Interval Iteration Algorithm for MDPs and IMDPs

Serge Haddad (LSV, ENS Cachan, CNRS & Inria) and Benjamin Monmege

> Séminaire Modélisation et Vérification November 2015, Marseille

Mixing non-determinism and probabilities

- Acting in an *uncertain* world
 - non-determinism: *decisions* of an agent;
 - probabilities: effects of the decisions;
 - ★ goal: maximizing some utility function.

Mixing non-determinism and probabilities

- Acting in an *uncertain* world
 - ★ non-determinism: *decisions* of an agent;
 - probabilities: effects of the decisions;
 - goal: *maximizing* some utility function.
- Randomness against the *environment*
 - probabilities: distributed *randomized* algorithm;
 - non-determinism: behavior of the network;
 - ★ goal: evaluating the *worst-case* behavior.

Mixing non-determinism and probabilities

- Acting in an *uncertain* world
 - ★ non-determinism: *decisions* of an agent;
 - probabilities: effects of the decisions;
 - goal: *maximizing* some utility function.
- Randomness against the *environment*
 - probabilities: distributed *randomized* algorithm;
 - non-determinism: behavior of the network;
 - ★ goal: evaluating the *worst-case* behavior.

Optimization problems

Markov Decision Processes

- What?
 - ← (Finite) stochastic process with non-determinism
 - ✤ Non-determinism solved by *policies*/strategies
 - *Rewards* based on the pair of state and action

Markov Decision Processes

- What?
 - ← (Finite) stochastic process with non-determinism
 - ✤ Non-determinism solved by *policies*/strategies
 - ★ Rewards based on the pair of state and action
- Where?
 - Optimization
 - ◆ *Program verification*: PCTL model-checking...
 - ◆ Game theory: 1+½ players

$$v^{\sigma}(\mathbf{s}_{0}) = \sum_{i=0}^{\infty} \lambda^{i} \sum_{\mathbf{s}_{1},\dots,\mathbf{s}_{i}} \prod_{j=0}^{i-1} \delta(\mathbf{s}_{j},\sigma(\dots,\mathbf{s}_{j})) r(\mathbf{s}_{i},\sigma(\dots,\mathbf{s}_{i}))$$

$$v^{\sigma}(\boldsymbol{s}_{0}) = \sum_{i=0}^{\infty} \lambda^{i} \sum_{\boldsymbol{s}_{1},\ldots,\boldsymbol{s}_{i}} \prod_{j=0}^{i-1} \delta(\boldsymbol{s}_{j},\sigma(\ldots\boldsymbol{s}_{j})) r(\boldsymbol{s}_{i},\sigma(\ldots\boldsymbol{s}_{i}))$$

memoryless optimal strategies exist: $v^{\sigma} = \sum_{i=0} (\lambda \Delta^{\sigma})^{i} r^{\sigma} = (I - \lambda \Delta^{\sigma})^{-1} r^{\sigma}$

memoryless

$$v^{\sigma}(s_{0}) = \sum_{i=0}^{\infty} \lambda^{i} \sum_{s_{1},...,s_{i}} \prod_{j=0}^{i-1} \delta(s_{j}, \sigma(...s_{j})) r(s_{i}, \sigma(...s_{i}))$$

optimal strategies exist:
$$v^{\sigma} = \sum_{i=0}^{\infty} (\lambda \Delta^{\sigma})^{i} r^{\sigma} = (I - \lambda \Delta^{\sigma})^{-1} r^{\sigma}$$
$$\underbrace{v^{\sigma} = r^{\sigma} + \lambda \Delta^{\sigma} v^{\sigma}}_{\text{with & (terminal rewards &)}} \lambda v^{\sigma}.$$

$$\begin{split} v^{\sigma}(s_{0}) &= \sum_{i=0}^{\infty} \lambda^{i} \sum_{s_{1}, \dots, s_{i}} \prod_{j=0}^{i-1} \delta\left(s_{j}, \sigma(\dots s_{j})\right) r\left(s_{i}, \sigma(\dots s_{i})\right) \\ \text{memoryless optimal strategies exist:} \quad v^{\sigma} &= \sum_{i=0}^{\infty} (\lambda \Delta^{\sigma})^{i} r^{\sigma} = (I - \lambda \Delta^{\sigma})^{-1} r^{\sigma} \\ \hline v^{\sigma} &= r^{\sigma} + \lambda \Delta^{\sigma} v^{\sigma} \\ \text{with } \text{ with erminal rewards } \lambda v^{\sigma}. \end{split}$$

