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Markov Decision Processes
• What? 

✦ (Finite) stochastic process with non-determinism 

✦ Non-determinism solved by policies/strategies 

✦ Rewards based on the pair of state and action



• Where? 
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✦ Program verification: PCTL model-checking… 

✦ Game theory: 1+½ players 
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used in the numerical PRISM 
model checker 

[Kwiatkowska, Norman, Parker, 2011]
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Interval iteration algorithm in reduced MDPs

15

Algorithm 1: Interval iteration algorithm for minimum reachability

Input: Min-reduced MDP M = (S,↵M, �M), convergence threshold "

Output: Under- and over-approximation of Pr

min
M (F s+)

1 xs+ := 1; xs� := 0; ys+ := 1; ys� := 0
2 foreach s 2 S \ {s+, s�} do xs := 0; ys := 1
3 repeat
4 foreach s 2 S \ {s+, s�} do
5 x

0
s := mina2A(s)

P
s02S �M(s, a)(s0)xs0

6 y

0
s := mina2A(s)

P
s02S �M(s, a)(s0) ys0

7 � := maxs2S(y
0
s � x

0
s)

8 foreach s 2 S \ {s+, s�} do x

0
s := xs; y

0
s := ys

9 until � 6 "

10 return (xs)s2S , (ys)s2S

– y

(0) = y

(0) and for all n 2 N, y(n+1) = f

min

(y(n));

– y

(0) = y

(0) and for all n 2 N, y(n+1) = f

max

(y(n)).

Because of the new choice for the initial vector, notice that y and y are non-
increasing sequences. Hence, with the same reasoning as above, we know that
these sequences converge, and that their limit, denoted by y

(1) and y

(1) re-
spectively, are the minimal (respectively, maximal) reachability probabilities. In
particular, notice that x and y, as well as x and y, are adjacent sequences, and
that

x

(1) = y

(1) = Pr

min

M (F s+) and x

(1) = y

(1) = Pr

max

M (F s+) .

Let us first consider a min-reduced MDP M. Then, our new value iteration
algorithm computes both in the same time sequences x and y and stops as soon

as ky(n) � x

(n)k 6 ". In case this criterion is satisfied, which will happen after
a finite (yet possibly large and not bounded a priori) number of iterations, we
can guarantee that we obtained over- and underapproximations of Pr

min

M (F s+)
with precision at least " on every component. Because of the simultaneous com-
putation of lower and upper bounds, we call this algorithm interval iteration
algorithm, and specify it in Algorithm 1. A similar algorithm can be designed
for maximum reachability probabilities, by considering max-reduced MDPs and
replacing min operations of lines 5 and 6 by max operations.

Theorem 15. For every min-reduced (respectively, max-reduced) MDP M, and
convergence threshold ", if the interval iteration algorithm returns the vectors x

and y on those inputs, then for all s 2 S, Pr

min

M,s

(F s
+

) (respectively, Pr

max

M,s

(F s
+

))
is in the interval [x

s

, y

s

] of length at most ".

We implemented a prototype of the algorithm in OCaml.

Example 16. For the same example as the one in Example 14, our tool converges
after 10548 steps, and outputs, for the initial state s = n, x

n

= 0.4995 and
y

n

= 0.5005, given a good confidence to the user.

14
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Possible speed-up: only check size of interval for a given state…
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⎢
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⎢

⎤

⎥
⎥
⎥
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MDPs with rational probabilities:  
 d the largest denominator of transition probabilities 
 N the number of states 
 M the number of transitions with non-zero probabilities

[Chatterjee, Henzinger 2008] claim for exact computation possible  
          after       iterations of value iterationd 8M

Optimal probabilities and policies can be computed by the interval iteration 
algorithm in at most                            steps.8N 3 (1/ η)N log

2
d⎡

⎢⎢
⎤
⎥⎥

Improvement since 

1/ η ≤d N ≤M

Sketch of proof: 
• use              as threshold (with 
α gcd of optimal probabilities) 

• upper bound on α based on 
matrix properties of Markov 
chains: 

ε = 1/ 2α

α =O(NNd 2N
2
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Figure 6: Local simulation of an IMDP by an MDP

