
A journey through negatively-weighted timed games:
undecidability, decidability, approximability

Benjamin Monmege, Aix-Marseille Université

MoRe 2018, Oxford

Motivation: quantitative aspects of real-time synthesis

Environment ‖ Controller?? |= Spec

Two-player game

Real-time requirements/environment =⇒ real-time controller
Two-player timed game

Among all valid controllers, choose a cheap/efficient one
Two-player weighted timed game

Additional difficulty: negative weights
=⇒ to model production/consumption of resources

2/33

Motivation: quantitative aspects of real-time synthesis

Environment ‖ Controller?? |= Spec

Two-player game

Real-time requirements/environment =⇒ real-time controller

Two-player timed game

Among all valid controllers, choose a cheap/efficient one
Two-player weighted timed game

Additional difficulty: negative weights
=⇒ to model production/consumption of resources

2/33

Motivation: quantitative aspects of real-time synthesis

Environment ‖ Controller?? |= Spec

Two-player game

Real-time requirements/environment =⇒ real-time controller

Two-player timed game

Among all valid controllers, choose a cheap/efficient one

Two-player weighted timed game

Additional difficulty: negative weights
=⇒ to model production/consumption of resources

2/33

Motivation: quantitative aspects of real-time synthesis

Environment ‖ Controller?? |= Spec
Two-player game

Real-time requirements/environment =⇒ real-time controller

Two-player timed game

Among all valid controllers, choose a cheap/efficient one

Two-player weighted timed game

Additional difficulty: negative weights
=⇒ to model production/consumption of resources

2/33

Motivation: quantitative aspects of real-time synthesis

Environment ‖ Controller?? |= Spec
Two-player game

Real-time requirements/environment =⇒ real-time controller
Two-player timed game

Among all valid controllers, choose a cheap/efficient one

Two-player weighted timed game

Additional difficulty: negative weights
=⇒ to model production/consumption of resources

2/33

Motivation: quantitative aspects of real-time synthesis

Environment ‖ Controller?? |= Spec
Two-player game

Real-time requirements/environment =⇒ real-time controller
Two-player timed game

Among all valid controllers, choose a cheap/efficient one
Two-player weighted timed game

Additional difficulty: negative weights
=⇒ to model production/consumption of resources

2/33

Motivation: quantitative aspects of real-time synthesis

Environment ‖ Controller?? |= Spec
Two-player game

Real-time requirements/environment =⇒ real-time controller
Two-player timed game

Among all valid controllers, choose a cheap/efficient one
Two-player weighted timed game

Additional difficulty: negative weights
=⇒ to model production/consumption of resources

2/33

Modelling via weighted timed games

Peak-hour Offpeak-hour

Solar panels

15 ce/kWh 12 ce/kWh

Reselling: 20 ce/kWh

rate: total power × 15 ce/h total power × 12 ce/h

−0.5 × 20 ce/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1 : discretisation of time, resolution via a weighted game
Solution 2 : thin time behaviours, resolution via a weighted timed game

3/33

Modelling via weighted timed games

Peak-hour Offpeak-hour

Solar panels

15 ce/kWh 12 ce/kWh

Reselling: 20 ce/kWh

rate: total power × 15 ce/h total power × 12 ce/h

−0.5 × 20 ce/h

states to record which device is on/off: computation of the total power

Power consumption:

I 100W (1.5 ce/h in peak-hour, 1.2 ce/h in offpeak-hour)

I 2500W (37.5 ce/h in peak-hour, 30 ce/h in offpeak-hour)

I 2000W (24 ce/h in offpeak-hour)

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1 : discretisation of time, resolution via a weighted game
Solution 2 : thin time behaviours, resolution via a weighted timed game

3/33

Modelling via weighted timed games

Peak-hour Offpeak-hour Solar panels

15 ce/kWh 12 ce/kWh Reselling: 20 ce/kWh
rate: total power × 15 ce/h total power × 12 ce/h −0.5 × 20 ce/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1 : discretisation of time, resolution via a weighted game
Solution 2 : thin time behaviours, resolution via a weighted timed game

3/33

Modelling via weighted timed games

Peak-hour Offpeak-hour Solar panels

15 ce/kWh 12 ce/kWh Reselling: 20 ce/kWh
rate: total power × 15 ce/h total power × 12 ce/h −0.5 × 20 ce/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1 : discretisation of time, resolution via a weighted game
Solution 2 : thin time behaviours, resolution via a weighted timed game

3/33

Modelling via weighted timed games

Peak-hour Offpeak-hour Solar panels

15 ce/kWh 12 ce/kWh Reselling: 20 ce/kWh
rate: total power × 15 ce/h total power × 12 ce/h −0.5 × 20 ce/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1 : discretisation of time, resolution via a weighted game
Solution 2 : thin time behaviours, resolution via a weighted timed game

3/33

Modelling via weighted timed games

Peak-hour Offpeak-hour Solar panels

15 ce/kWh 12 ce/kWh Reselling: 20 ce/kWh
rate: total power × 15 ce/h total power × 12 ce/h −0.5 × 20 ce/h

states to record which device is on/off: computation of the total power

Environment: user profile, weather profile /
Controller: chooses contract (discrete cost for the monthly subscription)
and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1 : discretisation of time, resolution via a weighted game
Solution 2 : thin time behaviours, resolution via a weighted timed game

3/33

Weighted games

v1

v2 v3

v4 v5

� v6

0

1

0

0

1

0

1

2

Weighted graph with
vertices partition between 2

players
+ reachability objective

v1
↘−→v4

→−→v5
←−→v4

→−→v5
↗−→�

1 +1 +2 = 4

v1
↗−→v2

→−→v3

	

