
Interval Iteration Algorithm
for MDPs and IMDPs

Serge Haddad (LSV, ENS Cachan, CNRS & Inria)
and

Benjamin Monmege

Séminaire Modélisation et Vérification
November 2015, Marseille

Mixing non-determinism and probabilities

2

• Acting in an uncertain world

✦ ︎ non-determinism: decisions of an agent;

✦ ︎ probabilities: effects of the decisions;

✦ ︎ goal: maximizing some utility function.

Mixing non-determinism and probabilities

• Randomness against the environment

✦ ︎ probabilities: distributed randomized algorithm;

✦ ︎ non-determinism: behavior of the network;

✦ ︎ goal: evaluating the worst-case behavior.

2

• Acting in an uncertain world

✦ ︎ non-determinism: decisions of an agent;

✦ ︎ probabilities: effects of the decisions;

✦ ︎ goal: maximizing some utility function.

Mixing non-determinism and probabilities

• Randomness against the environment

✦ ︎ probabilities: distributed randomized algorithm;

✦ ︎ non-determinism: behavior of the network;

✦ ︎ goal: evaluating the worst-case behavior.

2

• Acting in an uncertain world

✦ ︎ non-determinism: decisions of an agent;

✦ ︎ probabilities: effects of the decisions;

✦ ︎ goal: maximizing some utility function.

Optimization problems

3

Markov Decision Processes
• What?

✦ (Finite) stochastic process with non-determinism

✦ Non-determinism solved by policies/strategies

✦ Rewards based on the pair of state and action

• Where?

✦ Optimization

✦ Program verification: PCTL model-checking…

✦ Game theory: 1+½ players

3

Markov Decision Processes
• What?

✦ (Finite) stochastic process with non-determinism

✦ Non-determinism solved by policies/strategies

✦ Rewards based on the pair of state and action

MDPs with discounted rewards

a,3
½

½

⅓

⅔

b,-1
c,2

d,1

½

½ e,0

4

f,0

MDPs with discounted rewards

a,3
½

½

⅓

⅔

b,-1
c,2

d,1

½

½ e,0

Finite number
of states

4

f,0

M= (S,α,δ,r)
δ :S×α→ Dist(S)

σ : (S ⋅α)! ⋅S → Dist(α)Policy

r :S×α→ !

0<λ<1

MDPs with discounted rewards

a,3
½

½

⅓

⅔

b,-1
c,2

d,1

½

½ e,0

Finite number
of states

Probabilistic states

4

f,0

M= (S,α,δ,r)
δ :S×α→ Dist(S)

σ : (S ⋅α)! ⋅S → Dist(α)Policy

r :S×α→ !

0<λ<1

MDPs with discounted rewards

a,3
½

½

⅓

⅔

b,-1
c,2

d,1

½

½ e,0

Finite number
of states

Probabilistic states

Actions to be
selected by the policy

and reward

4

f,0

M= (S,α,δ,r)
δ :S×α→ Dist(S)

σ : (S ⋅α)! ⋅S → Dist(α)Policy

r :S×α→ !

0<λ<1

MDPs with discounted rewards

a,3
½

½

⅓

⅔

b,-1
c,2

d,1

½

½ e,0

Finite number
of states

Probabilistic states

Actions to be
selected by the policy

and reward

4

f,0

vσ(s
0
)=

i=0

∞

∑λi
j=0

i−1

∏δ(sj ,σ(…sj))r(si,σ(…si))
s1,…,si

∑M= (S,α,δ,r)
δ :S×α→ Dist(S)

σ : (S ⋅α)! ⋅S → Dist(α)Policy

r :S×α→ !

0<λ<1

MDPs with discounted rewards

a,3
½

½

⅓

⅔

b,-1
c,2

d,1

½

½ e,0

Finite number
of states

Probabilistic states

Actions to be
selected by the policy

and reward

4

f,0

vσ(s
0
)=

i=0

∞

∑λi
j=0

i−1

∏δ(sj ,σ(…sj))r(si,σ(…si))
s1,…,si

∑
probability to arrive in after i stepss

i

M= (S,α,δ,r)
δ :S×α→ Dist(S)

σ : (S ⋅α)! ⋅S → Dist(α)Policy

r :S×α→ !

0<λ<1

MDPs with discounted rewards

a,3
½

½

⅓

⅔

b,-1
c,2

d,1

½

½ e,0

Finite number
of states

Probabilistic states

Actions to be
selected by the policy

and reward

4

f,0

vσ(s
0
)=

i=0

∞

∑λi
j=0

i−1

∏δ(sj ,σ(…sj))r(si,σ(…si))
s1,…,si

∑
probability to arrive in after i stepss

i

Objective: compute
and good policies

sup
σ
vσ(s

0
)

M= (S,α,δ,r)
δ :S×α→ Dist(S)

σ : (S ⋅α)! ⋅S → Dist(α)Policy

r :S×α→ !

0<λ<1

Resolution of MDPs with discounted rewards

5

vσ(s
0
)=

i=0

∞

∑λi
j=0

i−1

∏δ(sj ,σ(…sj))r(si,σ(…si))
s1,…,si

∑

Resolution of MDPs with discounted rewards

5

memoryless optimal strategies exist: vσ =
i=0

∞

∑(λΔσ)ir σ = (I −λΔσ)−1r σ
vσ(s

0
)=

i=0

∞

∑λi
j=0

i−1

∏δ(sj ,σ(…sj))r(si,σ(…si))
s1,…,si

∑

Resolution of MDPs with discounted rewards

5

memoryless optimal strategies exist: vσ =
i=0

∞

∑(λΔσ)ir σ = (I −λΔσ)−1r σ
vσ(s

0
)=

i=0

∞

∑λi
j=0

i−1

∏δ(sj ,σ(…sj))r(si,σ(…si))
s1,…,si

∑

vσ = r σ +λΔσvσ time horizon 1
with « terminal rewards » . λvσ

Resolution of MDPs with discounted rewards

5

memoryless optimal strategies exist: vσ =
i=0

∞

∑(λΔσ)ir σ = (I −λΔσ)−1r σ
vσ(s

0
)=

i=0

∞

∑λi
j=0

i−1

∏δ(sj ,σ(…sj))r(si,σ(…si))
s1,…,si

∑

vσ = r σ +λΔσvσ time horizon 1
with « terminal rewards » . λvσ

L(v)
s
= max

a∈α
r(s,a)+λ δ

′s ∈S
∑ (s,a)(′s)v ′s

Function defined by L :!S → !S

Resolution of MDPs with discounted rewards

5

memoryless optimal strategies exist: vσ =
i=0

∞

∑(λΔσ)ir σ = (I −λΔσ)−1r σ
vσ(s

0
)=

i=0

∞

∑λi
j=0

i−1

∏δ(sj ,σ(…sj))r(si,σ(…si))
s1,…,si

∑

vσ = r σ +λΔσvσ time horizon 1
with « terminal rewards » . λvσ

L(v)
s
= max

a∈α
r(s,a)+λ δ

′s ∈S
∑ (s,a)(′s)v ′s

Function defined by L :!S → !S

verifies‖L(v)−L(′v)‖
∞
≤λ‖v− ′v ‖

∞

Resolution of MDPs with discounted rewards

5

memoryless optimal strategies exist: vσ =
i=0

∞

∑(λΔσ)ir σ = (I −λΔσ)−1r σ
vσ(s

0
)=

i=0

∞

∑λi
j=0

i−1

∏δ(sj ,σ(…sj))r(si,σ(…si))
s1,…,si

∑

vσ = r σ +λΔσvσ time horizon 1
with « terminal rewards » . λvσ

L(v)
s
= max

a∈α
r(s,a)+λ δ

′s ∈S
∑ (s,a)(′s)v ′s

Function defined by L :!S → !S

verifies‖L(v)−L(′v)‖
∞
≤λ‖v− ′v ‖

∞

v ! = sup
σ
vσ is the unique fixed point of L

lim
n→∞
Ln(v

0
)= v ! ‖v ! −Ln(v

0
)‖
∞
≤
λn

1−λ
‖L(v

0
)−v

0
‖
∞

Resolution of MDPs with discounted rewards

5

memoryless optimal strategies exist: vσ =
i=0

∞

∑(λΔσ)ir σ = (I −λΔσ)−1r σ
vσ(s

0
)=

i=0

∞

∑λi
j=0

i−1

∏δ(sj ,σ(…sj))r(si,σ(…si))
s1,…,si

∑

vσ = r σ +λΔσvσ time horizon 1
with « terminal rewards » . λvσ

L(v)
s
= max

a∈α
r(s,a)+λ δ

′s ∈S
∑ (s,a)(′s)v ′s

Function defined by L :!S → !S

verifies‖L(v)−L(′v)‖
∞
≤λ‖v− ′v ‖

∞

v ! = sup
σ
vσ is the unique fixed point of L

lim
n→∞
Ln(v

0
)= v ! ‖v ! −Ln(v

0
)‖
∞
≤
λn

1−λ
‖L(v

0
)−v

0
‖
∞

speed of convergence +
stopping criterion for algorithm

MDPs with reachability objectives

a
½

½

⅓

⅔

b
c

d

½

½ e

Finite number
of states

Probabilistic states

Actions to be
selected by the policy

M= (S,α,δ)
δ :S×α→ Dist(S)

σ : (S ⋅α)! ⋅S → Dist(α)Policy
6

MDPs with reachability objectives

a
½

½

⅓

⅔

b
c

d

½

½ e

Finite number
of states

Probabilistic states

Actions to be
selected by the policy

Reachability objective

M= (S,α,δ)
δ :S×α→ Dist(S)

σ : (S ⋅α)! ⋅S → Dist(α)Policy
6

MDPs with reachability objectives

a
½

½

⅓

⅔

b
c

d

½

½ e

Finite number
of states

Probabilistic states

Actions to be
selected by the policy

Reachability objective

M= (S,α,δ)
δ :S×α→ Dist(S)

σ : (S ⋅α)! ⋅S → Dist(α)Policy

Probability to reach: Pr
s
σ(F)

6

MDPs with reachability objectives

a
½

½

⅓

⅔

b
c

d

½

½ e

Finite number
of states

Probabilistic states

Actions to be
selected by the policy

Reachability objective

M= (S,α,δ)
δ :S×α→ Dist(S)

σ : (S ⋅α)! ⋅S → Dist(α)Policy

Probability to reach: Pr
s
σ(F)

6

Maximal probability
to reach: Pr

s
max(F)= sup

σ
Pr
s
σ(F)

Optimal reachability probabilities of MDPs

• How?

