Interval Iteration Algorithm for MDPs and IMDPs

Serge Haddad (LSV, ENS Cachan, CNRS \& Inria) and
Benjamin Monmege

Séminaire Modélisation et Vérification
November 2015, Marseille

Mixing non-determinism and probabilities

- Acting in an uncertain world
- non-determinism: decisions of an agent;
- probabilities: effects of the decisions;
+ goal: maximizing some utility function.

Mixing non-determinism and probabilities

- Acting in an uncertain world
+ non-determinism: decisions of an agent;
+ probabilities: effects of the decisions;
+ goal: maximizing some utility function.
- Randomness against the environment
+ probabilities: distributed randomized algorithm;
+ non-determinism: behavior of the network;
+ goal: evaluating the worst-case behavior.

Mixing non-determinism and probabilities

- Acting in an uncertain world
+ non-determinism: decisions of an agent;
+ probabilities: effects of the decisions;
+ goal: maximizing some utility function.
- Randomness against the environment
+ probabilities: distributed randomized algorithm;
+ non-determinism: behavior of the network;
+ goal: evaluating the worst-case behavior.
Optimization problems

Markov Decision Processes

- What?
- (Finite) stochastic process with non-determinism
- Non-determinism solved by policies/strategies
- Rewards based on the pair of state and action

Markov Decision Processes

- What?
- (Finite) stochastic process with non-determinism
+ Non-determinism solved by policies/strategies
- Rewards based on the pair of state and action
- Where?
- Optimization
+ Program verification: PCTL model-checking...
+ Game theory: $1+1 / 2$ players

MDPs with discounted rewards

MDPs with discounted rewards

$$
\begin{aligned}
& \mathcal{M}=(S, \alpha, \delta, r) \quad 0<\lambda<1 \\
& \delta: S \times \alpha \rightarrow \operatorname{Dist}(S) \\
& r: S \times \alpha \rightarrow \mathbb{R} \\
& \text { Policy } \sigma:(S \cdot \alpha)^{\star} \cdot S \rightarrow \operatorname{Dist}(\alpha)
\end{aligned}
$$

MDPs with discounted rewards

MDPs with discounted rewards

$$
\begin{aligned}
& \mathcal{M}=(S, \alpha, \delta, r) \quad 0<\lambda<1 \\
& \delta: S \times \alpha \rightarrow \operatorname{Dist}(S) \\
& r: S \times \alpha \rightarrow \mathbb{R} \\
& \text { Policy } \sigma:(S \cdot \alpha)^{\star} \cdot S \rightarrow \operatorname{Dist}(\alpha)
\end{aligned}
$$

MDPs with discounted rewards

MDPs with discounted rewards

 $r: S \times \alpha \rightarrow \mathbb{R}$
Policy $\sigma:(S \cdot \alpha)^{\star} \cdot S \rightarrow \operatorname{Dist}(\alpha)$

MDPs with discounted rewards

Resolution of MDPs with discounted rewards

$$
v^{v}\left(s_{v}\right)=\sum_{i=0}^{\infty} \sum_{k, n}^{\infty} \prod_{j=0}^{i-1}\left(s_{j}, \sigma\left(\ldots, s_{j}\right)\right) r\left(s_{v}, \sigma\left(\ldots s_{1}\right)\right)
$$

Resolution of MDPs with discounted rewards

$$
v^{\sigma}\left(s_{0}\right)=\sum_{i=0}^{\infty} \lambda^{i} \sum_{s_{1}, \ldots, s_{i}} \prod_{j=0}^{i-1} \delta\left(s_{j}, \sigma\left(\ldots s_{j}\right)\right) r\left(s_{i}, \sigma\left(\ldots s_{i}\right)\right)
$$

memoryless optimal strategies exist: $\quad v^{\sigma}=\sum_{i=0}^{\infty}\left(\lambda \Delta^{\sigma}\right)^{i} r^{\sigma}=\left(I-\lambda \Delta^{\sigma}\right)^{-1} r^{\sigma}$

Resolution of MDPs with discounted rewards

$$
v^{\sigma}\left(s_{0}\right)=\sum_{i=0}^{\infty} \lambda^{i} \sum_{s_{1}, \ldots, s_{i}} \prod_{j=0}^{i-1} \delta\left(s_{j}, \sigma\left(\ldots s_{j}\right)\right) r\left(s_{i}, \sigma\left(\ldots s_{i}\right)\right)
$$

memoryless optimal strategies exist: $\quad v^{\sigma}=\sum_{i=0}^{\infty}\left(\lambda \Delta^{\sigma}\right)^{i} r^{\sigma}=\left(I-\lambda \Delta^{\sigma}\right)^{-1} r^{\sigma}$

$$
v^{\sigma}=r^{\sigma}+\lambda \Delta^{\sigma} v^{\sigma}
$$

$$
\text { time horizon } 1
$$

Resolution of MDPs with discounted rewards

$$
v^{\sigma}\left(s_{0}\right)=\sum_{i=0}^{\infty} \lambda^{i} \sum_{s_{1}, \ldots, s_{i}} \prod_{j=0}^{i-1} \delta\left(s_{j}, \sigma\left(\ldots s_{j}\right)\right) r\left(s_{i}, \sigma\left(\ldots s_{i}\right)\right)
$$

memoryless optimal strategies exist: $\quad v^{\sigma}=\sum_{i=0}^{\infty}\left(\lambda \Delta^{\sigma}\right)^{i} r^{\sigma}=\left(I-\lambda \Delta^{\sigma}\right)^{-1} r^{\sigma}$
$v^{\sigma}=r^{\sigma}+\lambda \Delta^{\sigma} v^{\sigma}$