[0, 1], [0, 1/2] and [1/3, 2/3]. The hyperplane of possible distributions p is de-
picted in Figure 5. In that case, the basic feasible solutions are the probability
distributions described by the triples (2/3, 0, 1/3), (1/6, 1/2, 1/3), (0, 1/2, 1/2),
(0, 1/3, 2/3), and (1/3, 0, 2/3): as previously said, notice that, in all basic feasi-
ble solutions, all coordinates, except at most one, is one of the extremal prob-
abilities in the given intervals. We simulate the IMDP in an MDP by splitting
action a into 5 actions a

1

, . . . , a
5

corresponding to the basic feasible solutions: all
distributions of the IMDP are recovered in the MDP by allowing for randomised
policies that simulate the convex combinations. The local transformation is de-
picted in Figure 6.

As briefly explained in the example, we may use basic feasible solutions of
the linear program to simulate the IMDP by a finite MDP as follows. From
the IMDP M, we build the MDP fM = (S,↵fM, �fM) with the same set of

states as in M, actions ↵fM =
U

s2S

eA(s) where eA(s) = {(a, p) | a 2 A(s), p 2
BFS(a)}, and transitions probabilities given by �fM

�
s0|s, (a, p)

�
= p(s0). This

MDP may have an exponential number of actions: ⇥(|S|2|S|�1). It is shown

in [11, Proposition 2] that fM indeed captures all the possible behaviours of the
IMDP in the following sense:

Lemma 5. Let M be an IMDP and s be a state of M.

• For all policies � in M, there exists a policy e� in fM such that fMe�
s

= M�

s

;

• For all policies e� in fM, there exists a policy � in M such that M�

s

= fMe�
s

.

The existence of optimal deterministic stationary policies in the MDP fM en-
sures the existence of optimal deterministic stationary policies in the IMDP M
playing distributions p that are basic feasible solutions of the linear programs.
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As briefly explained in the example, we may use basic feasible solutions of
the linear program to simulate the IMDP by a finite MDP as follows. From
the IMDP M, we build the MDP fM = (S,↵fM, �fM) with the same set of

states as in M, actions ↵fM =
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s2S

eA(s) where eA(s) = {(a, p) | a 2 A(s), p 2
BFS(a)}, and transitions probabilities given by �fM

�
s0|s, (a, p)

�
= p(s0). This

MDP may have an exponential number of actions: ⇥(|S|2|S|�1). It is shown

in [11, Proposition 2] that fM indeed captures all the possible behaviours of the
IMDP in the following sense:

Lemma 5. Let M be an IMDP and s be a state of M.

• For all policies � in M, there exists a policy e� in fM such that fMe�
s

= M�

s

;

• For all policies e� in fM, there exists a policy � in M such that M�

s

= fMe�
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.

The existence of optimal deterministic stationary policies in the MDP fM en-
sures the existence of optimal deterministic stationary policies in the IMDP M
playing distributions p that are basic feasible solutions of the linear programs.
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Possible distributions: 

p ∈Dist(S) such that p
′s ∈S
∑ ( ′s )= 1

and ∀ ′s
⌣
δ( ′s | s,a)≤ p( ′s )≤

⌢
δ( ′s | s,a)

Solutions of a (bounded) linear program!
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ble solutions, all coordinates, except at most one, is one of the extremal prob-
abilities in the given intervals. We simulate the IMDP in an MDP by splitting
action a into 5 actions a
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corresponding to the basic feasible solutions: all
distributions of the IMDP are recovered in the MDP by allowing for randomised
policies that simulate the convex combinations. The local transformation is de-
picted in Figure 6.

As briefly explained in the example, we may use basic feasible solutions of
the linear program to simulate the IMDP by a finite MDP as follows. From
the IMDP M, we build the MDP fM = (S,↵fM, �fM) with the same set of

states as in M, actions ↵fM =
U

s2S

eA(s) where eA(s) = {(a, p) | a 2 A(s), p 2
BFS(a)}, and transitions probabilities given by �fM

�
s0|s, (a, p)

�
= p(s0). This

MDP may have an exponential number of actions: ⇥(|S|2|S|�1). It is shown

in [11, Proposition 2] that fM indeed captures all the possible behaviours of the
IMDP in the following sense:

Lemma 5. Let M be an IMDP and s be a state of M.

