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Is the property verified 
or not by the software?

Property to be verified

• May an error state be reached?
• Is there a book written by X, rented by Y?
• Does this leader election protocol permit to elect the leader?

• What is the probability for an error state to be reached?
• How many books, written by X, have been rented by Y?
• What is the maximal delay ensuring that this leader 
election protocol permits the election? 

From Boolean to        Quantitative Verification
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Formal Model

Property to be verified
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Formal Specification

Is the property verified 
or not by the model?



Qualitative/Quantitative
Qualitative, Boolean: [Büchi 60, Elgot 61, Trakhtenbrot 61]

Automata MSO logic



Qualitative/Quantitative
Qualitative, Boolean: [Büchi 60, Elgot 61, Trakhtenbrot 61]

Quantitative, weights

Automata MSO logic

Weighted 
Automata



Qualitative/Quantitative
Qualitative, Boolean: [Büchi 60, Elgot 61, Trakhtenbrot 61]

Quantitative, weights

Automata MSO logic

Weighted 
Automata ???



Qualitative/Quantitative
Qualitative, Boolean: [Büchi 60, Elgot 61, Trakhtenbrot 61]

Quantitative, weights

Automata MSO logic

Weighted 
Automata ???

Find suitable weighted MSO logic



Qualitative/Quantitative
Qualitative, Boolean: [Büchi 60, Elgot 61, Trakhtenbrot 61]

Quantitative, weights

Automata MSO logic

Weighted 
Automata ???

Find suitable weighted MSO logic

Focus on definability / qualitative



Qualitative/Quantitative
Qualitative, Boolean: [Büchi 60, Elgot 61, Trakhtenbrot 61]

Quantitative, weights

Automata MSO logic

Weighted 
Automata ???

Find suitable weighted MSO logic

Focus on definability / qualitative

Focus on computation / quantitative
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How to Specify Quantitative Properties?
Weighted Monadic Second Order Logic [Droste&Gastin 05]
generalized to trees [Droste&Vogler 06], infinite words [Droste&Rahonis 07], 
nested words [Mathissen 10] or pictures [Fichtner 11]

Weighted Regular Expressions over finite words 
[Kleene 56, Schützenberger 61]

Weighted Temporal Logics: 
PCTL [Hansson&Jonsson 94], WLTL [Mandrali 12]

• Core weighted logic for weighted automata

• Enhancing the logic to handle more properties: FO vs pebbles

• Deciding weighted FO logic

• A special case: the transducers
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Negation restricted to 
atomic formulae

Arbitrary constants 
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Inspired from the boolean semiring

ϕ ::= s | Pa(x) | x ! y | x ∈ X | ¬Pa(x) | ¬(x ! y) | ¬(x ∈ X)

| ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃X ϕ | ∀X ϕ

Semantics in a semiring S = (S,+,×, 0, 1)

Atomic formulae: 0,1

disjunction, existential quantifications: sum

conjunction, universal quantifications: product

B = ({0, 1},∨,∧, 0, 1)

Weighted MSO
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Too big to be computed by a 
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ϕ ::= s | Pa(x) | x ! y | x ∈ X | ¬Pa(x) | ¬(x ! y) | ¬(x ∈ X)

| ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃X ϕ | ∀X ϕ

Theorem: weighted automata = restricted wMSO

φ almost boolean
commutativity

Weighted MSO

[Droste&Gastin 2005]
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Pa(x) ? 1 : (Pb(x) ?−1 : 0)

Boolean fragment

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Step formulae Ψ ::= s | ϕ ?Ψ : Ψ

if … then … else …Pa(x) ? 1 : 0

x ∈ X1 ? s1 : (x ∈ X2 ? s2 : · · ·(x ∈ Xn−1 ? sn−1 : sn) · · · )

[[Ψ ]](w,σ) = s some value occurring in Ψ

A step formula takes finitely many values

For each value, the pre-image is MSO-definable

Core weighted MSO logic
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Boolean fragment

