNaughton&Papert 71, Diekert&Gastin 2008]

Deciding FO?

Theorem: For a language L of finite (or infinite) words, TFAE
L is FO definable
L is aperiodic
L is LTL definable
L is accepted by some counter-free automaton
L is accepted by some aperiodic automaton…

∃m ≥ 1 p um
q ⟺ p um+1

q

Input: A finite automaton
Question: Does there exist an equivalent formula in FO?

PSPACE-complete… using algebra

[Schützenberger 65, McNaughton&Papert 71, Diekert&Gastin 2008]

Deciding core-wFO?
Input: A weighted automaton / A formula of core-wMSO
Question: Does there exist an equivalent formula in core-wFO?

Deciding core-wFO?
Input: A weighted automaton / A formula of core-wMSO
Question: Does there exist an equivalent formula in core-wFO?

(FO)
(step-wFO)
(core-wFO)

Deciding core-wFO?
Input: A weighted automaton / A formula of core-wMSO
Question: Does there exist an equivalent formula in core-wFO?

(FO)
(step-wFO)
(core-wFO)

Open

Deciding core-wFO?
Input: A weighted automaton / A formula of core-wMSO
Question: Does there exist an equivalent formula in core-wFO?

Theorem: [Droste&Gastin 2019]
core-wFO = aperiodic poly-ambiguous WA

Deciding core-wFO?
Input: A weighted automaton / A formula of core-wMSO
Question: Does there exist an equivalent formula in core-wFO?

Theorem: [Droste&Gastin 2019]
core-wFO = aperiodic poly-ambiguous WA
core-wFO without = aperiodic finitely-ambiguous WA∑

x

Deciding core-wFO?
Input: A weighted automaton / A formula of core-wMSO
Question: Does there exist an equivalent formula in core-wFO?

Theorem: [Droste&Gastin 2019]
core-wFO = aperiodic poly-ambiguous WA
core-wFO without = aperiodic finitely-ambiguous WA∑

x

core-wFO without + and = aperiodic unambiguous WA∑
x

Deciding core-wFO?
Input: A weighted automaton / A formula of core-wMSO
Question: Does there exist an equivalent formula in core-wFO?

Theorem: [Droste&Gastin 2019]
core-wFO = aperiodic poly-ambiguous WA
core-wFO without = aperiodic finitely-ambiguous WA∑

x

core-wFO without + and = aperiodic unambiguous WA∑
x

Decision procedure?… algebra is missing

Deciding core-wFO?
Input: A weighted automaton / A formula of core-wMSO
Question: Does there exist an equivalent formula in core-wFO?

A special case: the transducers
• Two-way Deterministic Finite-State Transducers
• Functional One-way Finite-State Transducers
• MSOT (à la Courcelle)

• Copyless Streaming String Transducers (Alur et al)

{Functions

A special case: the transducers
• Two-way Deterministic Finite-State Transducers
• Functional One-way Finite-State Transducers
• MSOT (à la Courcelle)

• Copyless Streaming String Transducers (Alur et al)

{Functions

{Relations

• Two-way Non-Deterministic Finite-State Transducers
• Non-Deterministic Finite-State Transducers
• Non-deterministic Copyless Streaming String Transducers

(Alur et Deshmukh)
• NMSOT (with free second-order variables)

A special case: the transducers
• Two-way Deterministic Finite-State Transducers
• Functional One-way Finite-State Transducers
• MSOT (à la Courcelle)

• Copyless Streaming String Transducers (Alur et al)

{Functions

{Relations

• Two-way Non-Deterministic Finite-State Transducers
• Non-Deterministic Finite-State Transducers
• Non-deterministic Copyless Streaming String Transducers

(Alur et Deshmukh)
• NMSOT (with free second-order variables)

only finite valued relations…

Transduction as weights
• Desire: weight transitions with words… Difficult to

equip A* with a semiring structure: how to combine
several accepting runs?

• Works for deterministic or unambiguous automata:
functional transducers

• For relations: semiring of languages

(2A*,∪,⋅,∅,{ε})

Examples
(P
x
(a)?{aa} : (P

x
(b)?{bb} :∅))

x∏

Examples
(P
x
(a)?{aa} : (P

x
(b)?{bb} :∅))

x∏ aba -> aabbaa

Examples
(P
x
(a)?{aa} : (P

x
(b)?{bb} :∅))

x∏ aba -> aabbaa

(P
x
(!)?{insert} :(P

x
(a)?{a} :(P

x
(b) : {b})))

x∏

Examples
(P
x
(a)?{aa} : (P

x
(b)?{bb} :∅))

x∏ aba -> aabbaa

(P
x
(!)?{insert} :(P

x
(a)?{a} :(P

x
(b) : {b})))

x∏ a*b -> ainsertb

Examples
(P
x
(a)?{aa} : (P

x
(b)?{bb} :∅))

x∏ aba -> aabbaa

(P
x
(!)?{insert} :(P

x
(a)?{a} :(P

x
(b) : {b})))

x∏ a*b -> ainsertb

P
y
(!)?