Function $L: \mathbb{R}^{S} \rightarrow \mathbb{R}^{S}$ defined by

$$
L(v)_{s}=\max _{a \in \alpha} r(s, a)+\lambda \sum_{s^{\prime} \in S} \delta(s, a)\left(s^{\prime}\right) v_{s^{\prime}}
$$

Resolution of MDPs with discounted rewards

$$
v^{\sigma}\left(s_{0}\right)=\sum_{i=0}^{\infty} \lambda^{i} \sum_{s_{1}, \ldots, s_{i}} \prod_{j=0}^{i-1} \delta\left(s_{j}, \sigma\left(\ldots s_{j}\right)\right) r\left(s_{i}, \sigma\left(\ldots s_{i}\right)\right)
$$

memoryless optimal strategies exist: $\quad v^{\sigma}=\sum_{i=0}^{\infty}\left(\lambda \Delta^{\sigma}\right)^{i} r^{\sigma}=\left(I-\lambda \Delta^{\sigma}\right)^{-1} r^{\sigma}$
$v^{\sigma}=r^{\sigma}+\lambda \Delta^{\sigma} v^{\sigma}$

Function $L: \mathbb{R}^{S} \rightarrow \mathbb{R}^{S}$ defined by

$$
L(v)_{s}=\max _{a \in \alpha} r(s, a)+\lambda \sum_{s^{\prime} \in S} \delta(s, a)\left(s^{\prime}\right) v_{s^{\prime}}
$$

verifies $\left\|L(v)-L\left(v^{\prime}\right)\right\|_{\infty} \leq \lambda\left\|v-v^{\prime}\right\|_{\infty}$

Resolution of MDPs with discounted rewards

$$
v^{\sigma}\left(s_{0}\right)=\sum_{i=0}^{\infty} \lambda^{i} \sum_{s_{1}, \ldots, s_{i}} \prod_{j=0}^{i-1} \delta\left(s_{j}, \sigma\left(\ldots s_{j}\right)\right) r\left(s_{i}, \sigma\left(\ldots s_{i}\right)\right)
$$

memoryless optimal strategies exist: $\quad v^{\sigma}=\sum_{i=0}^{\infty}\left(\lambda \Delta^{\sigma}\right)^{i} r^{\sigma}=\left(I-\lambda \Delta^{\sigma}\right)^{-1} r^{\sigma}$

$$
v^{\sigma}=r^{\sigma}+\lambda \Delta^{\sigma} v^{\sigma}
$$

Function $L: \mathbb{R}^{S} \rightarrow \mathbb{R}^{S}$ defined by

$$
L(v)_{s}=\max _{a \in \alpha} r(s, a)+\lambda \sum_{s^{\prime} \in S} \delta(s, a)\left(s^{\prime}\right) v_{s^{\prime}}
$$

verifies $\left\|L(v)-L\left(v^{\prime}\right)\right\|_{\infty} \leq \lambda\left\|v-v^{\prime}\right\|_{\infty}$
$v^{\star}=\sup v^{\sigma}$ is the unique fixed point of L
$\lim _{n \rightarrow \infty} L^{\sigma}\left(v_{0}\right)=v^{\star}$

$$
\left\|v^{\star}-L^{n}\left(v_{0}\right)\right\|_{\infty} \leq \frac{\lambda^{n}}{1-\lambda}\left\|L\left(v_{0}\right)-v_{0}\right\|_{\infty}
$$

Resolution of MDPs with discounted rewards

$$
v^{\sigma}\left(s_{0}\right)=\sum_{i=0}^{\infty} \lambda^{i} \sum_{s_{1}, \ldots, s_{i}} \prod_{j=0}^{i-1} \delta\left(s_{j}, \sigma\left(\ldots s_{j}\right)\right) r\left(s_{i}, \sigma\left(\ldots s_{i}\right)\right)
$$

memoryless optimal strategies exist: $\quad v^{\sigma}=\sum_{i=0}^{\infty}\left(\lambda \Delta^{\sigma}\right)^{i} r^{\sigma}=\left(I-\lambda \Delta^{\sigma}\right)^{-1} r^{\sigma}$

$$
v^{\sigma}=r^{\sigma}+\lambda \Delta^{\sigma} v^{\sigma}
$$

Function $L: \mathbb{R}^{S} \rightarrow \mathbb{R}^{S}$ defined by

$$
L(v)_{s}=\max _{a \in \alpha} r(s, a)+\lambda \sum_{s^{\prime} \in S} \delta(s, a)\left(s^{\prime}\right) v_{s^{\prime}}
$$

verifies $\left\|L(v)-L\left(v^{\prime}\right)\right\|_{\infty} \leq \lambda\left\|v-v^{\prime}\right\|_{\infty}$
speed of convergence +
stopping criterion for algorithm
$v^{\star}=\sup v^{\sigma}$ is the unique fixed point of L
$\lim _{n \rightarrow \infty} L^{\sigma}\left(v_{0}\right)=v^{\star} \quad\left\|v^{\star}-L^{n}\left(v_{0}\right)\right\|_{\infty} \leq \frac{\lambda^{n}}{1-\lambda}\left\|L\left(v_{0}\right)-v_{0}\right\|_{\infty}$