✦ Linear programming

✦ Policy iteration

✦ Value iteration: numerical scheme that scales well and
works in practice

7

Optimal reachability probabilities of MDPs

• How?

✦ Linear programming

✦ Policy iteration

✦ Value iteration: numerical scheme that scales well and
works in practice

7

used in the numerical PRISM
model checker

[Kwiatkowska, Norman, Parker, 2011]

Value iteration

8

a
½

½

⅓

⅔

b
c

d

½

½ e

Value iteration

8

a
½

½

⅓

⅔

b
c

d

½

½ e

x
s
(n+1) = max

a∈α
δ

′s ∈S
∑ (s,a)(′s)×x ′s

(n)

x
s
(0) = 1 if s =

0 otherwise

⎧
⎨
⎪⎪

⎩
⎪⎪

Value iteration

8

a
½

½

⅓

⅔

b
c

d

½

½ e

0 0 0 0

x
s
(n+1) = max

a∈α
δ

′s ∈S
∑ (s,a)(′s)×x ′s

(n)

x
s
(0) = 1 if s =

0 otherwise

⎧
⎨
⎪⎪

⎩
⎪⎪

Value iteration

8

a
½

½

⅓

⅔

b
c

d

½

½ e

0 0 0 0
0 2/3 (b) 0 0

x
s
(n+1) = max

a∈α
δ

′s ∈S
∑ (s,a)(′s)×x ′s

(n)

x
s
(0) = 1 if s =

0 otherwise

⎧
⎨
⎪⎪

⎩
⎪⎪

Value iteration

8

a
½

½

⅓

⅔

b
c

d

½

½ e

0 0 0 0
0 2/3 (b) 0 0

1/3 2/3 (b) 0 0

x
s
(n+1) = max

a∈α
δ

′s ∈S
∑ (s,a)(′s)×x ′s

(n)

x
s
(0) = 1 if s =

0 otherwise

⎧
⎨
⎪⎪

⎩
⎪⎪

Value iteration

8

a
½

½

⅓

⅔

b
c

d

½

½ e

0 0 0 0
0 2/3 (b) 0 0

1/3 2/3 (b) 0 0
1/2 2/3 (b) 1/6 0

x
s
(n+1) = max

a∈α
δ

′s ∈S
∑ (s,a)(′s)×x ′s

(n)

x
s
(0) = 1 if s =

0 otherwise

⎧
⎨
⎪⎪

⎩
⎪⎪

Value iteration

8

a
½

½

⅓

⅔

b
c

d

½

½ e

0 0 0 0
0 2/3 (b) 0 0

1/3 2/3 (b) 0 0
1/2 2/3 (b) 1/6 0
7/12 13/18 (b) 1/4 0

x
s
(n+1) = max

a∈α
δ

′s ∈S
∑ (s,a)(′s)×x ′s

(n)

x
s
(0) = 1 if s =

0 otherwise

⎧
⎨
⎪⎪

⎩
⎪⎪

Value iteration

8

a
½

½

⅓

⅔

b
c

d

½

½ e

0 0 0 0
0 2/3 (b) 0 0

1/3 2/3 (b) 0 0
1/2 2/3 (b) 1/6 0
7/12 13/18 (b) 1/4 0
… … … …

x
s
(n+1) = max

a∈α
δ

′s ∈S
∑ (s,a)(′s)×x ′s

(n)

x
s
(0) = 1 if s =

0 otherwise

⎧
⎨
⎪⎪

⎩
⎪⎪

Value iteration

8

a
½

½

⅓

⅔

b
c

d

½

½ e

0 0 0 0
0 2/3 (b) 0 0

1/3 2/3 (b) 0 0
1/2 2/3 (b) 1/6 0
7/12 13/18 (b) 1/4 0
… … … …

0.7969 0.7988 (b) 0.3977 0

x
s
(n+1) = max

a∈α
δ

′s ∈S
∑ (s,a)(′s)×x ′s

(n)

x
s
(0) = 1 if s =

0 otherwise

⎧
⎨
⎪⎪

⎩
⎪⎪

Value iteration

8

a
½

½

⅓

⅔

b
c

d

½

½ e

0 0 0 0
0 2/3 (b) 0 0

1/3 2/3 (b) 0 0
1/2 2/3 (b) 1/6 0
7/12 13/18 (b) 1/4 0
… … … …

0.7969 0.7988 (b) 0.3977 0
0.7978 0.7992 (b) 0.3984 0

x
s
(n+1) = max

a∈α
δ

′s ∈S
∑ (s,a)(′s)×x ′s

(n)

x
s
(0) = 1 if s =

0 otherwise

⎧
⎨
⎪⎪

⎩
⎪⎪

Value iteration

8

a
½

½

⅓

⅔

b
c

d

½

½ e

0 0 0 0
0 2/3 (b) 0 0

1/3 2/3 (b) 0 0
1/2 2/3 (b) 1/6 0
7/12 13/18 (b) 1/4 0
… … … …

0.7969 0.7988 (b) 0.3977 0
0.7978 0.7992 (b) 0.3984 0

≤0.001

x
s
(n+1) = max

a∈α
δ

′s ∈S
∑ (s,a)(′s)×x ′s

(n)

x
s
(0) = 1 if s =

0 otherwise

⎧
⎨
⎪⎪

⎩
⎪⎪

Value iteration: which guarantees?

9

½

½

½

½

k

k-1

…k+2k+1 2k-1 2k
½

½

½

½

½
½

…k-2 1
½

½
½

½

Value iteration: which guarantees?

9

½

½

½

½

k

k-1

…k+2k+1 2k-1 2k
½

½

½

½

½
½

…k-2 1
½

½
½

½

State 0 1 2 3 … k-1 k k+1 … 2k

Value iteration: which guarantees?

9

½

½

½

½

k

k-1

…k+2k+1 2k-1 2k
½

½

½

½

½
½

…k-2 1
½

½
½

½

State 0 1 2 3 … k-1 k k+1 … 2k
Step 1 1 0 0 0 … 0 0 0 … 0

Value iteration: which guarantees?

9

½

½

½

½

k

k-1

…k+2k+1 2k-1 2k
½

½

½

½

½
½

…k-2 1
½

½
½

½

State 0 1 2 3 … k-1 k k+1 … 2k
Step 1 1 0 0 0 … 0 0 0 … 0
Step 2 1 1/2 0 0 … 0 0 0 … 0

Value iteration: which guarantees?

9

½

½

½

½

k

k-1

…k+2k+1 2k-1 2k
½

½

½

½

½
½

…k-2 1
½

½
½

½

State 0 1 2 3 … k-1 k k+1 … 2k
Step 1 1 0 0 0 … 0 0 0 … 0
Step 2 1 1/2 0 0 … 0 0 0 … 0
Step 3 1 1/2 1/4 0 … 0 0 0 … 0

Value iteration: which guarantees?

9

½

½

½

½

k

k-1

…k+2k+1 2k-1 2k
½

½

½

½

½
½

…k-2 1
½

½
½

½

State 0 1 2 3 … k-1 k k+1 … 2k
Step 1 1 0 0 0 … 0 0 0 … 0
Step 2 1 1/2 0 0 … 0 0 0 … 0
Step 3 1 1/2 1/4 0 … 0 0 0 … 0
Step 4 1 1/2 1/4 1/8 … 0 0 0 … 0

Value iteration: which guarantees?

9

½

½

½

½

k

k-1

…k+2k+1 2k-1 2k
½

½

½

½

½
½

…k-2 1
½

½
½

½

State 0 1 2 3 … k-1 k k+1 … 2k
Step 1 1 0 0 0 … 0 0 0 … 0
Step 2 1 1/2 0 0 … 0 0 0 … 0
Step 3 1 1/2 1/4 0 … 0 0 0 … 0
Step 4 1 1/2 1/4 1/8 … 0 0 0 … 0

… … … … … … … … … … …
Step k 1 1/2 1/4 1/8 … 0 0 … 01/ 2k−1

Value iteration: which guarantees?

9

½

½

½

½

k

k-1

…k+2k+1 2k-1 2k
½

½

½

½

½
½

…k-2 1
½

½
½

½

State 0 1 2 3 … k-1 k k+1 … 2k
Step 1 1 0 0 0 … 0 0 0 … 0
Step 2 1 1/2 0 0 … 0 0 0 … 0
Step 3 1 1/2 1/4 0 … 0 0 0 … 0
Step 4 1 1/2 1/4 1/8 … 0 0 0 … 0

… … … … … … … … … … …
Step k 1 1/2 1/4 1/8 … 0 0 … 0

Step k+1 1 1/2 1/4 1/8 … 0 … 0

1/ 2k−1

1/ 2k−1 1/ 2k

Value iteration: which guarantees?