y∑ (x = y)?{insert} : (P
x
(!)?{ε} : (P

x
(a)?{a} : (P

x
(b)?{b})))

x∏⎡⎣⎢ ⎤
⎦⎥

Examples
(P
x
(a)?{aa} : (P

x
(b)?{bb} :∅))

x∏ aba -> aabbaa

(P
x
(!)?{insert} :(P

x
(a)?{a} :(P

x
(b) : {b})))

x∏ a*b -> ainsertb

P
y
(!)?

y∑ (x = y)?{insert} : (P
x
(!)?{ε} : (P

x
(a)?{a} : (P

x
(b)?{b})))

x∏⎡⎣⎢ ⎤
⎦⎥

a*b*a -> {ainsertba,abinserta}

Relation

Examples
P
x
(a)?{a} : (P

x
(b)?{ε})

x∏ × P
x
(a)?{ε} : (P

x
(b) : {c})

x∏

Examples
P
x
(a)?{a} : (P

x
(b)?{ε})

x∏ × P
x
(a)?{ε} : (P

x
(b) : {c})

x∏
ababbaabb -> aaaaccccc

Examples
P
x
(a)?{a} : (P

x
(b)?{ε})

x∏ × P
x
(a)?{ε} : (P

x
(b) : {c})

x∏
ababbaabb -> aaaaccccc

Not comp. by 1-way
Func Transducer

Examples
P
x
(a)?{a} : (P

x
(b)?{ε})

x∏ × P
x
(a)?{ε} : (P

x
(b) : {c})

x∏
ababbaabb -> aaaaccccc

Not comp. by 1-way
Func Transducer

P
x
(a)?{a} : (P

x
(b)?{ε})

x∏ + P
x
(a)?{ε} : (P

x
(b)×{c})

x∏

Examples
P
x
(a)?{a} : (P

x
(b)?{ε})

x∏ × P
x
(a)?{ε} : (P

x
(b) : {c})

x∏
ababbaabb -> aaaaccccc

Not comp. by 1-way
Func Transducer

P
x
(a)?{a} : (P

x
(b)?{ε})

x∏ + P
x
(a)?{ε} : (P

x
(b)×{c})

x∏
ababbaabb -> {aaaa,ccccc}

Examples
P
x
(a)?{a} : (P

x
(b)?{ε})

x∏ × P
x
(a)?{ε} : (P

x
(b) : {c})

x∏
ababbaabb -> aaaaccccc

Not comp. by 1-way
Func Transducer

P
x
(a)?{a} : (P

x
(b)?{ε})

x∏ + P
x
(a)?{ε} : (P

x
(b)×{c})

x∏
ababbaabb -> {aaaa,ccccc}

P
x
(a)?{a,ε} : (P

x
(b)?{b,ε})

x∏

Examples
P
x
(a)?{a} : (P

x
(b)?{ε})

x∏ × P
x
(a)?{ε} : (P

x
(b) : {c})

x∏
ababbaabb -> aaaaccccc

Not comp. by 1-way
Func Transducer

P
x
(a)?{a} : (P

x
(b)?{ε})

x∏ + P
x
(a)?{ε} : (P

x
(b)×{c})

x∏
ababbaabb -> {aaaa,ccccc}

P
x
(a)?{a,ε} : (P

x
(b)?{b,ε})

x∏ aba -> {ε,a,b,ab,ba,aa,aba}

Examples
P
x
(a)?{a} : (P

x
(b)?{ε})

x∏ × P
x
(a)?{ε} : (P

x
(b) : {c})

x∏
ababbaabb -> aaaaccccc

Not comp. by 1-way
Func Transducer

P
x
(a)?{a} : (P

x
(b)?{ε})

x∏ + P
x
(a)?{ε} : (P

x
(b)×{c})

x∏
ababbaabb -> {aaaa,ccccc}

P
x
(a)?{a,ε} : (P

x
(b)?{b,ε})

x∏ aba -> {ε,a,b,ab,ba,aa,aba}

P
x
(a)?A*aA* : (P

x
(b)?A*bA*)

x∏

Examples
P
x
(a)?{a} : (P

x
(b)?{ε})

x∏ × P
x
(a)?{ε} : (P

x
(b) : {c})

x∏
ababbaabb -> aaaaccccc

Not comp. by 1-way
Func Transducer

P
x
(a)?{a} : (P

x
(b)?{ε})

x∏ + P
x
(a)?{ε} : (P

x
(b)×{c})

x∏
ababbaabb -> {aaaa,ccccc}

P
x
(a)?{a,ε} : (P

x
(b)?{b,ε})

x∏ aba -> {ε,a,b,ab,ba,aa,aba}

P
x
(a)?A*aA* : (P

x
(b)?A*bA*)

x∏ aba -> A*aA*bA*aA*

Infinitely-valued relation

Transducers
P
x
(a)?A*aA* : (P

x
(b)?A*bA*)

x∏

a|A*aA* b|A*bA*

Infinite-valued, but deterministic

Reverse?

a|a, ←

last?