MDPs with reachability objectives

$$
\begin{aligned}
& \mathcal{M}=(S, \alpha, \delta) \\
& \delta: S \times \alpha \rightarrow \operatorname{Dist}(S)
\end{aligned}
$$

$$
\text { Policy } \sigma:(S \cdot \alpha)^{\star} \cdot S \rightarrow \operatorname{Dist}(\alpha)
$$

MDPs with reachability objectives

$$
\begin{aligned}
& \mathcal{M}=(S, \alpha, \delta) \\
& \delta: S \times \alpha \rightarrow \operatorname{Dist}(S)
\end{aligned}
$$

$$
\text { Policy } \sigma:(S \cdot \alpha)^{\star} \cdot S \rightarrow \operatorname{Dist}(\alpha)
$$

MDPs with reachability objectives

$$
\begin{aligned}
& \mathcal{M}=(S, \alpha, \delta) \\
& \delta: S \times \alpha \rightarrow \operatorname{Dist}(S)
\end{aligned}
$$

Probability to reach: $\operatorname{Pr}_{s}^{\sigma}(\mathrm{F} \vee)$

$$
\text { Policy } \sigma:(S \cdot \alpha)^{\star} \cdot S \rightarrow \operatorname{Dist}(\alpha)
$$

MDPs with reachability objectives

$$
\begin{aligned}
& \mathcal{M}=(S, \alpha, \delta) \\
& \delta: S \times \alpha \rightarrow \operatorname{Dist}(S)
\end{aligned}
$$

Policy $\sigma:(S \cdot \alpha)^{\star} \cdot S \rightarrow \operatorname{Dist}(\alpha)$

Probability to reach: $\operatorname{Pr}_{s}^{\sigma}(\mathrm{F} \downarrow)$
Maximal probability
to reach: $\operatorname{Pr}_{s}^{\max }(\mathrm{F} \vee)=\sup _{\sigma} \operatorname{Pr}_{s}^{\sigma}(\mathrm{F} \vee)$

Optimal reachability probabilities of MDPs

- How?
- Linear programming
- Policy iteration
- Value iteration: numerical scheme that scales well and works in practice

Optimal reachability probabilities of MDPs

- How?
+ Linear programming
+ Policy iteration

+ Value iteration: numerical scheme that scales well and works in practice

Value iteration

Value iteration

Value iteration

0	0	0	0

Value iteration

0	0	0	0
0	$2 / 3(b)$	0	0

Value iteration

0	0	0	0
0	$2 / 3(b)$	0	0
$1 / 3$	$2 / 3(b)$	0	0

Value iteration

0	0	0	0
0	$2 / 3(b)$	0	0
$1 / 3$	$2 / 3(b)$	0	0
$1 / 2$	$2 / 3(b)$	$1 / 6$	0

Value iteration

0	0	0	0
0	$2 / 3(b)$	0	0
$1 / 3$	$2 / 3(b)$	0	0
$1 / 2$	$2 / 3(b)$	$1 / 6$	0
$7 / 12$	$13 / 18(b)$	$1 / 4$	0

Value iteration

0	0	0	0
0	$2 / 3(b)$	0	0
$1 / 3$	$2 / 3(b)$	0	0
$1 / 2$	$2 / 3(b)$	$1 / 6$	0
$7 / 12$	$13 / 18(b)$	$1 / 4$	0
\ldots	\ldots	\ldots	\ldots

Value iteration

0	0	0	0
0	$2 / 3(b)$	0	0
$1 / 3$	$2 / 3(b)$	0	0
$1 / 2$	$2 / 3(b)$	$1 / 6$	0
$7 / 12$	$13 / 18(b)$	$1 / 4$	0
\ldots	\ldots	\ldots	\ldots
0.7969	$0.7988(b)$	0.3977	0

Value iteration

0	0	0	0
0	$2 / 3(b)$	0	0
$1 / 3$	$2 / 3(b)$	0	0
$1 / 2$	$2 / 3(b)$	$1 / 6$	0
$7 / 12$	$13 / 18(b)$	$1 / 4$	0
\ldots	\ldots	\ldots	\ldots
0.7969	$0.7988(b)$	0.3977	0
0.7978	$0.7992(b)$	0.3984	0

Value iteration

0	0	0	0
0	$2 / 3(b)$	0	0
$1 / 3$	$2 / 3(b)$	0	0
$1 / 2$	$2 / 3(b)$	$1 / 6$	0
$7 / 12$	$13 / 18(b)$	$1 / 4$	0
\ldots	\ldots	\ldots	\ldots
$0.001<0.7969$	$0.7988(b)$	0.3977	0
$\square 0.7978$	$0.7992(b)$	0.3984	0

Value iteration: which guarantees?

Value iteration: which guarantees?

Value iteration: which guarantees?

Value iteration: which guarantees?

Value iteration: which guarantees?

Value iteration: which guarantees?

Value iteration: which guarantees?

Value iteration: which guarantees?

Value iteration: which guarantees?

State	0	1	2	3	\ldots	k-1	k	$k+1$	\ldots	$2 k$
Step 1	1	0	0	0	\ldots	0	0	0	\ldots	0
Step 2	1	1/2	0	0	\ldots	0	0	0	\ldots	0
Step 3	1	1/2	1/4	0	\ldots	0	0	0	\ldots	0
Step 4	1	1/2	1/4	1/8	\ldots	0	0	0	\ldots	0
	...	\ldots	\ldots	\ldots	\ldots	\ldots	...
$\leq 1 / 2^{k}$ Step k	1	1/2	1/4	$1 / 8$	\ldots	$1 / 2^{k-1}$	0	0	...	0
${ }^{\text {Step } k+1}$	1	1/2	1/4	$1 / 8$...	$1 / 2^{k-1}$	$1 / 2^{k}$	0	...	0

Value iteration: which guarantees?