Function $L : \mathbb{R}^{S} \to \mathbb{R}^{S}$ defined by
 $L(v)_{s} &= \max_{a \in \alpha} r(s, a) + \lambda \sum_{s' \in S} \delta(s, a)(s') v_{s'} \end{split}$

$$\begin{split} v^{\sigma}(s_{0}) &= \sum_{i=0}^{\infty} \lambda^{i} \sum_{s_{1}, \dots, s_{i}} \prod_{j=0}^{i-1} \delta\left(s_{j}, \sigma(\dots s_{j})\right) r\left(s_{i}, \sigma(\dots s_{i})\right) \\ \text{memoryless optimal strategies exist:} \quad v^{\sigma} &= \sum_{i=0}^{\infty} (\lambda \Delta^{\sigma})^{i} r^{\sigma} = (I - \lambda \Delta^{\sigma})^{-1} r^{\sigma} \\ \hline v^{\sigma} &= r^{\sigma} + \lambda \Delta^{\sigma} v^{\sigma} \\ \text{time horizon 1} \\ \text{with } & \text{terminal rewards } & \lambda v^{\sigma}. \end{split}$$

Function $L : \mathbb{R}^{S} \to \mathbb{R}^{S}$ defined by
 $L(v)_{s} &= \max_{a \in \alpha} r(s, a) + \lambda \sum_{s' \in S} \delta(s, a)(s') v_{s'} \\ \text{verifies } \parallel L(v) - L(v') \parallel_{\infty} \leq \lambda \parallel v - v' \parallel_{\infty} \end{split}$

$$v^{\sigma}(s_{0}) = \sum_{i=0}^{\infty} \lambda^{i} \sum_{s_{1},\dots,s_{i}} \prod_{j=0}^{i-1} \delta(s_{j},\sigma(\dots s_{j})) r(s_{i},\sigma(\dots s_{i}))$$

memoryless optimal strategies exist:
$$v^{\sigma} = \sum_{i=0}^{\infty} (\lambda \Delta^{\sigma})^{i} r^{\sigma} = (I - \lambda \Delta^{\sigma})^{-1} r^{\sigma}$$
$$\underbrace{v^{\sigma} = r^{\sigma} + \lambda \Delta^{\sigma} v^{\sigma}}_{\text{with "terminal rewards "strategies"}} \chi v^{\sigma}.$$

Function $L : \mathbb{R}^{S} \to \mathbb{R}^{S}$ defined by
$$L(v)_{s} = \max_{a \in \alpha} r(s, a) + \lambda \sum_{s' \in S} \delta(s, a)(s') v_{s'}$$
$$\text{verifies } \| L(v) - L(v') \|_{\infty} \leq \lambda \| v - v' \|_{\infty}$$
$$v^{*} = \sup v^{\sigma} \text{ is the unique fixed point of } L$$

$$\lim_{n \to \infty} L^{n} \underbrace{(v_{0})}_{n \to \infty} = v^{\star} \qquad \qquad \| v^{\star} - L^{n}(v_{0}) \|_{\infty} \leq \frac{\lambda^{n}}{1 - \lambda} \| L(v_{0}) - v_{0} \|_{\infty}$$

$$\begin{split} v^{\sigma}(s_{0}) &= \sum_{i=0}^{\infty} \lambda^{i} \sum_{s_{1},\dots,s_{i}} \prod_{j=0}^{i-1} \delta\left(s_{j},\sigma(\dots s_{j})\right) r\left(s_{i},\sigma(\dots s_{j})\right) \\ \text{memoryless optimal strategies exist:} \quad v^{\sigma} &= \sum_{i=0}^{\infty} (\lambda \Delta^{\sigma})^{i} r^{\sigma} = (I - \lambda \Delta^{\sigma})^{-1} r^{\sigma} \\ \hline v^{\sigma} &= r^{\sigma} + \lambda \Delta^{\sigma} v^{\sigma} \\ \text{time horizon 1} \\ \text{with "terminal rewards "strategies exist"} \\ \text{Function } L : \mathbb{R}^{S} \to \mathbb{R}^{S} \text{ defined by} \\ L(v)_{s} &= \max_{a \in \alpha} r(s, a) + \lambda \sum_{s' \in S} \delta(s, a)(s') v_{s'} \\ \text{verifies } \| L(v) - L(v') \|_{\infty} \leq \lambda \| v - v' \|_{\infty} \\ \end{bmatrix} \\ \begin{array}{c} \text{speed of convergence } + \\ \text{stopping criterion for algorithm} \\ \\ v^{*} &= \sup_{\sigma} v^{\sigma} \text{ is the unique fixed point of } L \\ \lim_{n \to \infty} L^{n}(v_{0}) &= v^{*} \\ \end{array} \\ \| v^{*} - L^{n}(v_{0}) \|_{\infty} \leq \frac{\lambda^{n}}{1 - \lambda} \| L(v_{0}) - v_{0} \|_{\infty} \\ \end{array}$$