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Step formulae Ψ ::= s | ϕ ?Ψ : Ψ

core wMSO Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

x Φ |
∑

X Φ |
∏

x Ψ

if … then … else …
Assigns a value from Ψ

to each position

{|
∏

x Ψ |}(w,σ) = {{([[Ψ ]](w,σ[x !→ i]))i}} ∈ N〈R!〉

no constants

singleton multiset

Core weighted MSO logic



Boolean fragment

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Step formulae Ψ ::= s | ϕ ?Ψ : Ψ

core wMSO Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

x Φ |
∑

X Φ |
∏

x Ψ

{|
∏

x Ψ |}(w,σ) = {{([[Ψ ]](w,σ[x !→ i]))i}} ∈ N〈R!〉

Semantics

 

sums over multisets 

Core weighted MSO logic

{| 0 |}(w,σ)=∅
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Abstract semantics

wgt(ρ) = s1s2 · · · sn

{|A|}(w) = {{wgt(ρ) | ρ run on w}}

{|A|} : Σ! → N〈R!〉

weights of A

Aggregation aggr : N〈R!〉 → S
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A run generates a sequence of weights

multiset

Abstract semantics

wgt(ρ) = s1s2 · · · sn

{|A|}(w) = {{wgt(ρ) | ρ run on w}}

{|A|} : Σ! → N〈R!〉

weights of A

Aggregation aggr : N〈R!〉 → S

Semiring: sum-product
aggrsp(A) =

∑∏

A =
∑

r1···rn∈A r1 × · · ·× rn

Multisets of weight structures

[Droste&Perevoshchikov 2014]



A run generates a sequence of weights

multiset

Abstract semantics

wgt(ρ) = s1s2 · · · sn

{|A|}(w) = {{wgt(ρ) | ρ run on w}}

{|A|} : Σ! → N〈R!〉

weights of A

Aggregation aggr : N〈R!〉 → S

Semiring: sum-product
aggrsp(A) =

∑∏

A =
∑

r1···rn∈A r1 × · · ·× rn

Valuation monoid: sum-valuation
aggrsv(A) =

∑

Val(A) =
∑

r1···rn∈A Val(r1 · · · rn)

Multisets of weight structures

[Droste&Perevoshchikov 2014]



A run generates a sequence of weights

multiset

Abstract semantics

wgt(ρ) = s1s2 · · · sn

{|A|}(w) = {{wgt(ρ) | ρ run on w}}

{|A|} : Σ! → N〈R!〉

weights of A

Aggregation aggr : N〈R!〉 → S

Semiring: sum-product
aggrsp(A) =

∑∏

A =
∑

r1···rn∈A r1 × · · ·× rn

Valuation monoid: sum-valuation
aggrsv(A) =

∑

Val(A) =
∑

r1···rn∈A Val(r1 · · · rn)

Multisets of weight structures

Average value
Discounted value…

[Droste&Perevoshchikov 2014]



Abstract semantics

wgt(ρ) = s1s2 · · · sn

{|A|}(w) = {{wgt(ρ) | ρ run on w}}

{|A|} : Σ! → N〈R!〉

weights of A

Aggregation aggr : N〈R!〉 → S

Concrete semantics [[A]] = aggr ◦ {|A|} : Σ! → S

multiset

Multisets of weight structures
A run generates a sequence of weights



ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Ψ ::= s | ϕ ?Ψ : Ψ

Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

x Φ |
∑

X Φ |
∏

x Ψ

Theorem: weighted automata = core wMSO

[Gastin&Monmege 2015]

Core weighted MSO logic
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Ψ ::= s | ϕ ?Ψ : Ψ

Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

x Φ |
∑

X Φ |
∏

x Ψ

Theorem: weighted automata = core wMSO

{|− |} : Σ! → N〈R!〉Abstract semantics

[Gastin&Monmege 2015]

Core weighted MSO logic



ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Ψ ::= s | ϕ ?Ψ : Ψ

Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

x Φ |
∑

X Φ |
∏

x Ψ

Theorem: weighted automata = core wMSO

{|− |} : Σ! → N〈R!〉Abstract semantics

Concrete semantics [[−]] = aggr ◦ {|− |} : Σ! → S

[Gastin&Monmege 2015]