State	0	1	2	3		k-1	k	$k+1$		$2 k$
Step 1	1	0	0	0	\ldots	0	0	0	\ldots	0
Step 2	1	$1 / 2$	0	0	\ldots	0	0	0	\ldots	0
Step 3	1	$1 / 2$	1/4	0	\ldots	0	0	0	\ldots	0
Step 4	1	$1 / 2$	1/4	1/8	..	0	0	0	\ldots	0
...	\ldots	\ldots	\ldots	...	\ldots
$\leq 1 / 2^{k}$ Step k	1	$1 / 2$	1/4	1/8	\ldots	$1 / 2^{k-1}$	0	0	...	0
Step $k+1$	1	$1 / 2$	1/4	1/8	\ldots	$1 / 2^{k-1}$	$1 / 2^{k}$	0	\ldots	0

Contributions

Contributions

1. Enhanced value iteration algorithm with strong guarantees

Contributions

1. Enhanced value iteration algorithm with strong guarantees

- performs two value iterations in parallel

Contributions

1. Enhanced value iteration algorithm with strong guarantees

- performs two value iterations in parallel
- keeps an interval of possible optimal values

Contributions

1. Enhanced value iteration algorithm with strong guarantees

- performs two value iterations in parallel
- keeps an interval of possible optimal values
- uses the interval for the stopping criterion

Contributions

1. Enhanced value iteration algorithm with strong guarantees

- performs two value iterations in parallel
- keeps an interval of possible optimal values
- uses the interval for the stopping criterion

2. Study of the speed of convergence

Contributions

1. Enhanced value iteration algorithm with strong guarantees

- performs two value iterations in parallel
- keeps an interval of possible optimal values
- uses the interval for the stopping criterion

2. Study of the speed of convergence

- also applies to classical value iteration

Contributions

1. Enhanced value iteration algorithm with strong guarantees

- performs two value iterations in parallel
- keeps an interval of possible optimal values
- uses the interval for the stopping criterion

2. Study of the speed of convergence

- also applies to classical value iteration

3. Improved rounding procedure for exact computation

Interval iteration

$$
x_{s}^{(0)}= \begin{cases}1 & \text { if } s= \\ 0 & \text { otherwise }\end{cases}
$$

$$
x_{s}^{(n+1)}=\max _{a \in \alpha} \sum_{s^{\prime} \in S} \delta(s, a)\left(s^{\prime}\right) \times x_{s^{\prime}}^{(n)}
$$

Interval iteration

$$
\begin{aligned}
& x_{s}^{(0)}= \begin{cases}1 & \text { if } s= \\
0 & \text { otherwise }\end{cases} \\
& x_{s}^{(n+1)}=\max _{a \in \alpha} \sum_{s^{\prime} \in S} \delta(s, a)\left(s^{\prime}\right) \times x_{s^{\prime}}^{(n)}
\end{aligned}
$$

$$
0,75
$$

Interval iteration

$$
x_{s}^{(0)}= \begin{cases}1 & \text { if } s= \\ 0 & \text { otherwise }\end{cases}
$$

$$
0,75
$$

$$
x^{(n+1)}=f_{\max }\left(x^{(n)}\right)
$$

$$
f_{\max }(x)_{s}=\max _{a \in \alpha} \sum_{s^{\prime} \in S} \delta(s, a)\left(s^{\prime}\right) \times x_{s^{\prime}}
$$

Interval iteration

$$
x_{s}^{(0)}= \begin{cases}1 & \text { if } s= \\ 0 & \text { otherwise }\end{cases}
$$

$$
0,75
$$

$$
x^{(n+1)}=f_{\max }\left(x^{(n)}\right)
$$

$$
f_{\max }(x)_{s}=\max _{a \in \alpha} \sum_{s^{\prime} \in S} \delta(s, a)\left(s^{\prime}\right) \times x_{s^{\prime}}
$$

Interval iteration

$$
x_{?}^{\left(t_{0}^{0}\right)}=\left\{\begin{array}{l}
1 \\
\hline
\end{array}\right.
$$

$$
x^{(n+1)}=f_{\max }\left(x^{(n)}\right)
$$

$$
f_{\max }(x)_{s}=\max _{a \in \alpha} \sum_{s^{\prime} \in S} \delta(s, a)\left(s^{\prime}\right) \times x_{s^{\prime}}
$$

usual
stopping
criterion

Interval iteration

$$
\begin{aligned}
& x_{s}^{(0)}= \begin{cases}1 & \text { if } s= \\
0 & \text { otherwise }\end{cases} \\
& x^{(n+1)}=f_{\max }\left(x^{(n)}\right) \\
& \quad f_{\max }(x)_{s}=\max _{a \in \alpha} \sum_{s^{\prime} \in S} \delta(s, a)\left(s^{\prime}\right) \times x_{s^{\prime}}
\end{aligned}
$$

Interval iteration

$$
\begin{gathered}
x_{s}^{(0)}=\left\{\begin{array}{lll}
1 & \text { if } s= & y_{s}^{(0)}= \begin{cases}0 & \text { if } s=\boldsymbol{*} \\
0 & \text { otherwise }\end{cases} \\
1 & \text { otherwise }
\end{array}\right. \\
x^{(n+1)}=f_{\max }\left(x^{(n)}\right) \quad y^{(n+1)}=f_{\max }\left(y^{(n)}\right) \\
f_{\max }(x)_{s}=\max _{a \in \alpha} \sum_{s^{\prime} \in S} \delta(s, a)\left(s^{\prime}\right) \times x_{s^{\prime}}
\end{gathered}
$$

$$
0,75
$$

Fixed point characterization

$\left(\operatorname{Pr}_{s}^{\max }(\mathrm{F} \vee)\right)_{s \in S}$ is the smallest fixed point of $f_{\max }$.