 $\mathcal{M} = (S, \alpha, \delta)$ $\delta : S \times \alpha \to Dist(S)$ Policy $\sigma : (S \cdot \alpha)^* \cdot S \to Dist(\alpha)$

Optimal reachability probabilities of MDPs

- How?
 - + Linear programming
 - + Policy iteration
 - Value iteration: numerical scheme that scales well and works in practice

Optimal reachability probabilities of MDPs

- How?
 - Linear programming
 - Policy iteration

used in the numerical PRISM model checker [Kwiatkowska, Norman, Parker, 2011]

• Value iteration: numerical scheme that scales well and works in practice

0	0	0	0
0	2/3~(b)	0	0

0	0	0	0
0	2/3~(b)	0	0
1/3	2/3~(b)	0	0

0	0	0	0
0	2/3~(b)	0	0
1/3	2/3~(b)	0	0
1/2	2/3~(b)	1/6	0

0	0	0	0
0	2/3~(b)	0	0
1/3	2/3 (b)	0	0
1/2	2/3 (b)	1/6	0
7/12	13/18~(b)	1/4	0

0	0	0	0
0	2/3~(b)	0	0
1/3	2/3~(b)	0	0
1/2	2/3~(b)	1/6	0
7/12	13/18~(b)	1/4	0
•••	•••	•••	•••

0	0	0	0
0	2/3~(b)	0	0
1/3	2/3~(b)	0	0
1/2	2/3~(b)	1/6	0
7/12	13/18~(b)	1/4	0
• • •	• • •	• • •	• • •
0.7969	0.7988~(b)	0.3977	0

0	0	0	0
0	2/3~(b)	0	0
1/3	2/3~(b)	0	0
1/2	2/3~(b)	1/6	0
7/12	13/18~(b)	1/4	0
•••	•••	•••	• • •
0.7969	0.7988~(b)	0.3977	0
0.7978	0.7992~(b)	0.3984	0
		·	

Value iteration

	0	0 2/3 (b)	0	0 0
	1/3	2/3~(b)	0	0
	1/2	2/3~(b)	1/6	0
	7/12	13/18~(b)	1/4	0
	•••	•••	•••	•••
≤ 0	.001 0.7969	0.7988~(b)	0.3977	0
	0.7978	0.7992~(b)	0.3984	0
			$ \begin{array}{c} $	$if \ s = \checkmark$ $otherwise$ $x_{a \in \alpha} \sum_{s' \in S} \delta(s, a)(s') \times x_{s'}^{(n)}$

State	0	1	2	3	•••	<i>k</i> -1	k	k+1	•••	2k
Step 1	1	0	0	0	•••	0	0	0	•••	0
Step 2	1	1/2	0	0		0	0	0	•••	0
Step 3	1	1/2	1/4	0	•••	0	0	0		0
Step 4	1	1/2	1/4	1/8	•••	0	0	0		0
•••										
Step k	1	1/2	1/4	1/8	•••	$1 / 2^{k-1}$	0	0	•••	0

State	0	1	2	3	•••	<i>k</i> -1	k	$k\!\!+\!\!1$	•••	2k
Step 1	1	0	0	0	•••	0	0	0	•••	0
Step 2	1	1/2	0	0		0	0	0		0
Step 3	1	1/2	1/4	0	•••	0	0	0		0
Step 4	1	1/2	1/4	1/8		0	0	0	•••	0
•••										
Step k	1	1/2	1/4	1/8		$1 / 2^{k-1}$	0	0	•••	0
Step $k+1$	1	1/2	1/4	1/8	•••	$1 / 2^{k-1}$	$1 / 2^k$	0	•••	0