−→v3

	

−→v3 · · ·
· · · = +∞(� not reached)

Weight of a path:
{

+∞ if � not reached
total weight until � otherwise

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 4/33

Weighted games

v1

v2 v3

v4 v5

� v6

0

1

0

0

1

0

1

2

Weighted graph with
vertices partition between 2

players
+ reachability objective

v1

↘−→v4
→−→v5

←−→v4
→−→v5

↗−→�
1 +1 +2 = 4

v1
↗−→v2

→−→v3

	

−→v3

	

−→v3 · · ·
· · · = +∞(� not reached)

Weight of a path:
{

+∞ if � not reached
total weight until � otherwise

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 4/33

Weighted games

v1

v2 v3

v4 v5

� v6

0

1

0

0

1

0

1

2

Weighted graph with
vertices partition between 2

players
+ reachability objective

v1
↘−→v4

→−→v5
←−→v4

→−→v5
↗−→�

1 +1 +2 = 4

v1
↗−→v2

→−→v3

	

−→v3

	

−→v3 · · ·
· · · = +∞(� not reached)

Weight of a path:
{

+∞ if � not reached
total weight until � otherwise

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 4/33

Weighted games

v1

v2 v3

v4 v5

� v6

0

1

0

0

1

0

1

2

Weighted graph with
vertices partition between 2

players
+ reachability objective

v1
↘−→v4

→−→v5

←−→v4
→−→v5

↗−→�
1 +1 +2 = 4

v1
↗−→v2

→−→v3

	

−→v3

	

−→v3 · · ·
· · · = +∞(� not reached)

Weight of a path:
{

+∞ if � not reached
total weight until � otherwise

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 4/33

Weighted games

v1

v2 v3

v4 v5

� v6

0

1

0

0

1

0

1

2

Weighted graph with
vertices partition between 2

players
+ reachability objective

v1
↘−→v4

→−→v5
←−→v4

→−→v5
↗−→�

1 +1 +2 = 4

v1
↗−→v2

→−→v3

	

−→v3

	

−→v3 · · ·
· · · = +∞(� not reached)

Weight of a path:
{

+∞ if � not reached
total weight until � otherwise

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 4/33

Weighted games

v1

v2 v3

v4 v5

� v6

0

1

0

0

1

0

1

2

Weighted graph with
vertices partition between 2

players
+ reachability objective

v1
↘−→v4

→−→v5
←−→v4

→−→v5
↗−→�

1 +1 +2 = 4

v1
↗−→v2

→−→v3

	

−→v3

	

−→v3 · · ·
· · · = +∞(� not reached)

Weight of a path:
{

+∞ if � not reached
total weight until � otherwise

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 4/33

Weighted games

v1

v2 v3

v4 v5

� v6

0

1

0

0

1

0

1

2

Weighted graph with
vertices partition between 2

players
+ reachability objective

v1
↘−→v4

→−→v5
←−→v4

→−→v5
↗−→�

1 +1 +2 = 4

v1
↗−→v2

→−→v3

	

−→v3

	

−→v3 · · ·
· · · = +∞(� not reached)

Weight of a path:
{

+∞ if � not reached
total weight until � otherwise

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 4/33

Weighted timed games

s1

s2 s3

s4 s5

� s6

x > 0
x := 0

x 6 1

x 6 2

x < 1
x := 0

x > 1

x > 1
x := 0

x > 1
x := 0

x > 1

Timed automaton
with state partition between

2 players
+ reachability objective

(s1, 0) 0.4,↘−−−−→(s4, 0.4) 0.6,→−−−−→(s5, 0) 1.5,←−−−−→(s4, 0) 1.1,→−−−−→(s5, 0) 2,↗−−−→(�, 2)
1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

(s1, 0) 0.2,↗−−−−→(s2, 0) 0.9,→−−−−→(s3, 0.9) 0.2, 	−−−−→(s3, 0) 0.9, 	−−−−→(s3, 0) · · ·
1×0.2+0 +2×0.9+0 −1×0.2+0 −1×0.9+0 · · · = +∞

Weight of an execution :
{

+∞ if � not reached
total weight until � otherwise

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 5/33

Weighted timed games

1 s1

2
s2

−1
s3

−3
s4

1
s5

� s6

x > 0
x := 0

0

x 6 1
1

x 6 2
0

x < 1
x := 0

0

x > 1
1

x > 1
x := 0
0

x > 1
x := 0
0

x > 1
2

Timed automaton
with state partition between

2 players
+ reachability objective
+ linear rates on states
+ discrete weights on

transitions

(s1, 0)

0.4,↘−−−−→(s4, 0.4) 0.6,→−−−−→(s5, 0) 1.5,←−−−−→(s4, 0) 1.1,→−−−−→(s5, 0) 2,↗−−−→(�, 2)
1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

(s1, 0) 0.2,↗−−−−→(s2, 0) 0.9,→−−−−→(s3, 0.9) 0.2, 	−−−−→(s3, 0) 0.9, 	−−−−→(s3, 0) · · ·
1×0.2+0 +2×0.9+0 −1×0.2+0 −1×0.9+0 · · · = +∞

Weight of an execution :
{

+∞ if � not reached
total weight until � otherwise

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 5/33

Weighted timed games

1 s1

2
s2

−1
s3

−3
s4

1
s5

� s6

x > 0
x := 0

0

x 6 1
1

x 6 2
0

x < 1
x := 0

0

x > 1
1

x > 1
x := 0
0

x > 1
x := 0
0

x > 1
2

Timed automaton
with state partition between

2 players
+ reachability objective
+ linear rates on states
+ discrete weights on

transitions

(s1, 0) 0.4,↘−−−−→(s4, 0.4)