Fixed point characterization

$\left(\operatorname{Pr}_{s}^{\max }(\mathrm{F} \vee)\right)_{s \in S}$ is the smallest fixed point of $f_{\max }$.

Fixed point characterization

$\left(\operatorname{Pr}_{s}^{\max }(\mathrm{F} \vee)\right)_{s \in S}$ is the smallest fixed point of $f_{\text {max }}$.

Fixed point characterization

$\left(\operatorname{Pr}_{s}^{\max }(\mathrm{F} \vee)\right)_{s \in S}$ is the smallest fixed point of $f_{\text {max }}$.
not always...!

Fixed point characterization

$\left(\operatorname{Pr}_{s}^{\max }(\mathrm{F} \vee)\right)_{s \in S}$ is the smallest fixed point of $f_{\max }$.

Fixed point characterization

$\left(\operatorname{Pr}_{s}^{\max }(\mathrm{F} \vee)\right)_{s \in S}$ is the smallest fixed point of $f_{\max }$.

Fixed point characterization

$\left(\operatorname{Pr}_{s}^{\max }(\mathrm{F} \vee)\right)_{s \in S}$ is the smallest fixed point of $f_{\max }$.

Solution: ensure uniqueness!

Usual techniques applied for MDPs do not apply...

Solution: ensure uniqueness!

Usual techniques applied for MDPs do not apply...

Solution: ensure uniqueness!

Usual techniques applied for MDPs do not apply...

$$
\operatorname{Pr}_{s}^{\max }(\mathrm{F} \vee)=0
$$

$$
\operatorname{Pr}_{s}^{\max }(\mathrm{F} \vee)=1
$$

Solution: ensure uniqueness!

Usual techniques applied for MDPs do not apply...

NEW! Use Maximal End Components... (computable in polynomial time)

Solution: ensure uniqueness!

Usual techniques applied for MDPs do not apply...

Solution: ensure uniqueness!

Usual techniques applied for MDPs do not apply...

NEW! Use Maximal End Components... (computable in polynomial time) and trivialize them! Now, unicity of the fixed point

An even smaller MDP for minimal probabilities

An even smaller MDP for minimal probabilities

An even smaller MDP for minimal probabilities

Min-reduced MDP

Non-trivial (and non accepting) MEC have null minimal probability!

Interval iteration algorithm in reduced MDPs

Input: Min-reduced MDP $\mathcal{M}=\left(S, \alpha_{\mathcal{M}}, \delta_{\mathcal{M}}\right)$, convergence threshold ε
Output: Under- and over-approximation of $\operatorname{Pr}_{\mathcal{M}}^{\min }(\mathrm{F})$

Interval iteration algorithm in reduced MDPs

Input: Min-reduced $\operatorname{MDP} \mathcal{M}=\left(S, \alpha_{\mathcal{M}}, \delta_{\mathcal{M}}\right)$, convergence threshold ε
Output: Under- and over-approximation of $\operatorname{Pr}_{\mathcal{M}}^{\min }(\mathrm{F})$

```
1 x}:==1;\mp@subsup{x}{4}{}:=0;y,:=1;\mp@subsup{y}{4}{}:=
2 foreach s\inS\{\,}} do \mp@subsup{x}{s}{}:=0;\mp@subsup{y}{s}{}:=1
repeat
4 foreach s\inS\{\, } do
                \mp@subsup{x}{s}{\prime}}:=\mp@subsup{\operatorname{min}}{a\inA(s)}{}\mp@subsup{\sum}{\mp@subsup{s}{}{\prime}\inS}{}\mp@subsup{\delta}{\mathcal{M}}{}(s,a)(\mp@subsup{s}{}{\prime})\mp@subsup{x}{\mp@subsup{s}{}{\prime}}{
                ys
    \delta:= max meS
    foreach }s\inS\{, } do \mp@subsup{x}{s}{\prime}:=\mp@subsup{x}{s}{};\mp@subsup{y}{s}{\prime}:=\mp@subsup{y}{s}{
until }\delta\leqslant
10 return ( }\mp@subsup{x}{s}{}\mp@subsup{)}{s\inS}{},(\mp@subsup{y}{s}{}\mp@subsup{)}{s\inS}{
```

Sequences x and y converge towards the minimal probability to reach . Hence, the algorithm terminates by returning an interval of length at most ε for each state containing $\operatorname{Pr}_{s}^{\min }(F \vee)$.