	State	0	1	2	3	•••	<i>k</i> -1	k	$k\!\!+\!\!1$	•••	2k
	Step 1	1	0	0	0	•••	0	0	0	•••	0
	Step 2	1	1/2	0	0	•••	0	0	0	•••	0
	Step 3	1	1/2	1/4	0	•••	0	0	0	•••	0
	Step 4	1	1/2	1/4	1/8		0	0	0		0
	•••	•••	•••	•••	•••	•••		•••	• • •	•••	•••
$< 1/2^{k}$	- Step k	1	1/2	1/4	1/8	•••	$1 / 2^{k-1}$	0	0	•••	0
<u> </u>	$\ \ \ \ \ \ \ \ $	1	1/2	1/4	1/8	•••	$1 / 2^{k-1}$	$1 / 2^k$	0	•••	0

	State	0	1	2	3	•••	<i>k</i> -1	k	<i>k</i> +1	• • •	2k
	Step 1	1	0	0	0	•••	0	0	0	•••	0
	Step 2	1	1/2	0	0		0	0	0		0
	Step 3	1	1/2	1/4	0	•••	0	0	0	•••	0
	Step 4	1	1/2	1/4	1/8		0	0	0		0
	•••							•••			
< 1/9k	- Step k	1	1/2	1/4	1/8		$1 / 2^{k-1}$	0	0		0
$\geq 1/2$	Step k+1	1	1/2	1/4	1/8	•••	$1 / 2^{k-1}$	$1 / 2^k$	0		0

1. Enhanced value iteration algorithm with strong guarantees

• performs **two** value iterations in **parallel**

- performs **two** value iterations in **parallel**
- keeps an **interval** of possible optimal values

- performs **two** value iterations in **parallel**
- keeps an **interval** of possible optimal values
- uses the interval for the ${\bf stopping\ criterion}$

- performs **two** value iterations in **parallel**
- keeps an **interval** of possible optimal values
- uses the interval for the ${\bf stopping\ criterion}$
- 2. Study of the **speed of convergence**

- performs **two** value iterations in **parallel**
- keeps an **interval** of possible optimal values
- uses the interval for the **stopping criterion**
- 2. Study of the **speed of convergence**
 - also applies to classical value iteration

- performs **two** value iterations in **parallel**
- keeps an **interval** of possible optimal values
- uses the interval for the **stopping criterion**
- 2. Study of the **speed of convergence**
 - also applies to classical value iteration
- 3. Improved **rounding** procedure for **exact** computation

 $\left(\Pr_{s}^{\max}(\mathsf{F} \checkmark)\right)_{s \in S}$ is the smallest fixed point of f_{\max} .

Number of steps

Number of steps

Solution: ensure uniqueness!

Usual techniques applied for MDPs do not apply...

Solution: ensure uniqueness!

Usual techniques applied for MDPs do not apply...

Solution: ensure uniqueness!

Usual techniques applied for MDPs do not apply...

Solution: ensure uniqueness!

Usual techniques applied for MDPs do not apply...

NEW! Use Maximal End Components... (computable in polynomial time)

[de Alfaro, 1997]

Solution: ensure uniqueness!

Usual techniques applied for MDPs do not apply...

[de Alfaro, 1997]

Solution: ensure uniqueness!

Usual techniques applied for MDPs do not apply...

NEW! Use Maximal End Components... (computable in polynomial time) and trivialize them! Now, unicity of the fixed point

[de Alfaro, 1997]

An even smaller MDP for minimal probabilities

An even smaller MDP for minimal probabilities

have null minimal probability!

An even smaller MDP for minimal probabilities

Non-trivial (and non accepting) MEC have null minimal probability!

Interval iteration algorithm in reduced MDPs

Input: Min-reduced MDP $\mathcal{M} = (S, \alpha_{\mathcal{M}}, \delta_{\mathcal{M}})$, convergence threshold ε **Output**: Under- and over-approximation of $Pr_{\mathcal{M}}^{\min}(\mathsf{F}\checkmark)$ 1 $x_{\checkmark} := 1; x_{\bigstar} := 0; y_{\checkmark} := 1; y_{\bigstar} := 0$ 2 foreach $s \in S \setminus \{ \checkmark, \bigstar \}$ do $x_s := 0; y_s := 1$ repeat 3 for each $s \in S \setminus \{ \checkmark, \$ \}$ do 4 $\begin{array}{|} x'_s := \min_{a \in A(s)} \sum_{s' \in S} \delta_{\mathcal{M}}(s, a)(s') x_{s'} \\ y'_s := \min_{a \in A(s)} \sum_{s' \in S} \delta_{\mathcal{M}}(s, a)(s') y_{s'} \end{array}$ 5 6 $\delta := \max_{s \in S} (y'_s - x'_s)$ 7 for each $s \in S \setminus \{ \checkmark, \bigstar \}$ do $x'_s := x_s; y'_s := y_s$ 8 9 until $\delta \leqslant \varepsilon$ **10 return** $(x_s)_{s \in S}, (y_s)_{s \in S}$