• For all policies � in M, there exists a policy e� in fM such that fMe�
s

= M�

s

;

• For all policies e� in fM, there exists a policy � in M such that M�
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= fMe�
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.

The existence of optimal deterministic stationary policies in the MDP fM en-
sures the existence of optimal deterministic stationary policies in the IMDP M
playing distributions p that are basic feasible solutions of the linear programs.
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Figure 5: Solution and basic feasible solutions of the linear program associated with an IMDP:
circles denote basic feasible solutions, while the gray area is the set of solutions

a policy is said deterministic when the first component of �(⇢) is a Dirac dis-
tribution, and stationary if �(⇢) only depends on last(⇢). Once again, further
definitions of the semantics of MDPs may be lifted to IMDPs. The probability
distribution on the paths defined by a policy may be defined with the cylinders
of the underlying Markov chain. Precisely, for a finite path ⇢

n

= s
0

a0�! s
1

a1�!
· · · an�1���! s

n

and ⇢
n+1

= s
0

a0�! s
1

a1�! · · · s
n

an��! s
n+1

, the probability measure
is inductively defined by

Pr�M,s0
(⇢

n+1

) = Pr�M,s0
(⇢

n

) f(a
n

) g(a
n

)(s
n+1

)

where �(⇢
n

) = (f, g) 2 Dist(↵M)⇥
�
Dist(S)

�
↵M .

This allows us to define as before the probability Pr�M,s

(') that a property '
is satisfied along paths of the IMDPM starting in state s and following policy �.

Regarding the definitions, IMDPs may be seen as an extension of MDPs
with an infinite (even uncountable) set of actions, without taking into account
the randomisation in policies. This makes their study a priori more complex.
However one of the contributions of [11] regarding IMDPs is to show that their
behaviour can be captured by finite MDPs. We now explain this reduction that
we will use for proofs but not for algorithms since it constructs a finite MDP
with a number of actions exponentially larger than the original IMDP. The
main idea is to explicit the set of possible choices of probability distributions in
Steps(a) for a given action a 2 A(s). Recall that it consists of all distributions

p 2 Dist(S) such that
P

s

02S

p(s0) = 1, and q�M(s0|s, a) 6 p(s0) 6 b�M(s0|s, a).
Therefore, p is a solution of a linear program, that we call LP(a) in the following,
since it depends on the action a. We know that all such solutions are obtained
by convex combinations of basic feasible solutions (BFS). Furthermore it can be
shown that the basic feasible solutions of LP(a) are the distributions p 2 Dist(S)

such that for all states s0 2 S, except at most one, either p(s0) = q�M(s0|s, a)
or p(s0) = b�M(s0|s, a). We call BFS(a) the set of basic feasible solutions of the
(bounded) linear program LP(a).

Example 4. Consider an IMDP with a state s where a single action a is avail-
able, and three possible successor states with interval of probabilities given by
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[0, 1], [0, 1/2] and [1/3, 2/3]. The hyperplane of possible distributions p is de-
picted in Figure 5. In that case, the basic feasible solutions are the probability
distributions described by the triples (2/3, 0, 1/3), (1/6, 1/2, 1/3), (0, 1/2, 1/2),
(0, 1/3, 2/3), and (1/3, 0, 2/3): as previously said, notice that, in all basic feasi-
ble solutions, all coordinates, except at most one, is one of the extremal prob-
abilities in the given intervals. We simulate the IMDP in an MDP by splitting
action a into 5 actions a

1

, . . . , a
5

corresponding to the basic feasible solutions: all
distributions of the IMDP are recovered in the MDP by allowing for randomised
policies that simulate the convex combinations. The local transformation is de-
picted in Figure 6.

As briefly explained in the example, we may use basic feasible solutions of
the linear program to simulate the IMDP by a finite MDP as follows. From
the IMDP M, we build the MDP fM = (S,↵fM, �fM) with the same set of

states as in M, actions ↵fM =
U

s2S

eA(s) where eA(s) = {(a, p) | a 2 A(s), p 2
BFS(a)}, and transitions probabilities given by �fM

�
s0|s, (a, p)

�
= p(s0). This

MDP may have an exponential number of actions: ⇥(|S|2|S|�1). It is shown

in [11, Proposition 2] that fM indeed captures all the possible behaviours of the
IMDP in the following sense:

Lemma 5. Let M be an IMDP and s be a state of M.