Core weighted MSO logic



ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Ψ ::= s | ϕ ?Ψ : Ψ

Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

x Φ |
∑

X Φ |
∏

x Ψ

Theorem: weighted automata = core wMSO

{|− |} : Σ! → N〈R!〉Abstract semantics

Concrete semantics [[−]] = aggr ◦ {|− |} : Σ! → S
Easy constructive proofs

preservation of the constants

no restriction on core wMSO

no hypotheses on weights

[Gastin&Monmege 2015]

Core weighted MSO logic



Extensions
More general models 

than words:  
trees, nested words, 

labelled graphs, 
infinite words… 

Other logics: other 
manageable fragment of 

wMSO formula than  
core wMSO 

More powerful automata: finding 
equivalent fragments of wMSO 
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What is the size of the biggest monochromatic rectangle?

Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

What is the average lightness?



Modelling a picture as a graph
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V set of vertices

� labels of vertices

D set of directions
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V set of vertices

� labels of vertices

D set of directions

Ed set of d-edges

D = {!, #} [ { , "}

G = (V, (Ed)d2D,�)
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V set of vertices

� labels of vertices

D set of directions

Ed set of d-edges

D = {!, #} [ { , "}

deterministic 
(hence bounded degree)

G = (V, (Ed)d2D,�)

22



Examples
Words

Ranked Trees

Nested Words 
(Unranked Trees)

Mazurkiewicz Traces Pictures Graphs of bounded degree

Labyrinths ...
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What is the size of the biggest monochromatic rectangle?



Logical Specifications: Query Examples
Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

What is the average lightness?

What is the size of the biggest monochromatic rectangle?

∃x∀y[(R*→(x, y) ∨ R*→(y, x)) ⇒ P (y)]?1 : 0

Boolean fragment: first-order logic

' ::= > | (x = y) | init(x) | final(x) | Pa(x) | Rd(x, y) | R?
d(x, y) |

¬' | ' _ ' | ' ^ ' | 9x' | 8x'

G,� |= >
G,� |= (x = y) iff. �(x) = �(y)
G,� |= init(x) iff. �(x) = v(i)

G,� |= final(x) iff. �(x) = v(f)

G,� |= Pa(x) iff. �(�(x)) = a
G,� |= Rd(x, y) iff. (�(x),�(y)) 2 Ed

G,� |= R?
d(x, y) iff. there is a d-path from �(x) to �(y)

G,� |= ¬' iff. G,� 6|= '
G,� |= '1 _ '2 iff. G,� |= '1 or G,� |= '2

G,� |= 9x' iff. G,�[x 7! v] |= ' for some v 2 V
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Logical Specifications: Query Examples
Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

What is the average lightness?

What is the size of the biggest monochromatic rectangle?

∃x∀y[(R*→(x, y) ∨ R*→(y, x)) ⇒ P (y)]?1 : 0

¬∃z R→(z, x) ∧ ∀y R*→(x, y) ⇒ P (y)?1 : 0∑
x

(∑
x

¬∃yR→(y, x)?1 : 0) (∑
x

¬∃yR↓(y, x)?1 : 0)×
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Logical Specifications: Query Examples
Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

What is the average lightness?

What is the size of the biggest monochromatic rectangle?

∃x∀y[(R*→(x, y) ∨ R*→(y, x)) ⇒ P (y)]?1 : 0

¬∃z R→(z, x) ∧ ∀y R*→(x, y) ⇒ P (y)?1 : 0∑
x

(∑
x

¬∃yR→(y, x)?1 : 0) (∑
x
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∑
x

P (x)?100 : 0 + ∑
x

P (x)?150 : 0 + ∑
x

P (x)?220 : 0
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Logical Specifications: Query Examples
Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

What is the average lightness?

What is the size of the biggest monochromatic rectangle?