Interval iteration algorithm in reduced MDPs

Input: Min-reduced MDP $\mathcal{M} = (S, \alpha_{\mathcal{M}}, \delta_{\mathcal{M}})$, convergence threshold ε **Output**: Under- and over-approximation of $Pr_{\mathcal{M}}^{\min}(\mathsf{F}\checkmark)$ **1** $x_{\checkmark} := 1; x_{\bigstar} := 0; y_{\checkmark} := 1; y_{\bigstar} := 0$ **2** foreach $s \in S \setminus \{\checkmark, \bigstar\}$ do $x_s := 0; y_s := 1$ repeat 3 for each $s \in S \setminus \{ \checkmark, \$ \}$ do 4 $\begin{array}{|} x'_s := \min_{a \in A(s)} \sum_{s' \in S} \delta_{\mathcal{M}}(s, a)(s') x_{s'} \\ y'_s := \min_{a \in A(s)} \sum_{s' \in S} \delta_{\mathcal{M}}(s, a)(s') y_{s'} \end{array}$ 5 6 $\delta := \max_{s \in S} (y'_s - x'_s)$ 7 for each $s \in S \setminus \{ \checkmark, \bigstar \}$ do $x'_s := x_s; y'_s := y_s$ 8 9 until $\delta \leqslant \varepsilon$ **10 return** $(x_s)_{s \in S}, (y_s)_{s \in S}$

Sequences x and y converge towards the minimal probability to reach \checkmark . Hence, the algorithm terminates by returning an interval of length at most ε for each state containing $\Pr_s^{\min}(\mathsf{F} \checkmark)$.

Interval iteration algorithm in reduced MDPs

Input: Min-reduced MDP $\mathcal{M} = (S, \alpha_{\mathcal{M}}, \delta_{\mathcal{M}})$, convergence threshold ε **Output**: Under- and over-approximation of $Pr_{\mathcal{M}}^{\min}(\mathsf{F}\checkmark)$ **1** $x_{\checkmark} := 1; x_{\bigstar} := 0; y_{\checkmark} := 1; y_{\bigstar} := 0$ **2** foreach $s \in S \setminus \{\checkmark, \bigstar\}$ do $x_s := 0; y_s := 1$ repeat 3 for each $s \in S \setminus \{ \checkmark, \$ \}$ do 4 $\begin{array}{|} x'_s := \min_{a \in A(s)} \sum_{s' \in S} \delta_{\mathcal{M}}(s, a)(s') x_{s'} \\ y'_s := \min_{a \in A(s)} \sum_{s' \in S} \delta_{\mathcal{M}}(s, a)(s') y_{s'} \end{array}$ 5 6 $\delta := \max_{s \in S} (y'_s - x'_s)$ 7 for each $s \in S \setminus \{ \checkmark, \bigstar \}$ do $x'_s := x_s; y'_s := y_s$ 8 9 until $\delta \leqslant \varepsilon$ **10 return** $(x_s)_{s \in S}, (y_s)_{s \in S}$

Sequences x and y converge towards the minimal probability to reach \checkmark . Hence, the algorithm terminates by returning an interval of length at most ε for each state containing $\Pr_s^{\min}(\mathsf{F} \checkmark)$.

Possible speed-up: only check size of interval for a given state...