• For all policies � in M, there exists a policy e� in fM such that fMe�
s

= M�

s

;

• For all policies e� in fM, there exists a policy � in M such that M�

s

= fMe�
s

.

The existence of optimal deterministic stationary policies in the MDP fM en-
sures the existence of optimal deterministic stationary policies in the IMDP M
playing distributions p that are basic feasible solutions of the linear programs.
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a policy is said deterministic when the first component of �(⇢) is a Dirac dis-
tribution, and stationary if �(⇢) only depends on last(⇢). Once again, further
definitions of the semantics of MDPs may be lifted to IMDPs. The probability
distribution on the paths defined by a policy may be defined with the cylinders
of the underlying Markov chain. Precisely, for a finite path ⇢
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This allows us to define as before the probability Pr�M,s

(') that a property '
is satisfied along paths of the IMDPM starting in state s and following policy �.

Regarding the definitions, IMDPs may be seen as an extension of MDPs
with an infinite (even uncountable) set of actions, without taking into account
the randomisation in policies. This makes their study a priori more complex.
However one of the contributions of [11] regarding IMDPs is to show that their
behaviour can be captured by finite MDPs. We now explain this reduction that
we will use for proofs but not for algorithms since it constructs a finite MDP
with a number of actions exponentially larger than the original IMDP. The
main idea is to explicit the set of possible choices of probability distributions in
Steps(a) for a given action a 2 A(s). Recall that it consists of all distributions

p 2 Dist(S) such that
P

s

02S

p(s0) = 1, and q�M(s0|s, a) 6 p(s0) 6 b�M(s0|s, a).
Therefore, p is a solution of a linear program, that we call LP(a) in the following,
since it depends on the action a. We know that all such solutions are obtained
by convex combinations of basic feasible solutions (BFS). Furthermore it can be
shown that the basic feasible solutions of LP(a) are the distributions p 2 Dist(S)

such that for all states s0 2 S, except at most one, either p(s0) = q�M(s0|s, a)
or p(s0) = b�M(s0|s, a). We call BFS(a) the set of basic feasible solutions of the
(bounded) linear program LP(a).

Example 4. Consider an IMDP with a state s where a single action a is avail-
able, and three possible successor states with interval of probabilities given by
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[0, 1], [0, 1/2] and [1/3, 2/3]. The hyperplane of possible distributions p is de-
picted in Figure 5. In that case, the basic feasible solutions are the probability
distributions described by the triples (2/3, 0, 1/3), (1/6, 1/2, 1/3), (0, 1/2, 1/2),
(0, 1/3, 2/3), and (1/3, 0, 2/3): as previously said, notice that, in all basic feasi-
ble solutions, all coordinates, except at most one, is one of the extremal prob-
abilities in the given intervals. We simulate the IMDP in an MDP by splitting
action a into 5 actions a
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, . . . , a
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corresponding to the basic feasible solutions: all
distributions of the IMDP are recovered in the MDP by allowing for randomised
policies that simulate the convex combinations. The local transformation is de-
picted in Figure 6.

As briefly explained in the example, we may use basic feasible solutions of
the linear program to simulate the IMDP by a finite MDP as follows. From
the IMDP M, we build the MDP fM = (S,↵fM, �fM) with the same set of

states as in M, actions ↵fM =
U

s2S

eA(s) where eA(s) = {(a, p) | a 2 A(s), p 2
BFS(a)}, and transitions probabilities given by �fM

�
s0|s, (a, p)

�
= p(s0). This

MDP may have an exponential number of actions: ⇥(|S|2|S|�1). It is shown

in [11, Proposition 2] that fM indeed captures all the possible behaviours of the
IMDP in the following sense:

Lemma 5. Let M be an IMDP and s be a state of M.

• For all policies � in M, there exists a policy e� in fM such that fMe�
s

= M�

s

;

• For all policies e� in fM, there exists a policy � in M such that M�

s

= fMe�
s

.