0.6,→−−−−→(s5, 0) 1.5,←−−−−→(s4, 0) 1.1,→−−−−→(s5, 0) 2,↗−−−→(�, 2)
1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

(s1, 0) 0.2,↗−−−−→(s2, 0) 0.9,→−−−−→(s3, 0.9) 0.2, 	−−−−→(s3, 0) 0.9, 	−−−−→(s3, 0) · · ·
1×0.2+0 +2×0.9+0 −1×0.2+0 −1×0.9+0 · · · = +∞

Weight of an execution :
{

+∞ if � not reached
total weight until � otherwise

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 5/33

Weighted timed games

1 s1

2
s2

−1
s3

−3
s4

1
s5

� s6

x > 0
x := 0

0

x 6 1
1

x 6 2
0

x < 1
x := 0

0

x > 1
1

x > 1
x := 0
0

x > 1
x := 0
0

x > 1
2

Timed automaton
with state partition between

2 players
+ reachability objective
+ linear rates on states
+ discrete weights on

transitions

(s1, 0) 0.4,↘−−−−→(s4, 0.4) 0.6,→−−−−→(s5, 0)

1.5,←−−−−→(s4, 0) 1.1,→−−−−→(s5, 0) 2,↗−−−→(�, 2)
1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

(s1, 0) 0.2,↗−−−−→(s2, 0) 0.9,→−−−−→(s3, 0.9) 0.2, 	−−−−→(s3, 0) 0.9, 	−−−−→(s3, 0) · · ·
1×0.2+0 +2×0.9+0 −1×0.2+0 −1×0.9+0 · · · = +∞

Weight of an execution :
{

+∞ if � not reached
total weight until � otherwise

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 5/33

Weighted timed games

1 s1

2
s2

−1
s3

−3
s4

1
s5

� s6

x > 0
x := 0

0

x 6 1
1

x 6 2
0

x < 1
x := 0

0

x > 1
1

x > 1
x := 0
0

x > 1
x := 0
0

x > 1
2

Timed automaton
with state partition between

2 players
+ reachability objective
+ linear rates on states
+ discrete weights on

transitions

(s1, 0) 0.4,↘−−−−→(s4, 0.4) 0.6,→−−−−→(s5, 0) 1.5,←−−−−→(s4, 0) 1.1,→−−−−→(s5, 0) 2,↗−−−→(�, 2)

1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

(s1, 0) 0.2,↗−−−−→(s2, 0) 0.9,→−−−−→(s3, 0.9) 0.2, 	−−−−→(s3, 0) 0.9, 	−−−−→(s3, 0) · · ·
1×0.2+0 +2×0.9+0 −1×0.2+0 −1×0.9+0 · · · = +∞

Weight of an execution :
{

+∞ if � not reached
total weight until � otherwise

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 5/33

Weighted timed games

1 s1

2
s2

−1
s3

−3
s4

1
s5

� s6

x > 0
x := 0

0

x 6 1
1

x 6 2
0

x < 1
x := 0

0

x > 1
1

x > 1
x := 0
0

x > 1
x := 0
0

x > 1
2

Timed automaton
with state partition between

2 players
+ reachability objective
+ linear rates on states
+ discrete weights on

transitions

(s1, 0) 0.4,↘−−−−→(s4, 0.4) 0.6,→−−−−→(s5, 0) 1.5,←−−−−→(s4, 0) 1.1,→−−−−→(s5, 0) 2,↗−−−→(�, 2)
1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

(s1, 0) 0.2,↗−−−−→(s2, 0) 0.9,→−−−−→(s3, 0.9) 0.2, 	−−−−→(s3, 0) 0.9, 	−−−−→(s3, 0) · · ·
1×0.2+0 +2×0.9+0 −1×0.2+0 −1×0.9+0 · · · = +∞

Weight of an execution :
{

+∞ if � not reached
total weight until � otherwise

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 5/33

Weighted timed games

1 s1

2
s2

−1
s3

−3
s4

1
s5

� s6

x > 0
x := 0

0

x 6 1
1

x 6 2
0

x < 1
x := 0

0

x > 1
1

x > 1
x := 0
0

x > 1
x := 0
0

x > 1
2

Timed automaton
with state partition between

2 players
+ reachability objective
+ linear rates on states
+ discrete weights on

transitions

(s1, 0) 0.4,↘−−−−→(s4, 0.4) 0.6,→−−−−→(s5, 0) 1.5,←−−−−→(s4, 0) 1.1,→−−−−→(s5, 0) 2,↗−−−→(�, 2)
1×0.4+1 −3×0.6+0 +1×1.5+0 −3×1.1+0 +1×2+2 = 1.8

(s1, 0) 0.2,↗−−−−→(s2, 0) 0.9,→−−−−→(s3, 0.9) 0.2, 	−−−−→(s3, 0) 0.9, 	−−−−→(s3, 0) · · ·
1×0.2+0 +2×0.9+0 −1×0.2+0 −1×0.9+0 · · · = +∞

Weight of an execution :
{

+∞ if � not reached
total weight until � otherwise

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 5/33

Strategies and objectives

1 s1

2
s2

−1
s3

−3
s4

1
s5

� s6

x > 0
x := 0

0

x 6 1
1

x 6 2
0

x < 1
x := 0

0

x > 1
1

x > 1
x := 0
0

x > 1
x := 0
0

x > 1
2

Strategy for a player: map finite executions to a delay and a transition

Objective of player #: reach � and minimise the weight
Objective of player 2: avoid � or, if not possible, maximise the weight

Main object of interest:
Val(s, ν) = inf

σMin∈StratMin
sup

σMax∈StratMax
Weight(Exec(s, ν, σMin, σMax)) ∈ R

What weight can players guarantee? Following which strategies?