2 BMECs and only trivial MECs attractor decomposition: length ${\cal I}$

2 BMECs and only trivial MECs attractor decomposition: length I

2 BMECs and only trivial MECs attractor decomposition: length I

2 BMECs and only trivial MECs attractor decomposition: length ${\cal I}$

2 BMECs and only trivial MECs attractor decomposition: length I

2 BMECs and only trivial MECs attractor decomposition: length I smallest positive probability: η

2 BMECs and only trivial MECs attractor decomposition: length I smallest positive probability: η

Leaking property:
$$\forall n \in \mathbb{N} \quad \Pr_{s}^{\max}(\mathbf{G}^{\leq nI} \neg (\mathbf{\vee} \lor \mathbf{k})) \leq (1 - \eta^{I})^{n}$$

2 BMECs and only trivial MECs attractor decomposition: length I smallest positive probability: η

 $\begin{array}{l} x \mbox{ stores reachability probabilities, } y \mbox{ stores safety probabilities,} \\ \mbox{ i.e., after n iterations: } x_s = \Pr_s^{\min}(\mathsf{F}^{\leq n} \checkmark) \quad y_s = \Pr_s^{\min}(\mathsf{G}^{\leq n}(\neg \bigstar)) \end{array}$

Leaking property: $\forall n \in \mathbb{N} \quad \Pr_{s}^{\max}(\mathbf{G}^{\leq nI} \neg (\mathbf{\bigvee} \mathbf{\bigotimes})) \leq (1 - \eta^{I})^{n}$

$$y_s^{(nI)} - x_s^{(nI)} = \Pr_s^{\sigma}(\mathsf{G}^{\leq nI}(\neg \bigstar)) - \Pr_s^{\sigma'}(\mathsf{F}^{\leq nI} \checkmark) \leq \Pr_s^{\sigma'}(\mathsf{G}^{\leq nI}(\neg \bigstar)) - \Pr_s^{\sigma'}(\mathsf{F}^{\leq nI} \checkmark)$$

2 BMECs and only trivial MECs attractor decomposition: length I smallest positive probability: η

 $\begin{array}{l} x \mbox{ stores reachability probabilities, } y \mbox{ stores safety probabilities,} \\ \mbox{ i.e., after n iterations: } x_s = \Pr_s^{\min}(\mathsf{F}^{\leq n} \checkmark) \quad y_s = \Pr_s^{\min}(\mathsf{G}^{\leq n}(\neg \bigstar)) \end{array}$

Leaking property: $\forall n \in \mathbb{N} \quad \Pr_{s}^{\max}(\mathbf{G}^{\leq nI} \neg (\mathbf{\bigvee} \mathbf{\bigotimes})) \leq (1 - \eta^{I})^{n}$

$$y_{s}^{(nI)} - x_{s}^{(nI)} = \Pr_{s}^{\sigma} (\mathsf{G}^{\leq nI}(\neg \bigstar)) - \Pr_{s}^{\sigma'} (\mathsf{F}^{\leq nI} \checkmark) \leq \Pr_{s}^{\sigma'} (\mathsf{G}^{\leq nI}(\neg \bigstar)) - \Pr_{s}^{\sigma'} (\mathsf{F}^{\leq nI} \checkmark)$$
$$= \Pr_{s}^{\sigma'} (\mathsf{G}^{\leq nI} \neg (\checkmark \lor \checkmark)) \leq (1 - \eta^{I})^{n}$$

since $G^{\leq n}(\neg \bigstar) \equiv G^{\leq n} \neg (\checkmark \lor \bigstar) \oplus F^{\leq n} \checkmark$

2 BMECs and only trivial MECs attractor decomposition: length I smallest positive probability: η

Leaking property:
$$\forall n \in \mathbb{N} \quad \Pr_{s}^{\max}(\mathbf{G}^{\leq nI} \neg (\mathbf{\vee} \lor \mathbf{k})) \leq (1 - \eta^{I})^{n}$$

MDPs with rational probabilities:

- d the largest denominator of transition probabilities
- ${\it N}$ the number of states
- ${\it M}$ the number of transitions with non-zero probabilities

MDPs with rational probabilities:

- d the largest denominator of transition probabilities
- N the number of states
- M the number of transitions with non-zero probabilities

[Chatterjee, Henzinger 2008] claim for exact computation possible after d^{8M} iterations of value iteration

MDPs with rational probabilities:

- d the largest denominator of transition probabilities
- N the number of states
- M the number of transitions with non-zero probabilities

[Chatterjee, Henzinger 2008] claim for exact computation possible after d^{8M} iterations of value iteration

Optimal probabilities and policies can be computed by the interval iteration algorithm in at most $8N^3 \left[(1/\eta)^N \log_2 d \right]$ steps.

MDPs with rational probabilities:

- d the largest denominator of transition probabilities
- N the number of states
- M the number of transitions with non-zero probabilities

[Chatterjee, Henzinger 2008] claim for exact computation possible after d^{8M} iterations of value iteration

Optimal probabilities and policies can be computed by the interval iteration algorithm in at most $8N^3 \left[(1/\eta)^N \log_2 d \right]$ steps.