A|ε, →

b|b, ←

first?

Reverse?

a|a, ←

last?

A|ε, →

b|b, ←

first?

Impossible in FO…
… because of order of

interpretation of product

Reverse?

a|a, ←

last?

A|ε, →

b|b, ←

first?

Impossible in FO…
… because of order of

interpretation of product

Solution: in this non-commutative setting,
add right-to-left products

Reverse?

a|a, ←

last?

A|ε, →

b|b, ←

first?

Impossible in FO…
… because of order of

interpretation of product

Solution: in this non-commutative setting,
add right-to-left products

P
x
(a)?{a} : (P

x
(b)?{b})

x⨿

Transitive closure
ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Φ ::= L ϕ?Φ :Φ Φ+Φ Φ×Φ Φ
x∑ Φ

x∏ N -TC
x ,y
Φ

Transitive closure
ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Φ ::= L ϕ?Φ :Φ Φ+Φ Φ×Φ Φ
x∑ Φ

x∏ N -TC
x ,y
Φ

Regular language

Transitive closure
ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Φ ::= L ϕ?Φ :Φ Φ+Φ Φ×Φ Φ
x∑ Φ

x∏ N -TC
x ,y
Φ

Regular language
Able to define right-

to-left product

Φ(x) := [1-TC
x ,yx⨿ (y = x −1?Φ(x))](last, first)×Φ(first)

Transitive closure
ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Φ ::= L ϕ?Φ :Φ Φ+Φ Φ×Φ Φ
x∑ Φ

x∏ N -TC
x ,y
Φ

Regular language
Able to define right-

to-left product

Φ(x) := [1-TC
x ,yx⨿ (y = x −1?Φ(x))](last, first)×Φ(first)

Theorem: Pebble Transducers = wFO + bounded-TC

with regular
language productions

linear transformation from logic to transducers

Functional transductions

Functional transductions
Theorem: Polyregular functions [Bojańczyk 2018]

Deterministic pebble automata

Functional transductions
Theorem: Polyregular functions [Bojańczyk 2018]

Deterministic pebble automata
= For–transducers

Functional transductions
Theorem: Polyregular functions [Bojańczyk 2018]

Deterministic pebble automata
= For–transducers
= Smallest class of transductions closed under composition,

containing iterated reverse and squaring

Functional transductions
Theorem: Polyregular functions [Bojańczyk 2018]

Deterministic pebble automata
= For–transducers
= Smallest class of transductions closed under composition,

containing iterated reverse and squaring
= A fragment of λ-calculus…

Functional transductions
Theorem: Polyregular functions [Bojańczyk 2018]

Deterministic pebble automata
= For–transducers
= Smallest class of transductions closed under composition,

containing iterated reverse and squaring
= A fragment of λ-calculus…

∑
x

= wFO without + and , all weights being words,
underlying boolean logic being MSO

Functional transductions
Theorem: Polyregular functions [Bojańczyk 2018]

Deterministic pebble automata
= For–transducers
= Smallest class of transductions closed under composition,

containing iterated reverse and squaring
= A fragment of λ-calculus…

∑
x

= wFO without + and , all weights being words,
underlying boolean logic being MSO

Similar characterizations for relational
transductions / weighted functions ?

Summary

wMSO

Summary

wMSO

Summary

wFO+BTC

wMSO

wFO

Summary

wFO+BTC

wMSO

wFO

core-wMSO

Summary

wFO+BTC

wMSO

wFO

core-wMSO

Summary

core-wFO

wFO+BTC

wMSO

wFO

core-wMSO

Summary

core-wFO

FO MSO

wFO+BTC

wMSO

wFO

core-wMSO

Summary

core-wFO

FO MSO

WA

wFO+BTC

WA

wMSO

wFO

core-wMSO

Summary

core-wFO

FO MSO

WA

pebble-WA
wFO+BTC

WA

pebble-WA

wMSO

wFO

core-wMSO

Summary

core-wFO

FO MSO

aperiodic
poly-amb

WA

WA

pebble-WA
wFO+BTC

WA

pebble-WA

wMSO

wFO

core-wMSO

Summary

core-wFO

FO MSO

aperiodic
poly-amb

WA

WA

pebble-WA
wFO+BTC

WA

?aperodic
pebble-WA?