9

½

½

½

½

k

k-1

…k+2k+1 2k-1 2k
½

½

½

½

½
½

…k-2 1
½

½
½

½

State 0 1 2 3 … k-1 k k+1 … 2k
Step 1 1 0 0 0 … 0 0 0 … 0
Step 2 1 1/2 0 0 … 0 0 0 … 0
Step 3 1 1/2 1/4 0 … 0 0 0 … 0
Step 4 1 1/2 1/4 1/8 … 0 0 0 … 0

… … … … … … … … … … …
Step k 1 1/2 1/4 1/8 … 0 0 … 0

Step k+1 1 1/2 1/4 1/8 … 0 … 0
≤1/2k 1/ 2k−1

1/ 2k−1 1/ 2k

Value iteration: which guarantees?

9

½

½

½

½

k

k-1

…k+2k+1 2k-1 2k
½

½

½

½

½
½

…k-2 1
½

½
½

½

State 0 1 2 3 … k-1 k k+1 … 2k
Step 1 1 0 0 0 … 0 0 0 … 0
Step 2 1 1/2 0 0 … 0 0 0 … 0
Step 3 1 1/2 1/4 0 … 0 0 0 … 0
Step 4 1 1/2 1/4 1/8 … 0 0 0 … 0

… … … … … … … … … … …
Step k 1 1/2 1/4 1/8 … 0 0 … 0

Step k+1 1 1/2 1/4 1/8 … 0 … 0
≤1/2k

Real value: 1/2
(by symmetry)

1/ 2k−1

1/ 2k−1 1/ 2k

Contributions

10

Contributions

1. Enhanced value iteration algorithm with strong guarantees

10

Contributions

1. Enhanced value iteration algorithm with strong guarantees

• performs two value iterations in parallel

10

Contributions

1. Enhanced value iteration algorithm with strong guarantees

• performs two value iterations in parallel

• keeps an interval of possible optimal values

10

Contributions

1. Enhanced value iteration algorithm with strong guarantees

• performs two value iterations in parallel

• keeps an interval of possible optimal values

• uses the interval for the stopping criterion

10

Contributions

1. Enhanced value iteration algorithm with strong guarantees

• performs two value iterations in parallel

• keeps an interval of possible optimal values

• uses the interval for the stopping criterion

2. Study of the speed of convergence

10

Contributions

1. Enhanced value iteration algorithm with strong guarantees

• performs two value iterations in parallel

• keeps an interval of possible optimal values

• uses the interval for the stopping criterion

2. Study of the speed of convergence

• also applies to classical value iteration

10

Contributions

1. Enhanced value iteration algorithm with strong guarantees

• performs two value iterations in parallel

• keeps an interval of possible optimal values

• uses the interval for the stopping criterion

2. Study of the speed of convergence

• also applies to classical value iteration

3. Improved rounding procedure for exact computation

10

Interval iteration

11

½

½

½

½

k

k-1

…k+2k+1 2k-1 2n
½

½

½

½

½
½

…k-2 1
½

½
½

½

x
s
(0) = 1 if s =

0 otherwise

⎧
⎨
⎪⎪

⎩
⎪⎪

x
s
(n+1) = max

a∈α
δ

′s ∈S
∑ (s,a)(′s)×x ′s

(n)

Interval iteration

11

½

½

½

½

k

k-1

…k+2k+1 2k-1 2n
½

½

½

½

½
½

…k-2 1
½

½
½

½

0

0,25

0,5

0,75

1

Number of steps

1 2 3 4 5 6

x
s
(0) = 1 if s =

0 otherwise

⎧
⎨
⎪⎪

⎩
⎪⎪

x
s
(n+1) = max

a∈α
δ

′s ∈S
∑ (s,a)(′s)×x ′s

(n)

Interval iteration

11

½

½

½

½

k

k-1

…k+2k+1 2k-1 2n
½

½

½

½

½
½

…k-2 1
½

½
½

½

0

0,25

0,5

0,75

1

Number of steps

1 2 3 4 5 6

f
max
(x)

s
= max

a∈α
δ

′s ∈S
∑ (s,a)(′s)×x ′s

x
s
(0) = 1 if s =

0 otherwise

⎧
⎨
⎪⎪

⎩
⎪⎪

x (n+1) = f
max
(x (n))

Interval iteration

11

½

½

½

½

k

k-1

…k+2k+1 2k-1 2n
½

½

½

½

½
½

…k-2 1
½

½
½

½

0

0,25

0,5

0,75

1

Number of steps

1 2 3 4 5 6

f
max
(x)

s
= max

a∈α
δ

′s ∈S
∑ (s,a)(′s)×x ′s

x
s
(0) = 1 if s =

0 otherwise

⎧
⎨
⎪⎪

⎩
⎪⎪

x (n+1) = f
max
(x (n))

usual
stopping
criterion

Interval iteration

11

½

½

½

½

k

k-1

…k+2k+1 2k-1 2n
½

½

½

½

½
½

…k-2 1
½

½
½

½

0

0,25

0,5

0,75

1

Number of steps

1 2 3 4 5 6

f
max
(x)

s
= max

a∈α
δ

′s ∈S
∑ (s,a)(′s)×x ′s

x
s
(0) = 1 if s =

0 otherwise

⎧
⎨
⎪⎪

⎩
⎪⎪

x (n+1) = f
max
(x (n))

usual
stopping
criterion

Interval iteration

11

½

½

½

½

k

k-1

…k+2k+1 2k-1 2n
½

½

½

½

½
½

…k-2 1
½

½
½

½

0

0,25

0,5

0,75

1

Number of steps

1 2 3 4 5 6

NEW
stopping
criterion

f
max
(x)

s
= max

a∈α
δ

′s ∈S
∑ (s,a)(′s)×x ′s

x
s
(0) = 1 if s =

0 otherwise

⎧
⎨
⎪⎪

⎩
⎪⎪

x (n+1) = f
max
(x (n))

usual
stopping
criterion

Interval iteration

11

½

½

½

½

k

k-1

…k+2k+1 2k-1 2n
½

½

½

½

½
½

…k-2 1
½

½
½

½

0

0,25

0,5

0,75

1

Number of steps

1 2 3 4 5 6

NEW
stopping
criterion

f
max
(x)

s
= max

a∈α
δ

′s ∈S
∑ (s,a)(′s)×x ′s

x
s
(0) = 1 if s =

0 otherwise

⎧
⎨
⎪⎪

⎩
⎪⎪

y
s
(0) = 0 if s =

1 otherwise

⎧
⎨
⎪⎪

⎩
⎪⎪

x (n+1) = f
max
(x (n)) y(n+1) = f

max
(y(n))

usual
stopping
criterion

Fixed point characterization

12

(Pr
s
max(F))

s∈S
 is the smallest fixed point of . f

max

Fixed point characterization

12

(Pr
s
max(F))

s∈S
 is the smallest fixed point of . f

max

0

0,25

0,5

0,75

1

Number of steps

1 2 3 4 5 6

Fixed point characterization

12

(Pr
s
max(F))

s∈S
 is the smallest fixed point of . f

max

0

0,25

0,5

0,75

1

Number of steps

1 2 3 4 5 6

always converges towards (Prsmax(F))
s∈S

Fixed point characterization

12

(Pr
s
max(F))

s∈S
 is the smallest fixed point of . f

max

0

0,25

0,5

0,75

1

Number of steps

1 2 3 4 5 6

always converges towards (Prsmax(F))
s∈S

not always…!

Fixed point characterization

12

(Pr
s
max(F))

s∈S
 is the smallest fixed point of . f

max

0

0,25

0,5

0,75

1

Number of steps

1 2 3 4 5 6

always converges towards (Prsmax(F))
s∈S

not always…!

a

½
½

c
½
g

b

e

d

0.2

0.3

f

Fixed point characterization

12

(Pr
s
max(F))

s∈S
 is the smallest fixed point of . f

max

0

0,25

0,5

0,75

1

Number of steps

1 2 3 4 5 6

always converges towards (Prsmax(F))
s∈S

not always…!

a

½
½

c
½
g

b

e

d

0.2

0.3

f

1 1

0.7

0 0

1

Fixed point characterization

12

(Pr
s
max(F))

s∈S
 is the smallest fixed point of . f

max

0

0,25

0,5

0,75

1

Number of steps

1 2 3 4 5 6

always converges towards (Prsmax(F))
s∈S

not always…!

a

½
½

c
½
g

b

e

d

0.2

0.3

f

0.5 0.5

0.45

0 0

1

Solution: ensure uniqueness!

13

a

½
½

c
½
g

b

e

d

0.2

0.3

f

Usual techniques applied for MDPs do not apply…

Solution: ensure uniqueness!

13

a

½
½

c
½
g

b

e

d

0.2

0.3

f

Usual techniques applied for MDPs do not apply…

Pr
s
max(F)= 1

Pr
s
max(F)= 0

Solution: ensure uniqueness!

13

Usual techniques applied for MDPs do not apply…

Pr
s
max(F)= 1

a

½
½

c
½
g

b

e

0.2

0.3

f

Pr
s
max(F)= 0

Still multiple fixed points!

Solution: ensure uniqueness!

13

Usual techniques applied for MDPs do not apply…

NEW! Use Maximal End Components… (computable in polynomial time)

a

½
½

c
½
g

b

e

d

0.2

0.3

f

[de Alfaro, 1997]

Solution: ensure uniqueness!

13

Usual techniques applied for MDPs do not apply…

NEW! Use Maximal End Components… (computable in polynomial time)

a

½
½

c
½
g

b

e

d

0.2

0.3

f

Bottom Maximal
End Component

Bottom
Maximal End
Component

Trivial
Maximal End
Component

Maximal End
Component

[de Alfaro, 1997]

Solution: ensure uniqueness!

13

Usual techniques applied for MDPs do not apply…

NEW! Use Maximal End Components… (computable in polynomial time)
and trivialize them!