The existence of optimal deterministic stationary policies in the MDP fM en-
sures the existence of optimal deterministic stationary policies in the IMDP M
playing distributions p that are basic feasible solutions of the linear programs.
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a policy is said deterministic when the first component of �(⇢) is a Dirac dis-
tribution, and stationary if �(⇢) only depends on last(⇢). Once again, further
definitions of the semantics of MDPs may be lifted to IMDPs. The probability
distribution on the paths defined by a policy may be defined with the cylinders
of the underlying Markov chain. Precisely, for a finite path ⇢
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This allows us to define as before the probability Pr�M,s

(') that a property '
is satisfied along paths of the IMDPM starting in state s and following policy �.

Regarding the definitions, IMDPs may be seen as an extension of MDPs
with an infinite (even uncountable) set of actions, without taking into account
the randomisation in policies. This makes their study a priori more complex.
However one of the contributions of [11] regarding IMDPs is to show that their
behaviour can be captured by finite MDPs. We now explain this reduction that
we will use for proofs but not for algorithms since it constructs a finite MDP
with a number of actions exponentially larger than the original IMDP. The
main idea is to explicit the set of possible choices of probability distributions in
Steps(a) for a given action a 2 A(s). Recall that it consists of all distributions

p 2 Dist(S) such that
P

s

02S

p(s0) = 1, and q�M(s0|s, a) 6 p(s0) 6 b�M(s0|s, a).
Therefore, p is a solution of a linear program, that we call LP(a) in the following,
since it depends on the action a. We know that all such solutions are obtained
by convex combinations of basic feasible solutions (BFS). Furthermore it can be
shown that the basic feasible solutions of LP(a) are the distributions p 2 Dist(S)

such that for all states s0 2 S, except at most one, either p(s0) = q�M(s0|s, a)
or p(s0) = b�M(s0|s, a). We call BFS(a) the set of basic feasible solutions of the
(bounded) linear program LP(a).

Example 4. Consider an IMDP with a state s where a single action a is avail-
able, and three possible successor states with interval of probabilities given by
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[0, 1], [0, 1/2] and [1/3, 2/3]. The hyperplane of possible distributions p is de-
picted in Figure 5. In that case, the basic feasible solutions are the probability
distributions described by the triples (2/3, 0, 1/3), (1/6, 1/2, 1/3), (0, 1/2, 1/2),
(0, 1/3, 2/3), and (1/3, 0, 2/3): as previously said, notice that, in all basic feasi-
ble solutions, all coordinates, except at most one, is one of the extremal prob-
abilities in the given intervals. We simulate the IMDP in an MDP by splitting
action a into 5 actions a

1

, . . . , a
5

corresponding to the basic feasible solutions: all
distributions of the IMDP are recovered in the MDP by allowing for randomised
policies that simulate the convex combinations. The local transformation is de-
picted in Figure 6.

As briefly explained in the example, we may use basic feasible solutions of
the linear program to simulate the IMDP by a finite MDP as follows. From
the IMDP M, we build the MDP fM = (S,↵fM, �fM) with the same set of

states as in M, actions ↵fM =
U

s2S

eA(s) where eA(s) = {(a, p) | a 2 A(s), p 2
BFS(a)}, and transitions probabilities given by �fM

�
s0|s, (a, p)

�
= p(s0). This

MDP may have an exponential number of actions: ⇥(|S|2|S|�1). It is shown

in [11, Proposition 2] that fM indeed captures all the possible behaviours of the
IMDP in the following sense:

Lemma 5. Let M be an IMDP and s be a state of M.

• For all policies � in M, there exists a policy e� in fM such that fMe�
s

= M�

s

;

• For all policies e� in fM, there exists a policy � in M such that M�

s

= fMe�
s

.

The existence of optimal deterministic stationary policies in the MDP fM en-
sures the existence of optimal deterministic stationary policies in the IMDP M
playing distributions p that are basic feasible solutions of the linear programs.
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f
max
(x)

s
= max

a∈A(s)
max

p∈BFS(a)
p

′s ∈S
∑ ( ′s )×x ′s
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Algorithm 3: MECs computation in IMDP

Input: an IMDP M = (S,↵M, q�M, b�M);
Output: SM, a concise representation of the set of MECs of M;
Data: stack, a stack of sub-IMDPs;