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 6/33

Strategies and objectives

1 s1

2
s2

−1
s3

−3
s4

1
s5

� s6

x > 0
x := 0

0

x 6 1
1

x 6 2
0

x < 1
x := 0

0

x > 1
1

x > 1
x := 0
0

x > 1
x := 0
0

x > 1
2

Strategy for a player: map finite executions to a delay and a transition

Objective of player #: reach � and minimise the weight
Objective of player 2: avoid � or, if not possible, maximise the weight

Main object of interest:
Val(s, ν) = inf

σMin∈StratMin
sup

σMax∈StratMax
Weight(Exec(s, ν, σMin, σMax)) ∈ R

What weight can players guarantee? Following which strategies?

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 6/33

Strategies and objectives

1 s1

2
s2

−1
s3

−3
s4

1
s5

� s6

x > 0
x := 0

0

x 6 1
1

x 6 2
0

x < 1
x := 0

0

x > 1
1

x > 1
x := 0
0

x > 1
x := 0
0

x > 1
2

Strategy for a player: map finite executions to a delay and a transition

Objective of player #: reach � and minimise the weight
Objective of player 2: avoid � or, if not possible, maximise the weight

Main object of interest:
Val(s, ν) = inf

σMin∈StratMin
sup

σMax∈StratMax
Weight(Exec(s, ν, σMin, σMax)) ∈ R

What weight can players guarantee? Following which strategies?

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 6/33

Part I : Weighted games

State of the art: weighted games (shortest-path objective)
F6K�: ∃ a strategy in the weighted game for player # reaching � with a
cost 6 K?
I one-player: shortest path in a weighted graph... polynomial algo.
I two players, non-negative weights only: polynomial algo.

"Dijkstra algorithm on 2 players games" (Khachiyan et al., 2008)

I two players, arbitrary weights?

�

−1

−W

0

0

needs memory!
Value −∞: detection is as hard as solving parity games (NP ∩ co-NP)

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 8/33

State of the art: weighted games (shortest-path objective)
F6K�: ∃ a strategy in the weighted game for player # reaching � with a
cost 6 K?
I one-player: shortest path in a weighted graph... polynomial algo.
I two players, non-negative weights only: polynomial algo.

"Dijkstra algorithm on 2 players games" (Khachiyan et al., 2008)
I two players, arbitrary weights?

�

−1

−W

0

0

needs memory!
Value −∞: detection is as hard as solving parity games (NP ∩ co-NP)

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 8/33

State of the art: weighted games (shortest-path objective)
F6K�: ∃ a strategy in the weighted game for player # reaching � with a
cost 6 K?
I one-player: shortest path in a weighted graph... polynomial algo.
I two players, non-negative weights only: polynomial algo.

"Dijkstra algorithm on 2 players games" (Khachiyan et al., 2008)
I two players, arbitrary weights?

�

−1

−W

0

0

needs memory!
Value −∞: detection is as hard as solving parity games (NP ∩ co-NP)

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 8/33

Pseudo-polynomial algorithm to solve weighted games
Joint work with Thomas Brihaye, Gilles Geeraerts and Axel Haddad (Brihaye et al., 2016)

Value iteration algorithm: compute F i(+∞)...

F(x)v =


min

e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMin

max
e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMax

�

−1

−W

0

0

2 #
horizon 0: +∞ +∞

horizon 1: +∞ 0
horizon 2: −1 0
horizon 3: −1 −1
horizon 4: −2 −1

.
horizon 2W + 1: −W −W
horizon 2W + 2: −W −W

st
ra
te
gy

of
#

Theorem:
We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies for both players: # may require (pseudo-
polynomial) memory to play optimally (but has counter strategies), 2 has
optimal memoryless strategy.

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 9/33

Pseudo-polynomial algorithm to solve weighted games
Joint work with Thomas Brihaye, Gilles Geeraerts and Axel Haddad (Brihaye et al., 2016)

Value iteration algorithm: compute F i(+∞)...

F(x)v =


min

e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMin

max
e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMax

�

−1

−W

0

0

2 #
horizon 0: +∞ +∞
horizon 1: +∞ 0

horizon 2: −1 0
horizon 3: −1 −1
horizon 4: −2 −1

.
horizon 2W + 1: −W −W
horizon 2W + 2: −W −W

st
ra
te
gy

of
#

Theorem:
We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies for both players: # may require (pseudo-
polynomial) memory to play optimally (but has counter strategies), 2 has
optimal memoryless strategy.

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 9/33

Pseudo-polynomial algorithm to solve weighted games
Joint work with Thomas Brihaye, Gilles Geeraerts and Axel Haddad (Brihaye et al., 2016)

Value iteration algorithm: compute F i(+∞)...

F(x)v =


min

e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMin

max
e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMax

�

−1

−W

0

0

2 #
horizon 0: +∞ +∞
horizon 1: +∞ 0
horizon 2: −1 0

horizon 3: −1 −1
horizon 4: −2 −1

.
horizon 2W + 1: −W −W
horizon 2W + 2: −W −W

st
ra
te
gy

of
#

Theorem:
We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies for both players: # may require (pseudo-
polynomial) memory to play optimally (but has counter strategies), 2 has
optimal memoryless strategy.

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 9/33

Pseudo-polynomial algorithm to solve weighted games
Joint work with Thomas Brihaye, Gilles Geeraerts and Axel Haddad (Brihaye et al., 2016)

Value iteration algorithm: compute F i(+∞)...