½
½

½
g

b

e

0.2

0.3

f

Now, unicity of the fixed point

Max-reduced MDP

[de Alfaro, 1997]

An even smaller MDP for minimal probabilities

14

a

½
½

c
½
g

b

e

d

0.2

0.3

f

Bottom Maximal
End Component

Bottom
Maximal End
Component

Trivial
Maximal End
Component

Maximal End
Component

An even smaller MDP for minimal probabilities

14

a

½
½

c
½
g

b

e

d

0.2

0.3

f

Bottom Maximal
End Component

Bottom
Maximal End
Component

Trivial
Maximal End
Component

Maximal End
Component

Non-trivial (and non accepting) MEC
have null minimal probability!

An even smaller MDP for minimal probabilities

14

b

e

0.2

0.3

f

Non-trivial (and non accepting) MEC
have null minimal probability!

Min-reduced MDP

Interval iteration algorithm in reduced MDPs

15

Algorithm 1: Interval iteration algorithm for minimum reachability

Input: Min-reduced MDP M = (S,↵M, �M), convergence threshold "

Output: Under- and over-approximation of Pr

min
M (F s+)

1 xs+ := 1; xs� := 0; ys+ := 1; ys� := 0
2 foreach s 2 S \ {s+, s�} do xs := 0; ys := 1
3 repeat
4 foreach s 2 S \ {s+, s�} do
5 x

0
s := mina2A(s)

P
s02S �M(s, a)(s0)xs0

6 y

0
s := mina2A(s)

P
s02S �M(s, a)(s0) ys0

7 � := maxs2S(y
0
s � x

0
s)

8 foreach s 2 S \ {s+, s�} do x

0
s := xs; y

0
s := ys

9 until � 6 "

10 return (xs)s2S , (ys)s2S

– y

(0) = y

(0) and for all n 2 N, y(n+1) = f

min

(y(n));

– y

(0) = y

(0) and for all n 2 N, y(n+1) = f

max

(y(n)).

Because of the new choice for the initial vector, notice that y and y are non-
increasing sequences. Hence, with the same reasoning as above, we know that
these sequences converge, and that their limit, denoted by y

(1) and y

(1) re-
spectively, are the minimal (respectively, maximal) reachability probabilities. In
particular, notice that x and y, as well as x and y, are adjacent sequences, and
that

x

(1) = y

(1) = Pr

min

M (F s+) and x

(1) = y

(1) = Pr

max

M (F s+) .

Let us first consider a min-reduced MDP M. Then, our new value iteration
algorithm computes both in the same time sequences x and y and stops as soon

as ky(n) � x

(n)k 6 ". In case this criterion is satisfied, which will happen after
a finite (yet possibly large and not bounded a priori) number of iterations, we
can guarantee that we obtained over- and underapproximations of Pr

min

M (F s+)
with precision at least " on every component. Because of the simultaneous com-
putation of lower and upper bounds, we call this algorithm interval iteration
algorithm, and specify it in Algorithm 1. A similar algorithm can be designed
for maximum reachability probabilities, by considering max-reduced MDPs and
replacing min operations of lines 5 and 6 by max operations.

Theorem 15. For every min-reduced (respectively, max-reduced) MDP M, and
convergence threshold ", if the interval iteration algorithm returns the vectors x

and y on those inputs, then for all s 2 S, Pr

min

M,s

(F s
+

) (respectively, Pr

max

M,s

(F s
+

))
is in the interval [x

s

, y

s

] of length at most ".

We implemented a prototype of the algorithm in OCaml.

Example 16. For the same example as the one in Example 14, our tool converges
after 10548 steps, and outputs, for the initial state s = n, x

n

= 0.4995 and
y

n

= 0.5005, given a good confidence to the user.

14

Interval iteration algorithm in reduced MDPs

15

Algorithm 1: Interval iteration algorithm for minimum reachability

Input: Min-reduced MDP M = (S,↵M, �M), convergence threshold "

Output: Under- and over-approximation of Pr

min
M (F s+)

1 xs+ := 1; xs� := 0; ys+ := 1; ys� := 0
2 foreach s 2 S \ {s+, s�} do xs := 0; ys := 1
3 repeat
4 foreach s 2 S \ {s+, s�} do
5 x

0
s := mina2A(s)

P
s02S �M(s, a)(s0)xs0

6 y

0
s := mina2A(s)

P
s02S �M(s, a)(s0) ys0

7 � := maxs2S(y
0
s � x

0
s)

8 foreach s 2 S \ {s+, s�} do x

0
s := xs; y

0
s := ys

9 until � 6 "

10 return (xs)s2S , (ys)s2S

– y

(0) = y

(0) and for all n 2 N, y(n+1) = f

min

(y(n));

– y

(0) = y

(0) and for all n 2 N, y(n+1) = f

max

(y(n)).

Because of the new choice for the initial vector, notice that y and y are non-
increasing sequences. Hence, with the same reasoning as above, we know that
these sequences converge, and that their limit, denoted by y

(1) and y

(1) re-
spectively, are the minimal (respectively, maximal) reachability probabilities. In
particular, notice that x and y, as well as x and y, are adjacent sequences, and
that

x

(1) = y

(1) = Pr

min

M (F s+) and x

(1) = y

(1) = Pr

max

M (F s+) .

Let us first consider a min-reduced MDP M. Then, our new value iteration
algorithm computes both in the same time sequences x and y and stops as soon

as ky(n) � x

(n)k 6 ". In case this criterion is satisfied, which will happen after
a finite (yet possibly large and not bounded a priori) number of iterations, we
can guarantee that we obtained over- and underapproximations of Pr

min

M (F s+)
with precision at least " on every component. Because of the simultaneous com-
putation of lower and upper bounds, we call this algorithm interval iteration
algorithm, and specify it in Algorithm 1. A similar algorithm can be designed
for maximum reachability probabilities, by considering max-reduced MDPs and
replacing min operations of lines 5 and 6 by max operations.

Theorem 15. For every min-reduced (respectively, max-reduced) MDP M, and
convergence threshold ", if the interval iteration algorithm returns the vectors x

and y on those inputs, then for all s 2 S, Pr

min

M,s

(F s
+

) (respectively, Pr

max

M,s

(F s
+

))
is in the interval [x

s

, y

s

] of length at most ".

We implemented a prototype of the algorithm in OCaml.

Example 16. For the same example as the one in Example 14, our tool converges
after 10548 steps, and outputs, for the initial state s = n, x

n

= 0.4995 and
y

n

= 0.5005, given a good confidence to the user.

14

Sequences x and y converge towards the minimal probability to
reach . Hence, the algorithm terminates by returning an interval

of length at most ε for each state containing .Pr
s
min(F)

Interval iteration algorithm in reduced MDPs

15

Algorithm 1: Interval iteration algorithm for minimum reachability

Input: Min-reduced MDP M = (S,↵M, �M), convergence threshold "

Output: Under- and over-approximation of Pr

min
M (F s+)

1 xs+ := 1; xs� := 0; ys+ := 1; ys� := 0
2 foreach s 2 S \ {s+, s�} do xs := 0; ys := 1
3 repeat
4 foreach s 2 S \ {s+, s�} do
5 x

0
s := mina2A(s)

P
s02S �M(s, a)(s0)xs0

6 y

0
s := mina2A(s)

P
s02S �M(s, a)(s0) ys0

7 � := maxs2S(y
0
s � x

0
s)

8 foreach s 2 S \ {s+, s�} do x

0
s := xs; y

0
s := ys

9 until � 6 "

10 return (xs)s2S , (ys)s2S

– y

(0) = y

(0) and for all n 2 N, y(n+1) = f

min

(y(n));

– y

(0) = y

(0) and for all n 2 N, y(n+1) = f

max

(y(n)).

Because of the new choice for the initial vector, notice that y and y are non-
increasing sequences. Hence, with the same reasoning as above, we know that
these sequences converge, and that their limit, denoted by y

(1) and y

(1) re-
spectively, are the minimal (respectively, maximal) reachability probabilities. In
particular, notice that x and y, as well as x and y, are adjacent sequences, and
that

x

(1) = y

(1) = Pr

min

M (F s+) and x

(1) = y

(1) = Pr

max

M (F s+) .

Let us first consider a min-reduced MDP M. Then, our new value iteration
algorithm computes both in the same time sequences x and y and stops as soon

as ky(n) � x

(n)k 6 ". In case this criterion is satisfied, which will happen after
a finite (yet possibly large and not bounded a priori) number of iterations, we
can guarantee that we obtained over- and underapproximations of Pr

min

M (F s+)
with precision at least " on every component. Because of the simultaneous com-
putation of lower and upper bounds, we call this algorithm interval iteration
algorithm, and specify it in Algorithm 1. A similar algorithm can be designed
for maximum reachability probabilities, by considering max-reduced MDPs and
replacing min operations of lines 5 and 6 by max operations.

Theorem 15. For every min-reduced (respectively, max-reduced) MDP M, and
convergence threshold ", if the interval iteration algorithm returns the vectors x

and y on those inputs, then for all s 2 S, Pr

min

M,s

(F s
+

) (respectively, Pr

max

M,s

(F s
+

))
is in the interval [x

s

, y

s

] of length at most ".

We implemented a prototype of the algorithm in OCaml.

Example 16. For the same example as the one in Example 14, our tool converges
after 10548 steps, and outputs, for the initial state s = n, x

n

= 0.4995 and
y

n

= 0.5005, given a good confidence to the user.