Interval iteration algorithm in reduced MDPs

Input: Min-reduced $\operatorname{MDP} \mathcal{M}=\left(S, \alpha_{\mathcal{M}}, \delta_{\mathcal{M}}\right)$, convergence threshold ε
Output: Under- and over-approximation of $\operatorname{Pr}_{\mathcal{M}}^{\min }(\mathrm{F})$

```
\(x_{v}:=1 ; x_{y}:=0 ; y:=1 ; y_{y}:=0\)
foreach \(s \in S \backslash\{\),\(\} do x_{s}:=0 ; y_{s}:=1\)
repeat
    foreach \(s \in S \backslash\{, \mathcal{W}\}\) do
                \(x_{s}^{\prime}:=\min _{a \in A(s)} \sum_{s^{\prime} \in S} \delta_{\mathcal{M}}(s, a)\left(s^{\prime}\right) x_{s^{\prime}}\)
                \(y_{s}^{\prime}:=\min _{a \in A(s)} \sum_{s^{\prime} \in S} \delta_{\mathcal{M}}(s, a)\left(s^{\prime}\right) y_{s^{\prime}}\)
    \(\delta:=\max _{s \in S}\left(y_{s}^{\prime}-x_{s}^{\prime}\right)\)
    foreach \(s \in S \backslash\{\),\(\} do x_{s}^{\prime}:=x_{s} ; y_{s}^{\prime}:=y_{s}\)
until \(\delta \leqslant \varepsilon\)
return \(\left(x_{s}\right)_{s \in S},\left(y_{s}\right)_{s \in S}\)
```

Sequences x and y converge towards the minimal probability to reach . Hence, the algorithm terminates by returning an interval of length at most ε for each state containing $\operatorname{Pr}_{s}^{\min }(F \vee)$.

Possible speed-up: only check size of interval for a given state...

Rate of convergence

Rate of convergence

x stores reachability probabilities, y stores safety probabilities, i.e., after n iterations: $x_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{F}^{\leq n}\right) y_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{G}^{\leq n}(\neg)\right)$

Rate of convergence

x stores reachability probabilities, y stores safety probabilities, i.e., after n iterations: $x_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{F}^{\leq n}\right) y_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{G}^{\leq n}(\neg)\right)$

Rate of convergence

x stores reachability probabilities, y stores safety probabilities, i.e., after n iterations: $x_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{F}^{\leq n}\right) y_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{G}^{\leq n}(\neg)\right)$

Rate of convergence

x stores reachability probabilities, y stores safety probabilities, i.e., after n iterations: $x_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{F}^{\leq n} \checkmark\right) y_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{G}^{\leq n}(\neg \mathbb{X})\right)$

Rate of convergence

x stores reachability probabilities, y stores safety probabilities, i.e., after n iterations: $x_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{F}^{\leq n}\right) y_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{G}^{\leq n}(\neg)\right)$

Rate of convergence

2 BMECs and only trivial MECs attractor decomposition: length I
x stores reachability probabilities, y stores safety probabilities, i.e., after n iterations: $x_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{F}^{\leq n}\right) \quad y_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{G}^{\leq n}(\neg)\right)$

Rate of convergence

2 BMECs and only trivial MECs attractor decomposition: length I smallest positive probability: η
x stores reachability probabilities, y stores safety probabilities, i.e., after n iterations: $x_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{F}^{\leq n} \checkmark\right) y_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{G}^{\leq n}(\neg)\right)$

Rate of convergence

2 BMECs and only trivial MECs attractor decomposition: length I smallest positive probability: η
x stores reachability probabilities, y stores safety probabilities, i.e., after n iterations: $x_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{F}^{\leq n} \checkmark\right) y_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{G}^{\leq n}(\neg)\right)$

Leaking property: $\forall n \in \mathbb{N} \quad \operatorname{Pr}_{s}^{\max }\left(\mathbf{G}^{\leq n I} \neg(\mathcal{V})\right) \leq\left(1-\eta^{I}\right)^{n}$

Rate of convergence

2 BMECs and only trivial MECs attractor decomposition: length I smallest positive probability: η
x stores reachability probabilities, y stores safety probabilities, i.e., after n iterations: $x_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{F}^{\leq n} \checkmark\right) y_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{G}^{\leq n}(\neg)\right)$

Leaking property: $\forall n \in \mathbb{N} \quad \operatorname{Pr}_{s}^{\max }\left(\mathbf{G}^{\leq n I} \neg(\checkmark \vee \mathcal{*})\right) \leq\left(1-\eta^{I}\right)^{n}$

$$
y_{s}^{(n I)}-x_{s}^{(n I)}=\operatorname{Pr}_{s}^{\sigma}\left(\mathbf{G}^{\leq n I}(\neg \mathbb{\not})\right)-\operatorname{Pr}_{s}^{\sigma^{\prime}}\left(\mathbf{F}^{\leq n I} \smile\right) \leq \operatorname{Pr}_{s}^{\sigma^{\prime}}\left(\mathbf{G}^{\leq n I}(\neg \mathbb{\not})\right)-\operatorname{Pr}_{s}^{\sigma^{\prime}}\left(\mathbf{F}^{\leq n I}\right.
$$

Rate of convergence

2 BMECs and only trivial MECs attractor decomposition: length I smallest positive probability: η
x stores reachability probabilities, y stores safety probabilities, i.e., after n iterations: $x_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{F}^{\leq n} \checkmark\right) y_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{G}^{\leq n}(\neg)\right)$