F(x)v =


min

e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMin

max
e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMax

�

−1

−W

0

0

2 #
horizon 0: +∞ +∞
horizon 1: +∞ 0
horizon 2: −1 0
horizon 3: −1 −1

horizon 4: −2 −1
.

horizon 2W + 1: −W −W
horizon 2W + 2: −W −W

st
ra
te
gy

of
#

Theorem:
We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies for both players: # may require (pseudo-
polynomial) memory to play optimally (but has counter strategies), 2 has
optimal memoryless strategy.

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 9/33

Pseudo-polynomial algorithm to solve weighted games
Joint work with Thomas Brihaye, Gilles Geeraerts and Axel Haddad (Brihaye et al., 2016)

Value iteration algorithm: compute F i(+∞)...

F(x)v =


min

e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMin

max
e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMax

�

−1

−W

0

0

2 #
horizon 0: +∞ +∞
horizon 1: +∞ 0
horizon 2: −1 0
horizon 3: −1 −1
horizon 4: −2 −1

.
horizon 2W + 1: −W −W
horizon 2W + 2: −W −W

st
ra
te
gy

of
#

Theorem:
We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies for both players: # may require (pseudo-
polynomial) memory to play optimally (but has counter strategies), 2 has
optimal memoryless strategy.

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 9/33

Pseudo-polynomial algorithm to solve weighted games
Joint work with Thomas Brihaye, Gilles Geeraerts and Axel Haddad (Brihaye et al., 2016)

Value iteration algorithm: compute F i(+∞)...

F(x)v =


min

e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMin

max
e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMax

�

−1

−W

0

0

2 #
horizon 0: +∞ +∞
horizon 1: +∞ 0
horizon 2: −1 0
horizon 3: −1 −1
horizon 4: −2 −1

.
horizon 2W + 1: −W −W

horizon 2W + 2: −W −W

st
ra
te
gy

of
#

Theorem:
We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies for both players: # may require (pseudo-
polynomial) memory to play optimally (but has counter strategies), 2 has
optimal memoryless strategy.

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 9/33

Pseudo-polynomial algorithm to solve weighted games
Joint work with Thomas Brihaye, Gilles Geeraerts and Axel Haddad (Brihaye et al., 2016)

Value iteration algorithm: compute F i(+∞)...

F(x)v =


min

e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMin

max
e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMax

�

−1

−W

0

0

2 #
horizon 0: +∞ +∞
horizon 1: +∞ 0
horizon 2: −1 0
horizon 3: −1 −1
horizon 4: −2 −1

.
horizon 2W + 1: −W −W
horizon 2W + 2: −W −W

st
ra
te
gy

of
#

Theorem:
We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies for both players: # may require (pseudo-
polynomial) memory to play optimally (but has counter strategies), 2 has
optimal memoryless strategy.

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 9/33

Pseudo-polynomial algorithm to solve weighted games
Joint work with Thomas Brihaye, Gilles Geeraerts and Axel Haddad (Brihaye et al., 2016)

Value iteration algorithm: compute F i(+∞)...

F(x)v =


min

e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMin

max
e=(v ,a,v ′)∈E

(
Weight(e) + xv ′

)
if v ∈ VMax

�

−1

−W

0

0

2 #
horizon 0: +∞ +∞
horizon 1: +∞ 0
horizon 2: −1 0
horizon 3: −1 −1
horizon 4: −2 −1

.
horizon 2W + 1: −W −W
horizon 2W + 2: −W −W

st
ra
te
gy

of
#

Theorem:
We can compute in pseudo-polynomial time the value of a weighted game,
as well as optimal strategies for both players: # may require (pseudo-
polynomial) memory to play optimally (but has counter strategies), 2 has
optimal memoryless strategy.

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 9/33

Large polynomial fragment: divergent weighted games

Joint work with Damien Busatto-Gaston and Pierre-Alain Reynier (Busatto-Gaston et al., 2017)

Divergence property (in the underlying graph):
Every cycle has total weight either 6 −1 or > 1

Theorem:
We can compute in polynomial time the value of a divergent weighted
game, as well as optimal strategies for both players.

Theorem:
Deciding if a weighted game is divergent is in PTIME.

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 10/33

Large polynomial fragment: divergent weighted games

Joint work with Damien Busatto-Gaston and Pierre-Alain Reynier (Busatto-Gaston et al., 2017)

Divergence property (in the underlying graph):
Every cycle has total weight either 6 −1 or > 1

Theorem:
We can compute in polynomial time the value of a divergent weighted
game, as well as optimal strategies for both players.

Theorem:
Deciding if a weighted game is divergent is in PTIME.

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 10/33

Large polynomial fragment: divergent weighted games

Joint work with Damien Busatto-Gaston and Pierre-Alain Reynier (Busatto-Gaston et al., 2017)

Divergence property (in the underlying graph):
Every cycle has total weight either 6 −1 or > 1

Theorem:
We can compute in polynomial time the value of a divergent weighted
game, as well as optimal strategies for both players.

Theorem:
Deciding if a weighted game is divergent is in PTIME.