14

Sequences x and y converge towards the minimal probability to
reach . Hence, the algorithm terminates by returning an interval

of length at most ε for each state containing .Pr
s
min(F)

Possible speed-up: only check size of interval for a given state…

Rate of convergence

16

x stores reachability probabilities, y stores safety probabilities,
i.e., after n iterations: x

s
= Pr

s
min(F≤n) ys = Prs

min(G≤n(¬))

½

½

½

½
…

½

½

½

½

½
½

…
½

½
½

½

Rate of convergence

16

x stores reachability probabilities, y stores safety probabilities,
i.e., after n iterations: x

s
= Pr

s
min(F≤n) ys = Prs

min(G≤n(¬))

½

½

½

½
…

½

½

½

½

½
½

…
½

½
½

½

2 BMECs and only trivial MECs

Rate of convergence

16

x stores reachability probabilities, y stores safety probabilities,
i.e., after n iterations: x

s
= Pr

s
min(F≤n) ys = Prs

min(G≤n(¬))

½

½

½

½
…

½

½

½

½

½
½

…
½

½
½

½

2 BMECs and only trivial MECs
attractor decomposition: length I

Rate of convergence

16

x stores reachability probabilities, y stores safety probabilities,
i.e., after n iterations: x

s
= Pr

s
min(F≤n) ys = Prs

min(G≤n(¬))

½

½

½

½
…

½

½

½

½

½
½

…
½

½
½

½

2 BMECs and only trivial MECs
attractor decomposition: length I

Rate of convergence

16

x stores reachability probabilities, y stores safety probabilities,
i.e., after n iterations: x

s
= Pr

s
min(F≤n) ys = Prs

min(G≤n(¬))

½

½

½

½
…

½

½

½

½

½
½

…
½

½
½

½

2 BMECs and only trivial MECs
attractor decomposition: length I

Rate of convergence

16

x stores reachability probabilities, y stores safety probabilities,
i.e., after n iterations: x

s
= Pr

s
min(F≤n) ys = Prs

min(G≤n(¬))

½

½

½

½
…

½

½

½

½

½
½

…
½

½
½

½

2 BMECs and only trivial MECs
attractor decomposition: length I

Rate of convergence

16

x stores reachability probabilities, y stores safety probabilities,
i.e., after n iterations: x

s
= Pr

s
min(F≤n) ys = Prs

min(G≤n(¬))

½

½

½

½
…

½

½

½

½

½
½

…
½

½
½

½

2 BMECs and only trivial MECs
attractor decomposition: length I

Rate of convergence

16

x stores reachability probabilities, y stores safety probabilities,
i.e., after n iterations: x

s
= Pr

s
min(F≤n) ys = Prs

min(G≤n(¬))

½

½

½

½
…

½

½

½

½

½
½

…
½

½
½

½

2 BMECs and only trivial MECs
attractor decomposition: length I
smallest positive probability: η

Rate of convergence

16

x stores reachability probabilities, y stores safety probabilities,
i.e., after n iterations: x

s
= Pr

s
min(F≤n) ys = Prs

min(G≤n(¬))

½

½

½

½
…

½

½

½

½

½
½

…
½

½
½

½

2 BMECs and only trivial MECs
attractor decomposition: length I
smallest positive probability: η

Leaking property: ∀n ∈ ! Pr
s
max(G≤nI¬(∨))≤ (1− ηI)n

Rate of convergence

16

x stores reachability probabilities, y stores safety probabilities,
i.e., after n iterations: x

s
= Pr

s
min(F≤n) ys = Prs

min(G≤n(¬))

½

½

½

½
…

½

½

½

½

½
½

…
½

½
½

½

2 BMECs and only trivial MECs
attractor decomposition: length I
smallest positive probability: η

Leaking property: ∀n ∈ ! Pr
s
max(G≤nI¬(∨))≤ (1− ηI)n

y
s
(nI)−x

s
(nI) = Pr

s
σ(G≤nI (¬))−Pr

s
′σ (F≤nI)≤Pr

s
′σ (G≤nI (¬))−Pr

s
′σ (F≤nI)

Rate of convergence

16

x stores reachability probabilities, y stores safety probabilities,
i.e., after n iterations: x

s
= Pr

s
min(F≤n) ys = Prs

min(G≤n(¬))

½

½

½

½
…

½

½

½

½

½
½

…
½

½
½

½

2 BMECs and only trivial MECs
attractor decomposition: length I
smallest positive probability: η

Leaking property: ∀n ∈ ! Pr
s
max(G≤nI¬(∨))≤ (1− ηI)n

G≤n(¬)≡ G≤n¬(∨)⊕F≤nsince

= Pr
s
′σ (G≤nI¬(∨))≤ (1− ηI)n

y
s
(nI)−x

s
(nI) = Pr

s
σ(G≤nI (¬))−Pr

s
′σ (F≤nI)≤Pr

s
′σ (G≤nI (¬))−Pr

s
′σ (F≤nI)

Rate of convergence

16

x stores reachability probabilities, y stores safety probabilities,
i.e., after n iterations: x

s
= Pr

s
min(F≤n) ys = Prs

min(G≤n(¬))

½

½

½

½
…

½

½

½

½

½
½

…
½

½
½

½

2 BMECs and only trivial MECs
attractor decomposition: length I
smallest positive probability: η

Leaking property: ∀n ∈ ! Pr
s
max(G≤nI¬(∨))≤ (1− ηI)n

The interval iteration algorithm converges in at most steps.I
logε

log(1− ηI)

⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥

Stopping criterion for exact computation

17

MDPs with rational probabilities:
 d the largest denominator of transition probabilities
 N the number of states
 M the number of transitions with non-zero probabilities

Stopping criterion for exact computation

17

MDPs with rational probabilities:
 d the largest denominator of transition probabilities
 N the number of states
 M the number of transitions with non-zero probabilities

[Chatterjee, Henzinger 2008] claim for exact computation possible
 after iterations of value iterationd 8M

Stopping criterion for exact computation

17

MDPs with rational probabilities:
 d the largest denominator of transition probabilities
 N the number of states
 M the number of transitions with non-zero probabilities

[Chatterjee, Henzinger 2008] claim for exact computation possible
 after iterations of value iterationd 8M

Optimal probabilities and policies can be computed by the interval iteration
algorithm in at most steps.8N 3 (1/ η)N log

2
d⎡

⎢⎢
⎤
⎥⎥

Stopping criterion for exact computation

17

MDPs with rational probabilities:
 d the largest denominator of transition probabilities
 N the number of states
 M the number of transitions with non-zero probabilities

[Chatterjee, Henzinger 2008] claim for exact computation possible
 after iterations of value iterationd 8M

Optimal probabilities and policies can be computed by the interval iteration
algorithm in at most steps.8N 3 (1/ η)N log

2
d⎡

⎢⎢
⎤
⎥⎥

Improvement since

1/ η ≤d N ≤M

Stopping criterion for exact computation

17

MDPs with rational probabilities:
 d the largest denominator of transition probabilities
 N the number of states
 M the number of transitions with non-zero probabilities

[Chatterjee, Henzinger 2008] claim for exact computation possible
 after iterations of value iterationd 8M

Optimal probabilities and policies can be computed by the interval iteration
algorithm in at most steps.8N 3 (1/ η)N log

2
d⎡

⎢⎢
⎤
⎥⎥

Improvement since

1/ η ≤d N ≤M

Sketch of proof:
• use as threshold (with
α gcd of optimal probabilities)

• upper bound on α based on
matrix properties of Markov
chains:

ε = 1/ 2α

α =O(NNd 2N
2

)

Interval MDPs

18

s

s

0

s+

t

b

b

0

a

c, [0.5, 1]

g, [0, 0.5]

c, [0, 0.5]
g, [0, 1]

g, [0.3, 0.7]

f, [0.3, 0.7]

f, [0, 0.2]

f, [0.3, 1]

f, [0, 0.1]

loop+

d

e, [0.2, 1]
e, [0, 0.8]

s

s

0

s+

t

b

b

0

a

c, [0.5, 1]

g, [0, 0.5]

c, [0,0.5]
g, [0, 1]

g, [0.3, 0.7]

f, [0.3, 0.7]

f, [0, 0.2]

f, [0.3, 1]

f, [0, 0.1]

loop+

d

e, [0.2, 1]
e, [0, 0.8]

1

M= (S,α,
⌣
δ,
⌢
δ)

δ :S×α→ [0,1]S

σ : (S ⋅α)! ⋅S → Dist(α)×(Dist(S))αPolicy

IMDP vs MDP
• IMDPs = extension of MDPs with an infinite

(uncountable) set of actions
• But, behaviours of IMDPs can be captured by MDPs

19

IMDP vs MDP
• IMDPs = extension of MDPs with an infinite

(uncountable) set of actions
• But, behaviours of IMDPs can be captured by MDPs

19

s

s
1

s
2

a, [0, 1]

a, [0, 1

2

]

a, [1
3

, 2

3

]

! s

s
1

s
2

a
1

, 2

3

a
2

, 1

2

a
5

, 1

3

a
2

/a
3

, 1

2

a
4

, 1

3

a
1

/a
2

, 1

3

a
3

, 1

2

a
4

/a
5

, 2

3

Figure 6: Local simulation of an IMDP by an MDP

[0, 1], [0, 1/2] and [1/3, 2/3]. The hyperplane of possible distributions p is de-
picted in Figure 5. In that case, the basic feasible solutions are the probability
distributions described by the triples (2/3, 0, 1/3), (1/6, 1/2, 1/3), (0, 1/2, 1/2),
(0, 1/3, 2/3), and (1/3, 0, 2/3): as previously said, notice that, in all basic feasi-
ble solutions, all coordinates, except at most one, is one of the extremal prob-
abilities in the given intervals. We simulate the IMDP in an MDP by splitting
action a into 5 actions a

1

, . . . , a
5

corresponding to the basic feasible solutions: all
distributions of the IMDP are recovered in the MDP by allowing for randomised
policies that simulate the convex combinations. The local transformation is de-
picted in Figure 6.

As briefly explained in the example, we may use basic feasible solutions of
the linear program to simulate the IMDP by a finite MDP as follows. From
the IMDP M, we build the MDP fM = (S,↵fM, �fM) with the same set of

states as in M, actions ↵fM =
U

s2S

eA(s) where eA(s) = {(a, p) | a 2 A(s), p 2
BFS(a)}, and transitions probabilities given by �fM

�
s0|s, (a, p)

�
= p(s0). This

MDP may have an exponential number of actions: ⇥(|S|2|S|�1). It is shown

in [11, Proposition 2] that fM indeed captures all the possible behaviours of the
IMDP in the following sense:

Lemma 5. Let M be an IMDP and s be a state of M.