Leaking property: $\forall n \in \mathbb{N} \quad \operatorname{Pr}_{s}^{\max }\left(\mathbf{G}^{\leq n I} \neg(\checkmark \vee \mathcal{*})\right) \leq\left(1-\eta^{I}\right)^{n}$
$y_{s}^{(n I)}-x_{s}^{(n I)}=\operatorname{Pr}_{s}^{\sigma}\left(\mathbf{G}^{\leq n I}(\neg \mathbb{*})\right)-\operatorname{Pr}_{s}^{\sigma^{\prime}}\left(\mathbf{F}^{\leq n I} \smile\right) \leq \operatorname{Pr}_{s}^{\sigma^{\prime}}\left(\mathbf{G}^{\leq n I}(\neg \nless \not)\right)-\operatorname{Pr}_{s}^{\sigma^{\prime}}\left(\mathbf{F}^{\leq n I} \smile\right)$

$$
=\operatorname{Pr}_{s}^{\sigma^{\prime}}\left(\mathbf{G}^{\leq n I} \neg(\vee \vee)\right) \leq\left(1-\eta^{I}\right)^{n}
$$

since $\mathbf{G}^{\leq n}(\neg \boldsymbol{\mathcal { H }}) \equiv \mathbf{G}^{\leq n} \neg(\vee \vee \boldsymbol{*}) \oplus \mathbf{F}^{\leq n}$

Rate of convergence

2 BMECs and only trivial MECs attractor decomposition: length I smallest positive probability: η
x stores reachability probabilities, y stores safety probabilities, i.e., after n iterations: $x_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{F}^{\leq n} \checkmark\right) y_{s}=\operatorname{Pr}_{s}^{\min }\left(\mathbf{G}^{\leq n}(\neg)\right)$

Leaking property: $\forall n \in \mathbb{N} \quad \operatorname{Pr}_{s}^{\max }\left(\mathbf{G}^{\leq n I} \neg(\mathcal{V})\right) \leq\left(1-\eta^{I}\right)^{n}$

The interval iteration algorithm converges in at most $I\left[\frac{\log \varepsilon}{\log \left(1-\eta^{I}\right)}\right]$ steps.

Stopping criterion for exact computation
 MDPs with rational probabilities:
 d the largest denominator of transition probabilities
 N the number of states
 M the number of transitions with non-zero probabilities

Stopping criterion for exact computation

MDPs with rational probabilities:
d the largest denominator of transition probabilities
N the number of states
M the number of transitions with non-zero probabilities
[Chatterjee, Henzinger 2008] claim for exact computation possible after $d^{8 M}$ iterations of value iteration

Stopping criterion for exact computation

MDPs with rational probabilities:
d the largest denominator of transition probabilities
N the number of states
M the number of transitions with non-zero probabilities
[Chatterjee, Henzinger 2008] claim for exact computation possible after $d^{8 M}$ iterations of value iteration

Optimal probabilities and policies can be computed by the interval iteration algorithm in at most $8 N^{3}\left[(1 / \eta)^{N} \log _{2} d\right]$ steps.

Stopping criterion for exact computation

MDPs with rational probabilities:
d the largest denominator of transition probabilities
N the number of states
M the number of transitions with non-zero probabilities
[Chatterjee, Henzinger 2008] claim for exact computation possible after $d^{8 M}$ iterations of value iteration

Optimal probabilities and policies can be computed by the interval iteration algorithm in at most $8 N^{3}\left[(1 / \eta)^{N} \log _{2} d\right]$ steps.

$$
\begin{aligned}
& \text { Improvement since } \\
& 1 / \eta \leq d \quad N \leq M
\end{aligned}
$$

Stopping criterion for exact computation

MDPs with rational probabilities:
d the largest denominator of transition probabilities
N the number of states
M the number of transitions with non-zero probabilities
[Chatterjee, Henzinger 2008] claim for exact computation possible after $d^{8 M}$ iterations of value iteration

Optimal probabilities and policies can be computed by the interval iteration algorithm in at most $8 N^{3}\left[(1 / \eta)^{N} \log _{2} d\right]$ steps.

Sketch of proof:

- use $\varepsilon=1 / 2 \alpha$ as threshold (with $\alpha \mathrm{gcd}$ of optimal probabilities)
- upper bound on α based on matrix properties of Markov

Improvement since

$$
1 / \eta \leq d \quad N \leq M
$$ chains: $\alpha=\mathcal{O}\left(N^{N} d^{2 N^{2}}\right)$

Interval MDPs

$$
\begin{aligned}
& \mathcal{M}=(S, \alpha, \breve{\delta}, \widehat{\delta}) \\
& \delta: S \times \alpha \rightarrow[0,1]^{S}
\end{aligned}
$$

Policy $\sigma:(S \cdot \alpha)^{\star} \cdot S \rightarrow \operatorname{Dist}(\alpha) \times(\operatorname{Dist}(S))^{\alpha}$

IMDP vs MDP

- $\operatorname{IMDPs}=$ extension of MDPs with an infinite (uncountable) set of actions
- But, behaviours of IMDPs can be captured by MDPs

IMDP vs MDP

- $\operatorname{IMDPs}=$ extension of MDPs with an infinite (uncountable) set of actions
- But, behaviours of IMDPs can be captured by MDPs

IMDP vs MDP

- $\mathrm{IMDPs}_{\mathrm{s}}=$ extension of MDPs with an infinite (uncountable) set of actions
- But, behaviours of IMDPs can be captured by MDPs

Possible distributions:

$$
\begin{aligned}
& p \in \operatorname{Dist}(S) \text { such that } \sum_{s^{\prime} \in S} p\left(s^{\prime}\right)=1 \\
& \quad \text { and } \forall s^{\prime} \breve{\delta}\left(s^{\prime} \mid s, a\right) \leq p\left(s^{\prime}\right) \leq \widehat{\delta}\left(s^{\prime} \mid s, a\right) \\
& \text { Solutions of a (bounded) linear program! }
\end{aligned}
$$