pebble-WA

wMSO

wFO

core-wMSO

Summary

core-wFO

FO MSO

aperiodic
poly-amb

WA

WA

pebble-WA
wFO+BTC

WA

?aperodic
pebble-WA?

pebble-WA

?without sums =
det pebble-WA?

wMSO

wFO

core-wMSO

Summary

core-wFO

FO MSO

aperiodic
poly-amb

WA

WA

pebble-WA
wFO+BTC

WA

?aperodic
pebble-WA?

pebble-WA

?without sums =
det pebble-WA?

?

wMSO

wFO

core-wMSO

Summary

core-wFO

FO MSO

aperiodic
poly-amb

WA

WA

pebble-WA
wFO+BTC

WA

?aperodic
pebble-WA?

pebble-WA

?without sums =
det pebble-WA?

?

Equivalences between logics
and automata

wMSO

wFO

core-wMSO

Summary

core-wFO

FO MSO

aperiodic
poly-amb

WA

WA

pebble-WA
wFO+BTC

WA

?aperodic
pebble-WA?

pebble-WA

?without sums =
det pebble-WA?

?

Equivalences between logics
and automata

Evaluation in
𝒪(|φ | . |w |#vars)

wMSO

wFO

core-wMSO

Summary

core-wFO

FO MSO

aperiodic
poly-amb

WA

WA

pebble-WA
wFO+BTC

WA

?aperodic
pebble-WA?

pebble-WA

?without sums =
det pebble-WA?

?

Equivalences between logics
and automata

Evaluation in
𝒪(|φ | . |w |#vars)

Decidability procedures:
equivalence,
minimisation,
boundedness

Independant of
weight structures

wMSO

wFO

core-wMSO

Summary

core-wFO

FO MSO

aperiodic
poly-amb

WA

WA

pebble-WA
wFO+BTC

WA

?aperodic
pebble-WA?

pebble-WA

?without sums =
det pebble-WA?

?

Equivalences between logics
and automata

Evaluation in
𝒪(|φ | . |w |#vars)

Very dependant of
weight structures

Decidability procedures:
equivalence,
minimisation,
boundedness

Independant of
weight structures

wMSO

wFO

core-wMSO

Summary

core-wFO

FO MSO

aperiodic
poly-amb

WA

WA

pebble-WA
wFO+BTC

WA

?aperodic
pebble-WA?

pebble-WA

?without sums =
det pebble-WA?

?

Equivalences between logics
and automata

Evaluation in
𝒪(|φ | . |w |#vars)

Very dependant of
weight structures

Decidability procedures:
equivalence,
minimisation,
boundedness

Link with register models?
[Douéneau&Filiot&Gastin 2018]

marbles/invisible-pebbles: fragments of logic?

Independant of
weight structures

wMSO

wFO

core-wMSO

Summary

core-wFO

FO MSO

aperiodic
poly-amb

WA

WA

pebble-WA
wFO+BTC

WA

?aperodic
pebble-WA?

pebble-WA

?without sums =
det pebble-WA?

?

Equivalences between logics
and automata

Evaluation in
𝒪(|φ | . |w |#vars)

Very dependant of
weight structures

Decidability procedures:
equivalence,
minimisation,
boundedness

Link with register models?
[Douéneau&Filiot&Gastin 2018]

marbles/invisible-pebbles: fragments of logic?

2-way 1-way? EXPSPACE for functional transducers
[Filiot&Gauwin&Reynier&Servais 2013,
Baschenis&Gauwin&Muscholl&Puppis 2017+Jecker 2018]

partially-commutative weight structure?
with/without pebbles?

→

Independant of
weight structures

wMSO

wFO

core-wMSO

Summary

core-wFO

FO MSO

aperiodic
poly-amb

WA

WA

pebble-WA
wFO+BTC

WA

?aperodic
pebble-WA?

pebble-WA

?without sums =
det pebble-WA?

?

Equivalences between logics
and automata

Evaluation in
𝒪(|φ | . |w |#vars)

Very dependant of
weight structures

Decidability procedures:
equivalence,
minimisation,
boundedness

Link with register models?
[Douéneau&Filiot&Gastin 2018]

marbles/invisible-pebbles: fragments of logic?

Thank you!

2-way 1-way? EXPSPACE for functional transducers
[Filiot&Gauwin&Reynier&Servais 2013,
Baschenis&Gauwin&Muscholl&Puppis 2017+Jecker 2018]

partially-commutative weight structure?
with/without pebbles?

→