• For all policies � in M, there exists a policy e� in fM such that fMe�
s

= M�

s

;

• For all policies e� in fM, there exists a policy � in M such that M�

s

= fMe�
s

.

The existence of optimal deterministic stationary policies in the MDP fM en-
sures the existence of optimal deterministic stationary policies in the IMDP M
playing distributions p that are basic feasible solutions of the linear programs.

23

IMDP vs MDP
• IMDPs = extension of MDPs with an infinite

(uncountable) set of actions
• But, behaviours of IMDPs can be captured by MDPs

19

s

s
1

s
2

a, [0, 1]

a, [0, 1

2

]

a, [1
3

, 2

3

]

! s

s
1

s
2

a
1

, 2

3

a
2

, 1

2

a
5

, 1

3

a
2

/a
3

, 1

2

a
4

, 1

3

a
1

/a
2

, 1

3

a
3

, 1

2

a
4

/a
5

, 2

3

Figure 6: Local simulation of an IMDP by an MDP

[0, 1], [0, 1/2] and [1/3, 2/3]. The hyperplane of possible distributions p is de-
picted in Figure 5. In that case, the basic feasible solutions are the probability
distributions described by the triples (2/3, 0, 1/3), (1/6, 1/2, 1/3), (0, 1/2, 1/2),
(0, 1/3, 2/3), and (1/3, 0, 2/3): as previously said, notice that, in all basic feasi-
ble solutions, all coordinates, except at most one, is one of the extremal prob-
abilities in the given intervals. We simulate the IMDP in an MDP by splitting
action a into 5 actions a

1

, . . . , a
5

corresponding to the basic feasible solutions: all
distributions of the IMDP are recovered in the MDP by allowing for randomised
policies that simulate the convex combinations. The local transformation is de-
picted in Figure 6.

As briefly explained in the example, we may use basic feasible solutions of
the linear program to simulate the IMDP by a finite MDP as follows. From
the IMDP M, we build the MDP fM = (S,↵fM, �fM) with the same set of

states as in M, actions ↵fM =
U

s2S

eA(s) where eA(s) = {(a, p) | a 2 A(s), p 2
BFS(a)}, and transitions probabilities given by �fM

�
s0|s, (a, p)

�
= p(s0). This

MDP may have an exponential number of actions: ⇥(|S|2|S|�1). It is shown

in [11, Proposition 2] that fM indeed captures all the possible behaviours of the
IMDP in the following sense:

Lemma 5. Let M be an IMDP and s be a state of M.

• For all policies � in M, there exists a policy e� in fM such that fMe�
s

= M�

s

;

• For all policies e� in fM, there exists a policy � in M such that M�

s

= fMe�
s

.

The existence of optimal deterministic stationary policies in the MDP fM en-
sures the existence of optimal deterministic stationary policies in the IMDP M
playing distributions p that are basic feasible solutions of the linear programs.

23

Possible distributions:

p ∈Dist(S) such that p
′s ∈S
∑ (′s)= 1

and ∀ ′s
⌣
δ(′s | s,a)≤ p(′s)≤

⌢
δ(′s | s,a)

Solutions of a (bounded) linear program!

IMDP vs MDP
• IMDPs = extension of MDPs with an infinite

(uncountable) set of actions
• But, behaviours of IMDPs can be captured by MDPs

19

s

s
1

s
2

a, [0, 1]

a, [0, 1

2

]

a, [1
3

, 2

3

]

! s

s
1

s
2

a
1

, 2

3

a
2

, 1

2

a
5

, 1

3

a
2

/a
3

, 1

2

a
4

, 1

3

a
1

/a
2

, 1

3

a
3

, 1

2

a
4

/a
5

, 2

3

Figure 6: Local simulation of an IMDP by an MDP

[0, 1], [0, 1/2] and [1/3, 2/3]. The hyperplane of possible distributions p is de-
picted in Figure 5. In that case, the basic feasible solutions are the probability
distributions described by the triples (2/3, 0, 1/3), (1/6, 1/2, 1/3), (0, 1/2, 1/2),
(0, 1/3, 2/3), and (1/3, 0, 2/3): as previously said, notice that, in all basic feasi-
ble solutions, all coordinates, except at most one, is one of the extremal prob-
abilities in the given intervals. We simulate the IMDP in an MDP by splitting
action a into 5 actions a

1

, . . . , a
5

corresponding to the basic feasible solutions: all
distributions of the IMDP are recovered in the MDP by allowing for randomised
policies that simulate the convex combinations. The local transformation is de-
picted in Figure 6.

As briefly explained in the example, we may use basic feasible solutions of
the linear program to simulate the IMDP by a finite MDP as follows. From
the IMDP M, we build the MDP fM = (S,↵fM, �fM) with the same set of

states as in M, actions ↵fM =
U

s2S

eA(s) where eA(s) = {(a, p) | a 2 A(s), p 2
BFS(a)}, and transitions probabilities given by �fM

�
s0|s, (a, p)

�
= p(s0). This

MDP may have an exponential number of actions: ⇥(|S|2|S|�1). It is shown

in [11, Proposition 2] that fM indeed captures all the possible behaviours of the
IMDP in the following sense:

Lemma 5. Let M be an IMDP and s be a state of M.

• For all policies � in M, there exists a policy e� in fM such that fMe�
s

= M�

s

;

• For all policies e� in fM, there exists a policy � in M such that M�

s

= fMe�
s

.

The existence of optimal deterministic stationary policies in the MDP fM en-
sures the existence of optimal deterministic stationary policies in the IMDP M
playing distributions p that are basic feasible solutions of the linear programs.

23

1

2
3

4

5

0 1 x

0

1/2

y

1/3

2/3z

Figure 5: Solution and basic feasible solutions of the linear program associated with an IMDP:
circles denote basic feasible solutions, while the gray area is the set of solutions

a policy is said deterministic when the first component of �(⇢) is a Dirac dis-
tribution, and stationary if �(⇢) only depends on last(⇢). Once again, further
definitions of the semantics of MDPs may be lifted to IMDPs. The probability
distribution on the paths defined by a policy may be defined with the cylinders
of the underlying Markov chain. Precisely, for a finite path ⇢

n

= s
0

a0�! s
1

a1�!
· · · an�1���! s

n

and ⇢
n+1

= s
0

a0�! s
1

a1�! · · · s
n

an��! s
n+1

, the probability measure
is inductively defined by

Pr�M,s0
(⇢

n+1

) = Pr�M,s0
(⇢

n

) f(a
n

) g(a
n

)(s
n+1

)

where �(⇢
n

) = (f, g) 2 Dist(↵M)⇥
�
Dist(S)

�
↵M .

This allows us to define as before the probability Pr�M,s

(') that a property '
is satisfied along paths of the IMDPM starting in state s and following policy �.

Regarding the definitions, IMDPs may be seen as an extension of MDPs
with an infinite (even uncountable) set of actions, without taking into account
the randomisation in policies. This makes their study a priori more complex.
However one of the contributions of [11] regarding IMDPs is to show that their
behaviour can be captured by finite MDPs. We now explain this reduction that
we will use for proofs but not for algorithms since it constructs a finite MDP
with a number of actions exponentially larger than the original IMDP. The
main idea is to explicit the set of possible choices of probability distributions in
Steps(a) for a given action a 2 A(s). Recall that it consists of all distributions

p 2 Dist(S) such that
P

s

02S

p(s0) = 1, and q�M(s0|s, a) 6 p(s0) 6 b�M(s0|s, a).
Therefore, p is a solution of a linear program, that we call LP(a) in the following,
since it depends on the action a. We know that all such solutions are obtained
by convex combinations of basic feasible solutions (BFS). Furthermore it can be
shown that the basic feasible solutions of LP(a) are the distributions p 2 Dist(S)

such that for all states s0 2 S, except at most one, either p(s0) = q�M(s0|s, a)
or p(s0) = b�M(s0|s, a). We call BFS(a) the set of basic feasible solutions of the
(bounded) linear program LP(a).

Example 4. Consider an IMDP with a state s where a single action a is avail-
able, and three possible successor states with interval of probabilities given by

22

IMDP vs MDP
• IMDPs = extension of MDPs with an infinite

(uncountable) set of actions
• But, behaviours of IMDPs can be captured by MDPs

19

s

s
1

s
2

a, [0, 1]

a, [0, 1

2

]

a, [1
3

, 2

3

]

! s

s
1

s
2

a
1

, 2

3

a
2

, 1

2

a
5

, 1

3

a
2

/a
3

, 1

2

a
4

, 1

3

a
1

/a
2

, 1

3

a
3

, 1

2

a
4

/a
5

, 2

3

Figure 6: Local simulation of an IMDP by an MDP

[0, 1], [0, 1/2] and [1/3, 2/3]. The hyperplane of possible distributions p is de-
picted in Figure 5. In that case, the basic feasible solutions are the probability
distributions described by the triples (2/3, 0, 1/3), (1/6, 1/2, 1/3), (0, 1/2, 1/2),
(0, 1/3, 2/3), and (1/3, 0, 2/3): as previously said, notice that, in all basic feasi-
ble solutions, all coordinates, except at most one, is one of the extremal prob-
abilities in the given intervals. We simulate the IMDP in an MDP by splitting
action a into 5 actions a

1

, . . . , a
5

corresponding to the basic feasible solutions: all
distributions of the IMDP are recovered in the MDP by allowing for randomised
policies that simulate the convex combinations. The local transformation is de-
picted in Figure 6.