1 Push(stack,M); SM ;
2 while not Empty(stack) do

3 (S0,↵0, q�0, b�0) Pop(stack)
4 for s 2 S0 and a 2 ↵0 \A(s) do

5 if q�0(S \ S0|s, a) > 0 _ b�0(S0|s, a) < 1 then
6 ↵0  ↵0 \ {a}
7 else

8 for s0 /2 S0 do b�0(s0|s, a) 0

9 E  ;
10 for s, s0 2 S0 and a 2 ↵0 \A(s) do

11 if b�0(s0|s, a) > 0 ^ q�0(S \ {s0}|s, a) < 1 then E  E [ {(s, s0)}
12 compute the strongly connected components of (S0, E): S

1

, . . . , S
K

13 if K > 1 then

14 for i = 1 to K do Push(stack, (S
i

,↵0 \
S

s2Si
A(s), q�0|

Si ,
b�0|

Si))

15 else SM SM [ {(S0,↵0, q�0, b�0)}
16 return SM

to keep this pretreatment polynomial, it should be implemented so that it never
enumerates the basic feasible solutions of some interval constraints.

First, MECs of an IMDP M are simply the MECs of the underlying MDP
fM, i.e., they are sub-MDPs (S0,↵0) of fM, in particular with ↵0 ✓ ↵fM. In order
to avoid an exponential explosion, we represent them concisely. In particular,
we will show that such MECs are indeed of the form eN with N a sub-IMDP of
M: sub-IMDPs must now incorporate the interval constraints on the probability
distributions in order to recover the basic feasible solutions, therefore they are
simply IMDPs (S0,↵0, q�0, b�0) with ; 6= S0 ✓ S, and ↵0 ✓

S
s2S

0 A(s). Therefore,

we mimic what Algorithm 1 would have done on fM, but directly computing
overM. This leads to Algorithm 3 where q�M(S0|s, a) denotes

P
s

02S

0
q�M(s0|s, a)

(and similarly for b�M(S0|s, a)).
The next proposition establishes that MECs can be computed with no rel-

evant additional cost compared to the case of MDPs since the complexity of
Algorithm 3 has the same magnitude order as the one of Algorithm 1.

Proposition 6. Algorithm 3 computes a concise representation of the MECs
of an IMDP M in polynomial time. More precisely, it computes a set of sub-
IMDPs {N

i

| 1 6 i 6 k} of M such that {fN
i

| 1 6 i 6 k} is the set of MECs of

the MDP fM.
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Figure 8: Max-reduced IMDP of the IMDP in Figure 7.

and for all 1 6 ` 6 L, 1 6 k, k0 6 K, a
C

2 A•(s
k

) with a 2 A(s) and
s 2 S

k

,

q�M•(s�|sk, aC) =
1
s�=C

den(a)
, b�M•(s�|sk, aC) = min

�b�M(
S

M

m=1

B
m

|s, a), 1
�
,

q�M•(s
+

|s
k

, a
C

) =
1
s+=C

den(a)
, b�M•(s

+

|s
k

, a
C

) = b�M(s
+

|s, a),

q�M•(t
`
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k

, a
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1
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`

|s
k

, a
C

) = b�M(t
`
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q�M•(s
k

0 |s
k

, a
C

) =
1
sk0=C

den(a)
, b�M•(s

k

0 |s
k

, a
C

) = min
�b�M(S

k

0 |s, a), 1
�
,

Example 6. In Figure 8 is depicted the max-reduced IMDP of the IMDP of
Figure 7. MECs have been merged, and action g (single action exiting the
non-trivial MEC) is split into two actions g

s+ and g
s� . The bold lower bounds

represent the lift of null probabilities to 1/ den(g), with den(g) = 10 the common
denominator of bounds in intervals of action g.

Observe that the set of basic feasible solutions of all the actions a
C

defined
above is di↵erent from the one that we would have get by picking all the ad-
missible ones from a. However, we now show that this splitting of a in a

C

’s is
sound. For that, we map each a distribution q over S to a distribution q• over
S• by q•(s) =

P
s

02Ss
q(s0), and show that (1) the image q• of an admissible

basic feasible solution q of a in M is a feasible solution of some a
C

in M•, and
(2) the basic feasible solutions p of a

C

in M• are images p = q• of feasible solu-
tions q of a in M. From the point of view of complexity, this splitting entails at
worst a quadratic blowup, allowing us to keep a polynomial time complexity for
the pre-computation. We now state and prove formally the correctness result.

Theorem 5. Let M be an IMDP, and s 2 S• \ {s�, s+}.
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