IMDP vs MDP

- $\operatorname{IMDPs}=$ extension of MDPs with an infinite (uncountable) set of actions
- But, behaviours of IMDPs can be captured by MDPs

IMDP vs MDP

- $\operatorname{IMDPs}=$ extension of MDPs with an infinite (uncountable) set of actions
- But, behaviours of IMDPs can be captured by MDPs

IMDP vs MDP

- $\operatorname{IMDPs}=$ extension of MDPs with an infinite (uncountable) set of actions
- But, behaviours of IMDPs can be captured by MDPs

Value iteration for $\mathrm{IMDPs}_{\mathrm{s}}$

- Simulate on the IMDP the value iteration on its MDP...
- One step is the application of
- Achievable in polynomial time by sorting $x \ldots$
[Sen, Viswanathan, Agha, 2006]

Value iteration for $\mathrm{IMDPs}_{\mathrm{s}}$

- Simulate on the IMDP the value iteration on its MDP...
- One step is the application of

$$
f_{\max }(x)_{s}=\max _{a \in A(s)} \max _{p \in \operatorname{BES}(a)} \sum_{s \in S} p\left(s^{\prime}\right) \times x_{s^{\prime}}
$$

- Achievable in polynomial time by sorting $x \ldots$
[Sen, Viswanathan, Agha, 2006]

MEC decomposition

Push $($ stack, $\mathcal{M}) ; \mathcal{S M} \leftarrow \emptyset$
while not Empty (stack) do

$$
\text { for } s \in S^{\prime} \text { and } a \in \alpha^{\prime} \cap A(s) \text { do }
$$

$$
\text { if } \check{\delta^{\prime}}\left(S \backslash S^{\prime} \mid s, a\right)>0 \vee \widehat{\delta}^{\prime}\left(S^{\prime} \mid s, a\right)<1 \text { then }
$$

$$
g,[0,1]
$$

$$
\left(S^{\prime}, \alpha^{\prime}, \check{\delta}^{\prime}, \widehat{\delta}^{\prime}\right) \leftarrow \operatorname{Pop}(\text { stack })
$$

$$
\alpha^{\prime} \leftarrow \alpha^{\prime} \backslash\{a\}
$$

else
for $s^{\prime} \notin S^{\prime}$ do $\widehat{\delta}^{\prime}\left(s^{\prime} \mid s, a\right) \leftarrow 0$

$$
E \leftarrow \emptyset
$$

$$
\text { for } s, s^{\prime} \in S^{\prime} \text { and } a \in \alpha^{\prime} \cap A(s) \text { do }
$$

$$
\text { if } \widehat{\delta}^{\prime}\left(s^{\prime} \mid s, a\right)>0 \wedge \check{\delta}^{\prime}\left(S \backslash\left\{s^{\prime}\right\} \mid s, a\right)<1 \text { then } E \leftarrow E \cup\left\{\left(s, s^{\prime}\right)\right\}
$$

compute the strongly connected components of $\left(S^{\prime}, E\right): S_{1}, \ldots, S_{K}$ if $K>1$ then for $i=1$ to K do $\operatorname{Push}\left(\operatorname{stack},\left(S_{i}, \alpha^{\prime} \cap \bigcup_{s \in S_{i}} A(s),\left.\check{\delta}^{\prime}\right|_{S_{i}},\left.\widehat{\delta}^{\prime}\right|_{S_{i}}\right)\right)$
else $\mathcal{S M} \leftarrow \mathcal{S M} \cup\left\{\left(S^{\prime}, \alpha^{\prime}, \check{\delta}^{\prime}, \widehat{\delta}^{\prime}\right)\right\}$
16 return $\mathcal{S M}$

Conclusion and related work

- Framework allowing guarantees for value iteration algorithm
- General results on convergence rate
- Criterion for computation of exact value
- Future work: test of our preliminary implementation over real instances

Conclusion and related work

- Framework allowing guarantees for value iteration algorithm
- General results on convergence rate
- Criterion for computation of exact value
- Future work: test of our preliminary implementation over real instances

- [Katoen, Zapreev, 2006] On-the-fly detection of steady-state in the transient analysis of continuous-time Markov chains

Conclusion and related work

- Framework allowing guarantees for value iteration algorithm
- General results on convergence rate
- Criterion for computation of exact value
- Future work: test of our preliminary implementation over real instances
- [Katoen, Zapreev, 2006] On-the-fly detection of steady-state in the transient analysis of continuous-time Markov chains
- [Kattenbelt, Kwiatkowska, Norman, Parker, 2010] CEGAR-based approach for stochastic games

Conclusion and related work

- Framework allowing guarantees for value iteration algorithm
- General results on convergence rate
- Criterion for computation of exact value
- Future work: test of our preliminary implementation over real instances
- [Katoen, Zapreev, 2006] On-the-fly detection of steady-state in the transient analysis of continuous-time Markov chains
- [Kattenbelt, Kwiatkowska, Norman, Parker, 2010] CEGAR-based approach for stochastic games
- [Brázdil, Chatterjee, Chmelík, Forejt, Křetínský, Kwiatkowska, Parker, Ujma, ATVA 2014] same techniques in a machine learning framework with almost sure convergence and computation of non-trivial end components on-the-fly