As briefly explained in the example, we may use basic feasible solutions of
the linear program to simulate the IMDP by a finite MDP as follows. From
the IMDP M, we build the MDP fM = (S,↵fM, �fM) with the same set of

states as in M, actions ↵fM =
U

s2S

eA(s) where eA(s) = {(a, p) | a 2 A(s), p 2
BFS(a)}, and transitions probabilities given by �fM

�
s0|s, (a, p)

�
= p(s0). This

MDP may have an exponential number of actions: ⇥(|S|2|S|�1). It is shown

in [11, Proposition 2] that fM indeed captures all the possible behaviours of the
IMDP in the following sense:

Lemma 5. Let M be an IMDP and s be a state of M.

• For all policies � in M, there exists a policy e� in fM such that fMe�
s

= M�

s

;

• For all policies e� in fM, there exists a policy � in M such that M�

s

= fMe�
s

.

The existence of optimal deterministic stationary policies in the MDP fM en-
sures the existence of optimal deterministic stationary policies in the IMDP M
playing distributions p that are basic feasible solutions of the linear programs.

23

1

2
3

4

5

0 1 x

0

1/2

y

1/3

2/3z

Figure 5: Solution and basic feasible solutions of the linear program associated with an IMDP:
circles denote basic feasible solutions, while the gray area is the set of solutions

a policy is said deterministic when the first component of �(⇢) is a Dirac dis-
tribution, and stationary if �(⇢) only depends on last(⇢). Once again, further
definitions of the semantics of MDPs may be lifted to IMDPs. The probability
distribution on the paths defined by a policy may be defined with the cylinders
of the underlying Markov chain. Precisely, for a finite path ⇢

n

= s
0

a0�! s
1

a1�!
· · · an�1���! s

n

and ⇢
n+1

= s
0

a0�! s
1

a1�! · · · s
n

an��! s
n+1

, the probability measure
is inductively defined by

Pr�M,s0
(⇢

n+1

) = Pr�M,s0
(⇢

n

) f(a
n

) g(a
n

)(s
n+1

)

where �(⇢
n

) = (f, g) 2 Dist(↵M)⇥
�
Dist(S)

�
↵M .

This allows us to define as before the probability Pr�M,s

(') that a property '
is satisfied along paths of the IMDPM starting in state s and following policy �.

Regarding the definitions, IMDPs may be seen as an extension of MDPs
with an infinite (even uncountable) set of actions, without taking into account
the randomisation in policies. This makes their study a priori more complex.
However one of the contributions of [11] regarding IMDPs is to show that their
behaviour can be captured by finite MDPs. We now explain this reduction that
we will use for proofs but not for algorithms since it constructs a finite MDP
with a number of actions exponentially larger than the original IMDP. The
main idea is to explicit the set of possible choices of probability distributions in
Steps(a) for a given action a 2 A(s). Recall that it consists of all distributions

p 2 Dist(S) such that
P

s

02S

p(s0) = 1, and q�M(s0|s, a) 6 p(s0) 6 b�M(s0|s, a).
Therefore, p is a solution of a linear program, that we call LP(a) in the following,
since it depends on the action a. We know that all such solutions are obtained
by convex combinations of basic feasible solutions (BFS). Furthermore it can be
shown that the basic feasible solutions of LP(a) are the distributions p 2 Dist(S)

such that for all states s0 2 S, except at most one, either p(s0) = q�M(s0|s, a)
or p(s0) = b�M(s0|s, a). We call BFS(a) the set of basic feasible solutions of the
(bounded) linear program LP(a).

Example 4. Consider an IMDP with a state s where a single action a is avail-
able, and three possible successor states with interval of probabilities given by

22

IMDP vs MDP
• IMDPs = extension of MDPs with an infinite

(uncountable) set of actions
• But, behaviours of IMDPs can be captured by MDPs

19

s

s
1

s
2

a, [0, 1]

a, [0, 1

2

]

a, [1
3

, 2

3

]

! s

s
1

s
2

a
1

, 2

3

a
2

, 1

2

a
5

, 1

3

a
2

/a
3

, 1

2

a
4

, 1

3

a
1

/a
2

, 1

3

a
3

, 1

2

a
4

/a
5

, 2

3

Figure 6: Local simulation of an IMDP by an MDP

[0, 1], [0, 1/2] and [1/3, 2/3]. The hyperplane of possible distributions p is de-
picted in Figure 5. In that case, the basic feasible solutions are the probability
distributions described by the triples (2/3, 0, 1/3), (1/6, 1/2, 1/3), (0, 1/2, 1/2),
(0, 1/3, 2/3), and (1/3, 0, 2/3): as previously said, notice that, in all basic feasi-
ble solutions, all coordinates, except at most one, is one of the extremal prob-
abilities in the given intervals. We simulate the IMDP in an MDP by splitting
action a into 5 actions a

1

, . . . , a
5

corresponding to the basic feasible solutions: all
distributions of the IMDP are recovered in the MDP by allowing for randomised
policies that simulate the convex combinations. The local transformation is de-
picted in Figure 6.

As briefly explained in the example, we may use basic feasible solutions of
the linear program to simulate the IMDP by a finite MDP as follows. From
the IMDP M, we build the MDP fM = (S,↵fM, �fM) with the same set of

states as in M, actions ↵fM =
U

s2S

eA(s) where eA(s) = {(a, p) | a 2 A(s), p 2
BFS(a)}, and transitions probabilities given by �fM

�
s0|s, (a, p)

�
= p(s0). This

MDP may have an exponential number of actions: ⇥(|S|2|S|�1). It is shown

in [11, Proposition 2] that fM indeed captures all the possible behaviours of the
IMDP in the following sense:

Lemma 5. Let M be an IMDP and s be a state of M.

• For all policies � in M, there exists a policy e� in fM such that fMe�
s

= M�

s

;

• For all policies e� in fM, there exists a policy � in M such that M�

s

= fMe�
s

.

The existence of optimal deterministic stationary policies in the MDP fM en-
sures the existence of optimal deterministic stationary policies in the IMDP M
playing distributions p that are basic feasible solutions of the linear programs.

23

1

2
3

4

5

0 1 x

0

1/2

y

1/3

2/3z

Figure 5: Solution and basic feasible solutions of the linear program associated with an IMDP:
circles denote basic feasible solutions, while the gray area is the set of solutions

a policy is said deterministic when the first component of �(⇢) is a Dirac dis-
tribution, and stationary if �(⇢) only depends on last(⇢). Once again, further
definitions of the semantics of MDPs may be lifted to IMDPs. The probability
distribution on the paths defined by a policy may be defined with the cylinders
of the underlying Markov chain. Precisely, for a finite path ⇢

n

= s
0

a0�! s
1

a1�!
· · · an�1���! s

n

and ⇢
n+1

= s
0

a0�! s
1

a1�! · · · s
n

an��! s
n+1

, the probability measure
is inductively defined by

Pr�M,s0
(⇢

n+1

) = Pr�M,s0
(⇢

n

) f(a
n

) g(a
n

)(s
n+1

)

where �(⇢
n

) = (f, g) 2 Dist(↵M)⇥
�
Dist(S)

�
↵M .

This allows us to define as before the probability Pr�M,s

(') that a property '
is satisfied along paths of the IMDPM starting in state s and following policy �.

Regarding the definitions, IMDPs may be seen as an extension of MDPs
with an infinite (even uncountable) set of actions, without taking into account
the randomisation in policies. This makes their study a priori more complex.
However one of the contributions of [11] regarding IMDPs is to show that their
behaviour can be captured by finite MDPs. We now explain this reduction that
we will use for proofs but not for algorithms since it constructs a finite MDP
with a number of actions exponentially larger than the original IMDP. The
main idea is to explicit the set of possible choices of probability distributions in
Steps(a) for a given action a 2 A(s). Recall that it consists of all distributions

p 2 Dist(S) such that
P

s

02S

p(s0) = 1, and q�M(s0|s, a) 6 p(s0) 6 b�M(s0|s, a).
Therefore, p is a solution of a linear program, that we call LP(a) in the following,
since it depends on the action a. We know that all such solutions are obtained
by convex combinations of basic feasible solutions (BFS). Furthermore it can be
shown that the basic feasible solutions of LP(a) are the distributions p 2 Dist(S)

such that for all states s0 2 S, except at most one, either p(s0) = q�M(s0|s, a)
or p(s0) = b�M(s0|s, a). We call BFS(a) the set of basic feasible solutions of the
(bounded) linear program LP(a).

Example 4. Consider an IMDP with a state s where a single action a is avail-
able, and three possible successor states with interval of probabilities given by

22

s

s
1

s
2

a, [0, 1]

a, [0, 1

2

]

a, [1
3

, 2

3

]

! s

s
1

s
2

a
1

, 2

3

a
2

, 1

2

a
5

, 1

3

a
2

/a
3

, 1

2

a
4

, 1

3

a
1

/a
2

, 1

3

a
3

, 1

2

a
4

/a
5

, 2

3

Figure 6: Local simulation of an IMDP by an MDP

[0, 1], [0, 1/2] and [1/3, 2/3]. The hyperplane of possible distributions p is de-
picted in Figure 5. In that case, the basic feasible solutions are the probability
distributions described by the triples (2/3, 0, 1/3), (1/6, 1/2, 1/3), (0, 1/2, 1/2),
(0, 1/3, 2/3), and (1/3, 0, 2/3): as previously said, notice that, in all basic feasi-
ble solutions, all coordinates, except at most one, is one of the extremal prob-
abilities in the given intervals. We simulate the IMDP in an MDP by splitting
action a into 5 actions a

1

, . . . , a
5

corresponding to the basic feasible solutions: all
distributions of the IMDP are recovered in the MDP by allowing for randomised
policies that simulate the convex combinations. The local transformation is de-
picted in Figure 6.