∃x∀y[(R*→(x, y) ∨ R*→(y, x)) ⇒ P (y)]?1 : 0

¬∃z R→(z, x) ∧ ∀y R*→(x, y) ⇒ P (y)?1 : 0∑
x

(∑
x

¬∃yR→(y, x)?1 : 0) (∑
x

¬∃yR↓(y, x)?1 : 0)×

∑
x

P (x)?100 : 0 + ∑
x

P (x)?150 : 0 + ∑
x

P (x)?220 : 0

max
x,y

φmono(x, y)?1 : 0 + (∑
z

φrect(x, y, z)?1 : 0)
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Logical Specifications: Query Examples
Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

x

y

What is the average lightness?

What is the size of the biggest monochromatic rectangle?

∃x∀y[(R*→(x, y) ∨ R*→(y, x)) ⇒ P (y)]?1 : 0

¬∃z R→(z, x) ∧ ∀y R*→(x, y) ⇒ P (y)?1 : 0∑
x

(∑
x

¬∃yR→(y, x)?1 : 0) (∑
x

¬∃yR↓(y, x)?1 : 0)×

∑
x

P (x)?100 : 0 + ∑
x

P (x)?150 : 0 + ∑
x

P (x)?220 : 0

max
x,y

φmono(x, y)?1 : 0 + (∑
z

φrect(x, y, z)?1 : 0)
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Logical Specifications: Query Examples
Is there a line of green pixels?

How many lines of green pixels are there?

What is the size of the picture?

x

y

What is the average lightness?

What is the size of the biggest monochromatic rectangle?

z

∃x∀y[(R*→(x, y) ∨ R*→(y, x)) ⇒ P (y)]?1 : 0

¬∃z R→(z, x) ∧ ∀y R*→(x, y) ⇒ P (y)?1 : 0∑
x

(∑
x

¬∃yR→(y, x)?1 : 0) (∑
x

¬∃yR↓(y, x)?1 : 0)×

∑
x

P (x)?100 : 0 + ∑
x

P (x)?150 : 0 + ∑
x

P (x)?220 : 0

max
x,y

φmono(x, y)?1 : 0 + (∑
z

φrect(x, y, z)?1 : 0)



Weighted FO logic

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Ψ ::= s | ϕ ?Ψ : Ψ

Φ ::= 0 | ϕ ?Φ : Φ | Φ+ Φ |
∑

x Φ |
∑

X Φ |
∏

x Ψ



Weighted FO logic

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Φ ::= s ϕ?Φ :Φ Φ+Φ Φ×Φ Φ
x∑ Φ

x∏

Reintroduction of 
 the product Unconditional product 

quantification

We can keep Boolean 
MSO or restrict to FO…



Weighted FO logic

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Φ ::= s ϕ?Φ :Φ Φ+Φ Φ×Φ Φ
x∑ Φ

x∏

Reintroduction of 
 the product Unconditional product 

quantification

We can keep Boolean 
MSO or restrict to FO…

ϕ2 = ∀x ∃y (y ! x ∧ Pa(y)) [[ϕ2]](an) = n!



Weighted FO logic

ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Φ ::= s ϕ?Φ :Φ Φ+Φ Φ×Φ Φ
x∑ Φ

x∏

Reintroduction of 
 the product Unconditional product 

quantification

We can keep Boolean 
MSO or restrict to FO…

2
y∏x∏!"# $
%&(w)= 2

|w|2



A = (Q,A, I, δ, T )

I ∈ SQ T ∈ SQ

δ : Q× Test×Move×Q→ S

Run as a finite sequence of configurations (W,σ, q, i,π)

σ : Peb→ pos(W )

π ∈ (Peb× pos(W ))∗
with free pebbles

and a stack of currently dropped pebbles

Pebble weighted automata

Move = D ∪ {dropx, lift ∣ x ∈ Peb}



Pebble Weighted Automata:  An Example

→+ ↓

dropx

→+ ↓

+γ(→+ ↓)

−γ(→+ ↓)

−γ→

+γ→

→+ ↓

dropy

?←

?↑

?↑

(x?∧ ?)→

?→

?↓

?↓

y?

lift

lift

→+ ↓

� =
X

c

(+c)c?

x y

Pebble automata over words and trees: [Globerman&Harel 96], [Engelfriet&Hoogeboom 99]

(Z [ {�1},max,+,�1, 0)

©GasTeX



Pebble Weighted Automata:  An Example

→+ ↓

dropx
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Translation from Logics to Automata 

Theorem: Consider a searchable class of graph. Every wFO 
formula can be translated into a Pebble Weighted Automaton 
equivalent over this class of graphs.