Improvement since $1 / \eta \le d \qquad N \le M$

MDPs with rational probabilities:

- d the largest denominator of transition probabilities
- N the number of states
- M the number of transitions with non-zero probabilities

[Chatterjee, Henzinger 2008] claim for exact computation possible after d^{8M} iterations of value iteration

Optimal probabilities and policies can be computed by the interval iteration algorithm in at most $8N^3 \left[(1/\eta)^N \log_2 d \right]$ steps.

Sketch of proof:

- use $\varepsilon = 1/2\alpha$ as threshold (with α gcd of optimal probabilities)
- upper bound on α based on matrix properties of Markov chains: $\alpha = O(N^N d^{2N^2})$

Interval MDPs

$$\mathcal{M} = (S, \alpha, \check{\delta}, \widehat{\delta})$$

$$\delta : S \times \alpha \to [0, 1]^{S}$$

Policy $\sigma : (S \cdot \alpha)^{\star} \cdot S \to Dist(\alpha) \times (Dist(S))^{\alpha}$

- IMDPs = extension of MDPs with an infinite (uncountable) set of actions
- But, behaviours of IMDPs can be captured by MDPs

- IMDPs = extension of MDPs with an infinite (uncountable) set of actions
- But, behaviours of IMDPs can be captured by MDPs

- IMDPs = extension of MDPs with an infinite (uncountable) set of actions
- But, behaviours of IMDPs can be captured by MDPs

Possible distributions:

 $p \in Dist(S)$ such that $\sum_{s' \in S} p(s') = 1$ and $\forall s' \ \delta(s' \mid s, a) \le p(s') \le \delta(s' \mid s, a)$

Solutions of a (bounded) linear program!

- IMDPs = extension of MDPs with an infinite (uncountable) set of actions
- But, behaviours of IMDPs can be captured by MDPs

- IMDPs = extension of MDPs with an infinite (uncountable) set of actions
- But, behaviours of IMDPs can be captured by MDPs

- IMDPs = extension of MDPs with an infinite (uncountable) set of actions
- But, behaviours of IMDPs can be captured by MDPs

Value iteration for IMDPs

- Simulate on the IMDP the value iteration on its MDP...
- One step is the application of

Achievable in polynomial time by sorting x...
[Sen, Viswanathan, Agha, 2006]

Value iteration for IMDPs

- Simulate on the IMDP the value iteration on its MDP...
- One step is the application of

$$f_{\max}(x)_{s} = \max_{a \in A(s)} \max_{p \in BFS(a)} \sum_{s' \in S} p(s') \times x_{s'}$$

• Achievable in polynomial time by sorting x... [Sen, Viswanathan, Agha, 2006]

MEC decomposition

- Framework allowing **guarantees** for **value iteration algorithm**
- General results on **convergence rate**
- Criterion for computation of **exact value**
- Future work: test of our preliminary implementation over real instances

- Framework allowing **guarantees** for **value iteration algorithm**
- General results on **convergence rate**
- Criterion for computation of **exact value**
- Future work: test of our preliminary implementation over real instances

• **[Katoen, Zapreev, 2006]** On-the-fly detection of steady-state in the transient analysis of continuous-time Markov chains

- Framework allowing **guarantees** for **value iteration algorithm**
- General results on **convergence rate**
- Criterion for computation of **exact value**
- Future work: test of our preliminary implementation over real instances

- **[Katoen, Zapreev, 2006]** On-the-fly detection of steady-state in the transient analysis of continuous-time Markov chains
- **[Kattenbelt, Kwiatkowska, Norman, Parker, 2010**] CEGAR-based approach for stochastic games

- Framework allowing **guarantees** for **value iteration algorithm**
- General results on **convergence rate**
- Criterion for computation of **exact value**
- Future work: test of our preliminary implementation over real instances

- **[Katoen, Zapreev, 2006**] On-the-fly detection of steady-state in the transient analysis of continuous-time Markov chains
- **[Kattenbelt, Kwiatkowska, Norman, Parker, 2010**] CEGAR-based approach for stochastic games
- [Brázdil, Chatterjee, Chmelík, Forejt, Křetínský, Kwiatkowska, Parker, Ujma, ATVA 2014] same techniques in a machine learning framework with almost sure convergence and computation of non-trivial end components on-the-fly