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 10/33

Divergent weighted games analysis

divergence property

characterisation :

p > 1

−q 6 −1

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 11/33

Divergent weighted games analysis

divergence property

characterisation : All the simple cycles in a SCC have the same sign

p > 1

−q 6 −1 −q 6 −1

α

β

p > 1

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 11/33

Divergent weighted games analysis

divergence property

characterisation : All the simple cycles in a SCC have the same sign

class decision value computation

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 11/33

Value computation in a divergent weighted game

I Detect and remove +∞ vertices (outside of the attractor of player
toward �)

I SCC decomposition
I Value computation SCC by SCC, bottom-up

positive SCC
I The "value iteration" algorithm converges in linear time

negative SCC
I Outside of the attractor of player 2 toward � ⇒ −∞
I The "value iteration" algorithm converges in linear time with

initialisation at −∞

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 12/33

Value computation in a divergent weighted game

I Detect and remove +∞ vertices (outside of the attractor of player
toward �)

I SCC decomposition
I Value computation SCC by SCC, bottom-up

positive SCC
I The "value iteration" algorithm converges in linear time

negative SCC
I Outside of the attractor of player 2 toward � ⇒ −∞
I The "value iteration" algorithm converges in linear time with

initialisation at −∞

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 12/33

Value computation in a divergent weighted game

I Detect and remove +∞ vertices (outside of the attractor of player
toward �)

I SCC decomposition
I Value computation SCC by SCC, bottom-up

positive SCC
I The "value iteration" algorithm converges in linear time

negative SCC
I Outside of the attractor of player 2 toward � ⇒ −∞
I The "value iteration" algorithm converges in linear time with

initialisation at −∞

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 12/33

Value computation in a divergent weighted game

I Detect and remove +∞ vertices (outside of the attractor of player
toward �)

I SCC decomposition
I Value computation SCC by SCC, bottom-up

positive SCC
I The "value iteration" algorithm converges in linear time

negative SCC
I Outside of the attractor of player 2 toward � ⇒ −∞
I The "value iteration" algorithm converges in linear time with

initialisation at −∞

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 12/33

Example

�v1

v2

v3

v4

v5
v6

v7

v8

v9

vf

−1
−1

−1

−10

−1

1

1

−1

−12

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 13/33

Example

+∞

+∞

�v1

v2

v3

v4

v5
v6

v7

v8

v9

vf

−1
−1

−1

−10

−1

1

1

−1

−12

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 13/33

Example

+∞

+∞

+∞

+∞

�v1

v2

v3

v4

v5
v6

v7

v8

v9

vf

−1
−1

−1

−10

−1

1

1

−1

−12

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 13/33

Example

+∞

+∞

0

+∞

�v1

v2

v3

v4

v5
v6

v7

v8

v9

vf

−1
−1

−1

−10

−1

1

1

−1

−12

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 13/33

Example

+∞

+∞

0

2

�v1

v2

v3

v4

v5
v6

v7

v8

v9

vf

−1
−1

−1

−10

−1

1

1

−1

−12

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 13/33

Example

+∞

1

+∞

0

2

�v1

v2

v3

v4

v5
v6

v7

v8

v9

vf

−1
−1

−1

−10

−1

1

1

−1

−12

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 13/33

Example

+∞

1

1

+∞

0

2

�v1

v2

v3

v4

v5
v6

v7

v8

v9

vf

−1
−1

−1

−10

−1

1

1

−1

−12

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 13/33

Example

−∞ −∞

−∞

+∞

1

1

+∞

0

2

�v1

v2

v3

v4

v5
v6

v7

v8

v9

vf

−1
−1

−1

−10

−1

1

1

−1

−12

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 13/33

Example

−∞ −9

−∞

+∞

1

1

+∞

0

2

�v1

v2

v3

v4

v5
v6

v7

v8

v9

vf

−1
−1

−1

−10

−1

1

1

−1

−12

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 13/33

Example

−∞ −9

−9

+∞

1

1

+∞

0

2

�v1

v2

v3

v4

v5
v6

v7

v8

v9

vf

−1
−1

−1

−10

−1

1

1

−1

−12

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 13/33

Part II : Weighted timed games

State of the art
F6K�: ∃ a strategy in the WTG (weighted timed game) for player #
reaching � with a cost 6 K?

I One-player case (Weighted timed automata): optimal reachability
problem is PSPACE-complete
I Algorithm based on regions (Bouyer et al., 2004a, 2007);
I and hardness shown for timed automata with at least 2 clocks

(Fearnley and Jurdziński, 2013; Haase et al., 2012)

I 2-player WTGs: undecidable (Brihaye et al., 2005; Bouyer et al., 2006a),
even with only non-negative weights and 3 clocks (only 2 clocks
needed with arbitrary weights (Brihaye et al., 2014))

I WTGs with non-negative weights and strictly non-Zeno weight
cycles: 2-exponential algorithm (Bouyer et al., 2004b; Alur et al., 2004a)

I One-clock WTGs with non-negative weights: exponential
algorithm (Bouyer et al., 2006b; Rutkowski, 2011; Hansen et al., 2013)

I Decidability results for WTGs with arbitrary weights?

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 15/33

State of the art
F6K�: ∃ a strategy in the WTG (weighted timed game) for player #
reaching � with a cost 6 K?

I One-player case (Weighted timed automata): optimal reachability
problem is PSPACE-complete
I Algorithm based on regions (Bouyer et al., 2004a, 2007);
I and hardness shown for timed automata with at least 2 clocks

(Fearnley and Jurdziński, 2013; Haase et al., 2012)

I 2-player WTGs: undecidable (Brihaye et al., 2005; Bouyer et al., 2006a),
even with only non-negative weights and 3 clocks (only 2 clocks
needed with arbitrary weights (Brihaye et al., 2014))

I WTGs with non-negative weights and strictly non-Zeno weight
cycles: 2-exponential algorithm (Bouyer et al., 2004b; Alur et al., 2004a)

I One-clock WTGs with non-negative weights: exponential
algorithm (Bouyer et al., 2006b; Rutkowski, 2011; Hansen et al., 2013)

I Decidability results for WTGs with arbitrary weights?

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 15/33

State of the art
F6K�: ∃ a strategy in the WTG (weighted timed game) for player #
reaching � with a cost 6 K?