As briefly explained in the example, we may use basic feasible solutions of
the linear program to simulate the IMDP by a finite MDP as follows. From
the IMDP M, we build the MDP fM = (S,↵fM, �fM) with the same set of

states as in M, actions ↵fM =
U

s2S

eA(s) where eA(s) = {(a, p) | a 2 A(s), p 2
BFS(a)}, and transitions probabilities given by �fM

�
s0|s, (a, p)

�
= p(s0). This

MDP may have an exponential number of actions: ⇥(|S|2|S|�1). It is shown

in [11, Proposition 2] that fM indeed captures all the possible behaviours of the
IMDP in the following sense:

Lemma 5. Let M be an IMDP and s be a state of M.

• For all policies � in M, there exists a policy e� in fM such that fMe�
s

= M�

s

;

• For all policies e� in fM, there exists a policy � in M such that M�

s

= fMe�
s

.

The existence of optimal deterministic stationary policies in the MDP fM en-
sures the existence of optimal deterministic stationary policies in the IMDP M
playing distributions p that are basic feasible solutions of the linear programs.

23

Value iteration for IMDPs

• Simulate on the IMDP the value iteration on its MDP…

• One step is the application of

• Achievable in polynomial time by sorting x…

20

[Sen, Viswanathan, Agha, 2006]

Value iteration for IMDPs

• Simulate on the IMDP the value iteration on its MDP…

• One step is the application of

• Achievable in polynomial time by sorting x…

20

f
max
(x)

s
= max

a∈A(s)
max

p∈BFS(a)
p

′s ∈S
∑ (′s)×x ′s

[Sen, Viswanathan, Agha, 2006]

MEC decomposition

21

Algorithm 3: MECs computation in IMDP

Input: an IMDP M = (S,↵M, q�M, b�M);
Output: SM, a concise representation of the set of MECs of M;
Data: stack, a stack of sub-IMDPs;

1 Push(stack,M); SM ;
2 while not Empty(stack) do

3 (S0,↵0, q�0, b�0) Pop(stack)
4 for s 2 S0 and a 2 ↵0 \A(s) do

5 if q�0(S \ S0|s, a) > 0 _ b�0(S0|s, a) < 1 then
6 ↵0 ↵0 \ {a}
7 else

8 for s0 /2 S0 do b�0(s0|s, a) 0

9 E ;
10 for s, s0 2 S0 and a 2 ↵0 \A(s) do

11 if b�0(s0|s, a) > 0 ^ q�0(S \ {s0}|s, a) < 1 then E E [{(s, s0)}
12 compute the strongly connected components of (S0, E): S

1

, . . . , S
K

13 if K > 1 then

14 for i = 1 to K do Push(stack, (S
i

,↵0 \
S

s2Si
A(s), q�0|

Si ,
b�0|

Si))

15 else SM SM [{(S0,↵0, q�0, b�0)}
16 return SM

to keep this pretreatment polynomial, it should be implemented so that it never
enumerates the basic feasible solutions of some interval constraints.

First, MECs of an IMDP M are simply the MECs of the underlying MDP
fM, i.e., they are sub-MDPs (S0,↵0) of fM, in particular with ↵0 ✓ ↵fM. In order
to avoid an exponential explosion, we represent them concisely. In particular,
we will show that such MECs are indeed of the form eN with N a sub-IMDP of
M: sub-IMDPs must now incorporate the interval constraints on the probability
distributions in order to recover the basic feasible solutions, therefore they are
simply IMDPs (S0,↵0, q�0, b�0) with ; 6= S0 ✓ S, and ↵0 ✓

S
s2S

0 A(s). Therefore,

we mimic what Algorithm 1 would have done on fM, but directly computing
overM. This leads to Algorithm 3 where q�M(S0|s, a) denotes

P
s

02S

0
q�M(s0|s, a)

(and similarly for b�M(S0|s, a)).
The next proposition establishes that MECs can be computed with no rel-

evant additional cost compared to the case of MDPs since the complexity of
Algorithm 3 has the same magnitude order as the one of Algorithm 1.

Proposition 6. Algorithm 3 computes a concise representation of the MECs
of an IMDP M in polynomial time. More precisely, it computes a set of sub-
IMDPs {N

i

| 1 6 i 6 k} of M such that {fN
i

| 1 6 i 6 k} is the set of MECs of

the MDP fM.

25

s

s

0

s+

t

b

b

0

a

c, [0.5, 1]

g, [0, 0.5]

c, [0, 0.5]
g, [0, 1]

g, [0.3, 0.7]

f, [0.3, 0.7]

f, [0, 0.2]

f, [0.3, 1]

f, [0, 0.1]

loop+

d

e, [0.2, 1]
e, [0, 0.8]

s

s

0

s+

t

b

b

0

a

c, [0.5, 1]

g, [0, 0.5]

c, [0,0.5]
g, [0, 1]

g, [0.3, 0.7]

f, [0.3, 0.7]

f, [0, 0.2]

f, [0.3, 1]

f, [0, 0.1]

loop+

d

e, [0.2, 1]
e, [0, 0.8]

1

Max-reduction

22

s

s
+

t

s�

g
s+ , [0.1, 0.5]
g
s� , [0, 0.5]

g
s+ , [0, 1]

g
s� , [0.1, 1]

g
s+ , [0.3, 0.7]
g
s� , [0.3, 0.7]

f, [0.3, 0.7]

f, [0, 0.2]

f, [0.3, 1]

f, [0, 0.1]

loop
+

loop�

Figure 8: Max-reduced IMDP of the IMDP in Figure 7.

and for all 1 6 ` 6 L, 1 6 k, k0 6 K, a
C

2 A•(s
k

) with a 2 A(s) and
s 2 S

k

,

q�M•(s�|sk, aC) =
1
s�=C

den(a)
, b�M•(s�|sk, aC) = min

�b�M(
S

M

m=1

B
m

|s, a), 1
�
,

q�M•(s
+

|s
k

, a
C

) =
1
s+=C

den(a)
, b�M•(s

+

|s
k

, a
C

) = b�M(s
+

|s, a),

q�M•(t
`

|s
k

, a
C

) =
1
t`=C

den(a)
, b�M•(t

`

|s
k

, a
C

) = b�M(t
`

|s, a),

q�M•(s
k

0 |s
k

, a
C

) =
1
sk0=C

den(a)
, b�M•(s

k

0 |s
k

, a
C

) = min
�b�M(S

k

0 |s, a), 1
�
,

Example 6. In Figure 8 is depicted the max-reduced IMDP of the IMDP of
Figure 7. MECs have been merged, and action g (single action exiting the
non-trivial MEC) is split into two actions g

s+ and g
s� . The bold lower bounds

represent the lift of null probabilities to 1/ den(g), with den(g) = 10 the common
denominator of bounds in intervals of action g.

Observe that the set of basic feasible solutions of all the actions a
C

defined
above is di↵erent from the one that we would have get by picking all the ad-
missible ones from a. However, we now show that this splitting of a in a

C

’s is
sound. For that, we map each a distribution q over S to a distribution q• over
S• by q•(s) =

P
s

02Ss
q(s0), and show that (1) the image q• of an admissible

basic feasible solution q of a in M is a feasible solution of some a
C

in M•, and
(2) the basic feasible solutions p of a

C

in M• are images p = q• of feasible solu-
tions q of a in M. From the point of view of complexity, this splitting entails at
worst a quadratic blowup, allowing us to keep a polynomial time complexity for
the pre-computation. We now state and prove formally the correctness result.

Theorem 5. Let M be an IMDP, and s 2 S• \ {s�, s+}.

30

s

s

0

s+

t

b

b

0

a

c, [0.5, 1]

g, [0, 0.5]

c, [0, 0.5]
g, [0, 1]

g, [0.3, 0.7]

f, [0.3, 0.7]

f, [0, 0.2]

f, [0.3, 1]

f, [0, 0.1]

loop+

d

e, [0.2, 1]
e, [0, 0.8]

s

s

0

s+

t

b

b

0

a

c, [0.5, 1]

g, [0, 0.5]

c, [0,0.5]
g, [0, 1]

g, [0.3, 0.7]

f, [0.3, 0.7]

f, [0, 0.2]

f, [0.3, 1]

f, [0, 0.1]

loop+

d

e, [0.2, 1]
e, [0, 0.8]

1

Conclusion and related work
• Framework allowing guarantees for value iteration algorithm

• General results on convergence rate

• Criterion for computation of exact value

• Future work: test of our preliminary implementation over real instances

23

Conclusion and related work
• Framework allowing guarantees for value iteration algorithm

• General results on convergence rate

• Criterion for computation of exact value

• Future work: test of our preliminary implementation over real instances

23

• [Katoen, Zapreev, 2006] On-the-fly detection of steady-state in the transient
analysis of continuous-time Markov chains

⁓

Conclusion and related work
• Framework allowing guarantees for value iteration algorithm

• General results on convergence rate

• Criterion for computation of exact value

• Future work: test of our preliminary implementation over real instances

23

• [Katoen, Zapreev, 2006] On-the-fly detection of steady-state in the transient
analysis of continuous-time Markov chains

• [Kattenbelt, Kwiatkowska, Norman, Parker, 2010] CEGAR-based approach for
stochastic games

⁓

Conclusion and related work
• Framework allowing guarantees for value iteration algorithm

• General results on convergence rate

• Criterion for computation of exact value

• Future work: test of our preliminary implementation over real instances

23

• [Katoen, Zapreev, 2006] On-the-fly detection of steady-state in the transient
analysis of continuous-time Markov chains

• [Kattenbelt, Kwiatkowska, Norman, Parker, 2010] CEGAR-based approach for
stochastic games

• [Brázdil, Chatterjee, Chmelík, Forejt, Křetínský, Kwiatkowska, Parker, Ujma,
ATVA 2014] same techniques in a machine learning framework with almost
sure convergence and computation of non-trivial end components on-the-fly

⁓