WFO                              PWA

Obtained automata are of linear size with 
respect to the size of the formula 

linear time
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Theorem:  Weighted First Order logic with weighted 
transitive closure and Pebble Weighted Automata are 
equivalent for zonable and searchable classes of graphs.

Examples: words, trees, 
nested words, Mazurkiewicz 

traces, pictures...

Over words: [Bollig&Gastin&Monmege&Zeitoun 2010]
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Deciding FO?

Theorem:   For a language L of finite (or infinite) words, TFAE
L is FO definable
L is aperiodic
L is LTL definable
L is accepted by some counter-free automaton
L is accepted by some aperiodic automaton… 

∃m ≥ 1 p um
q ⟺ p um+1

q

Input: A finite automaton  
Question: Does there exist an equivalent formula in FO?

PSPACE-complete… using algebra

[Schützenberger 65, McNaughton&Papert 71, Diekert&Gastin 2008]
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Theorem:  [Droste&Gastin 2019] 
core-wFO = aperiodic poly-ambiguous WA
core-wFO without  = aperiodic finitely-ambiguous WA∑

x

core-wFO without + and  = aperiodic unambiguous WA∑
x

Decision procedure?… algebra is missing

Deciding core-wFO?
Input: A weighted automaton / A formula of core-wMSO 
Question: Does there exist an equivalent formula in core-wFO?
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A special case: the transducers
• Two-way Deterministic Finite-State Transducers  
• Functional One-way Finite-State Transducers 
• MSOT (à la Courcelle) 

• Copyless Streaming String Transducers (Alur et al)

{Functions

{Relations

• Two-way Non-Deterministic Finite-State Transducers  
• Non-Deterministic Finite-State Transducers  
• Non-deterministic Copyless Streaming String Transducers 

(Alur et Deshmukh) 
• NMSOT (with free second-order variables)

only finite valued relations… 



Transduction as weights
• Desire: weight transitions with words… Difficult to 

equip A* with a semiring structure: how to combine 
several accepting runs?  

• Works for deterministic or unambiguous automata: 
functional transducers 

• For relations: semiring of languages

(2A*,∪,⋅,∅,{ε})
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Transducers
P
x
(a)?A*aA* : (P

x
(b)?A*bA*)

x∏

a|A*aA* b|A*bA*

Infinite-valued, but deterministic
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Impossible in FO… 
… because of order of  

interpretation of product

Solution: in this non-commutative setting,  
add right-to-left products

P
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x
(b)?{b})

x⨿
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Transitive closure
ϕ ::= ! | Pa(x) | x ! y | x ∈ X | ¬ϕ | ϕ ∧ ϕ | ∀xϕ | ∀X ϕ

Φ ::= L ϕ?Φ :Φ Φ+Φ Φ×Φ Φ
x∑ Φ

x∏ N -TC
x ,y
Φ

Regular language
Able to define right-

to-left product

Φ(x) := [1-TC
x ,yx⨿ (y = x −1?Φ(x))](last, first)×Φ(first)

Theorem: Pebble Transducers = wFO + bounded-TC

with regular 
language productions

linear transformation from logic to transducers
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Functional transductions
Theorem: Polyregular functions [Bojańczyk 2018] 

Deterministic pebble automata 
= For–transducers
= Smallest class of transductions closed under composition, 

containing iterated reverse and squaring
= A fragment of λ-calculus…

∑
x

= wFO without + and     , all weights being words, 
underlying boolean logic being MSO 

Similar characterizations for relational 
transductions / weighted functions ?
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Thank you!

2-way 1-way? EXPSPACE for functional transducers  
[Filiot&Gauwin&Reynier&Servais 2013, 
Baschenis&Gauwin&Muscholl&Puppis 2017+Jecker 2018] 

partially-commutative weight structure? 
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