I One-player case (Weighted timed automata): optimal reachability
problem is PSPACE-complete
I Algorithm based on regions (Bouyer et al., 2004a, 2007);
I and hardness shown for timed automata with at least 2 clocks

(Fearnley and Jurdziński, 2013; Haase et al., 2012)

I 2-player WTGs: undecidable (Brihaye et al., 2005; Bouyer et al., 2006a),
even with only non-negative weights and 3 clocks (only 2 clocks
needed with arbitrary weights (Brihaye et al., 2014))

I WTGs with non-negative weights and strictly non-Zeno weight
cycles: 2-exponential algorithm (Bouyer et al., 2004b; Alur et al., 2004a)

I One-clock WTGs with non-negative weights: exponential
algorithm (Bouyer et al., 2006b; Rutkowski, 2011; Hansen et al., 2013)

I Decidability results for WTGs with arbitrary weights?

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 15/33

State of the art
F6K�: ∃ a strategy in the WTG (weighted timed game) for player #
reaching � with a cost 6 K?

I One-player case (Weighted timed automata): optimal reachability
problem is PSPACE-complete
I Algorithm based on regions (Bouyer et al., 2004a, 2007);
I and hardness shown for timed automata with at least 2 clocks

(Fearnley and Jurdziński, 2013; Haase et al., 2012)

I 2-player WTGs: undecidable (Brihaye et al., 2005; Bouyer et al., 2006a),
even with only non-negative weights and 3 clocks (only 2 clocks
needed with arbitrary weights (Brihaye et al., 2014))

I WTGs with non-negative weights and strictly non-Zeno weight
cycles: 2-exponential algorithm (Bouyer et al., 2004b; Alur et al., 2004a)

I One-clock WTGs with non-negative weights: exponential
algorithm (Bouyer et al., 2006b; Rutkowski, 2011; Hansen et al., 2013)

I Decidability results for WTGs with arbitrary weights?

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 15/33

State of the art
F6K�: ∃ a strategy in the WTG (weighted timed game) for player #
reaching � with a cost 6 K?

I One-player case (Weighted timed automata): optimal reachability
problem is PSPACE-complete
I Algorithm based on regions (Bouyer et al., 2004a, 2007);
I and hardness shown for timed automata with at least 2 clocks

(Fearnley and Jurdziński, 2013; Haase et al., 2012)

I 2-player WTGs: undecidable (Brihaye et al., 2005; Bouyer et al., 2006a),
even with only non-negative weights and 3 clocks (only 2 clocks
needed with arbitrary weights (Brihaye et al., 2014))

I WTGs with non-negative weights and strictly non-Zeno weight
cycles: 2-exponential algorithm (Bouyer et al., 2004b; Alur et al., 2004a)

I One-clock WTGs with non-negative weights: exponential
algorithm (Bouyer et al., 2006b; Rutkowski, 2011; Hansen et al., 2013)

I Decidability results for WTGs with arbitrary weights?

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 15/33

State of the art
F6K�: ∃ a strategy in the WTG (weighted timed game) for player #
reaching � with a cost 6 K?

I One-player case (Weighted timed automata): optimal reachability
problem is PSPACE-complete
I Algorithm based on regions (Bouyer et al., 2004a, 2007);
I and hardness shown for timed automata with at least 2 clocks

(Fearnley and Jurdziński, 2013; Haase et al., 2012)

I 2-player WTGs: undecidable (Brihaye et al., 2005; Bouyer et al., 2006a),
even with only non-negative weights and 3 clocks (only 2 clocks
needed with arbitrary weights (Brihaye et al., 2014))

I WTGs with non-negative weights and strictly non-Zeno weight
cycles: 2-exponential algorithm (Bouyer et al., 2004b; Alur et al., 2004a)

I One-clock WTGs with non-negative weights: exponential
algorithm (Bouyer et al., 2006b; Rutkowski, 2011; Hansen et al., 2013)

I Decidability results for WTGs with arbitrary weights?

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 15/33

One-player case: weighted timed automata
I Main tool: refinement of regions via corner point abstraction /
ε-graph (Bouyer et al., 2004a, 2007)

– ν ≈ ν′;
– ν̄i < ε iff ν̄′

i < ε for all i ∈ {1, . . . , n} with νi ≤ ci;
– 1 − ε < ν̄i iff 1 − ε < ν̄′

i for all i ∈ {1, . . . , n} with νi ≤ ci.

Fig. 6 indicates the partition induced by the ε-equivalence for the timed automaton of Fig. 2.

x1

x2

Fig. 6. The ε-equivalence ≈ε

The relation ≈ε is extended to the states of TA as done previously with ≈. An equivalence class is called an
ε-region. The ε-region to which a state q belongs is denoted [q]ε and the set of all ε-regions is denoted by Rε.

In order to define the ε-region graph of a timed automatonA, we do not need all the ε-regions of Rε (contrarily to
the construction of RA). Due to Lemma 3, we only need to consider the ε-regions [(l, ν)]ε whose clock values ν are
close enough to n-tuples of integers (the dashed zones on Fig. 6).

Definition 12. Given a timed automatonA and ε ∈]0, 1
2], the set of acceptable ε-regions, denoted Sε, is defined by

Sε =
{
[(l, ν)]ε | ∀i ∈ {1, . . . , n} : νi ≤ ci ⇒ (ν̄i < ε or 1 − ε < ν̄i)

}
.

Remark 14. If rε = [(l, ν)]ε is an ε-region of Sε, then there exists a unique region r ∈ R, equal to [(l, ν)], such that
rε ⊆ r. In the sequel, rε always denotes an ε-region included in the region r.13

Remark 15. Using the representation introduced in Remark 5, we can visualize an ε-region rε as on Fig. 7 (when r
is a bounded region). We observe that the fractional parts ν̄i of the clock values are either less than ε or greater than
1 − ε. We thus introduce the following notation14

Low(rε) = {xi | νi ≤ ci and ν̄i < ε};

High(rε) = {xi | νi ≤ ci and 1 − ε < ν̄i}.

This graphical representation of the ε-regions is very helpful in the proofs below.

0 1

ν̄1 · · · ν̄i ν̄i+1 · · · ν̄n

ε 1 − ε

Fig. 7. Representation of the region 0 < ν̄1 < · · · < ν̄i < ε ≤ 1 − ε < ν̄i+1 < · · · < ν̄n

13 Similarly if δ ≤ ε, we will also use notation rδ , rε, r with rδ ⊆ rε ⊆ r.
14 Notice that the sets Low(rε) and High(rε) are disjoint since ε ≤ 1

2
.

15

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 16/33

One-clock Bi-Valued WTGs (1BWTGs)

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 17/33

One-clock Bi-Valued WTGs (1BWTGs)
Joint work with Thomas Brihaye, Gilles Geeraerts, Shankara Krishna Narayanan, Lakshmi Manasa and Ashutosh Trivedi (Brihaye et al., 2014)

Assumption: rates of states {p−, p+} included in {0,+d ,−d}
(d ∈ N) (no assumption on costs of transitions)

1 s1[x 6 1]

1
s2

[x 6 2]
−1

s3

[x 6 2]

−1
s4

[x 6 2]
1
s5

[x 6 2]

� s6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 18/33

One-clock Bi-Valued WTGs (1BWTGs)
Joint work with Thomas Brihaye, Gilles Geeraerts, Shankara Krishna Narayanan, Lakshmi Manasa and Ashutosh Trivedi (Brihaye et al., 2014)

Assumption: rates of states {p−, p+} included in {0,+d ,−d}
(d ∈ N) (no assumption on costs of transitions)

1 s1[x 6 1]

1
s2

[x 6 2]
−1

s3

[x 6 2]

−1
s4

[x 6 2]
1
s5

[x 6 2]

� s6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

regions: {0}, (0, 1), {1}, (1, 2), {2}, (2,+∞)
regions refined with corner information:

{0}, (0, η), (1− η, 1), {1}, (1, 1 + η), (2− η, 2), {2}, (2,+∞)

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 18/33

One-clock Bi-Valued WTGs (1BWTGs)
Joint work with Thomas Brihaye, Gilles Geeraerts, Shankara Krishna Narayanan, Lakshmi Manasa and Ashutosh Trivedi (Brihaye et al., 2014)

Assumption: rates of states {p−, p+} included in {0,+d ,−d}
(d ∈ N) (no assumption on costs of transitions)

1 s1[x 6 1]

1
s2

[x 6 2]
−1

s3

[x 6 2]

−1
s4

[x 6 2]
1
s5

[x 6 2]

� s6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

{0}

{0} [0, η] [1−η, 1) [1, 1+η] [2−η, 2]

{0} (0, η] [1−η, 1) {1} {0}

�

0

1 1
2

2

0 1

1
2

0
0

0

1 1 1

0
0

−1
−1

1

3

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 18/33

One-clock Bi-Valued WTGs (1BWTGs)
Joint work with Thomas Brihaye, Gilles Geeraerts, Shankara Krishna Narayanan, Lakshmi Manasa and Ashutosh Trivedi (Brihaye et al., 2014)

Assumption: rates of states {p−, p+} included in {0,+d ,−d}
(d ∈ N) (no assumption on costs of transitions)

1 s1[x 6 1]

1
s2

[x 6 2]
−1

s3

[x 6 2]

−1
s4

[x 6 2]
1
s5

[x 6 2]

� s6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

{0}

{0} [0, η] [1−η, 1) [1, 1+η] [2−η, 2]

{0}]0, η] [1−η, 1) {1} {0}

�

0

1 1
2

2

0 1

1
2

0
0

0

1 1 1

0
0

−1
−1

1

3

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 18/33

One-clock Bi-Valued WTGs (1BWTGs)
Joint work with Thomas Brihaye, Gilles Geeraerts, Shankara Krishna Narayanan, Lakshmi Manasa and Ashutosh Trivedi (Brihaye et al., 2014)

Assumption: rates of states {p−, p+} included in {0,+d ,−d}
(d ∈ N) (no assumption on costs of transitions)

1 s1[x 6 1]

1
s2

[x 6 2]
−1

s3

[x 6 2]

−1
s4

[x 6 2]
1
s5

[x 6 2]

� s6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

{0}

{0} [0, η] [1−η, 1) [1, 1+η] [2−η, 2]

{0}]0, η] [1−η, 1) {1} {0}

�

0

1 1
2

2

0 1

1
2

0
0

0

1 1 1

0
0

−1
−1

1

3

Theorem:
Computation of the value functions Val(s, ·) of states of a 1BWTG and
synthesis of ε-optimal strategies for # in pseudo-polynomial time

I Only non-negative costs =⇒ polynomial time
Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 18/33

1BWTG: maximal fragment for corner-point abstraction
Generalisation by Engel Lefaucheux: two rates {p−, p+} included in
{0,+d ,−c} (d , c ∈ N)
In more general settings, players may need to play far from corners...

I With 3 weights in {−1, 0,+1}: value 1/2...

0 1
−1

−1
�

x 6 1
x = 1, x := 0

x 6 1 x = 1

x = 1

I With 2 weights in {−1, 0,+1} but 2 clocks: value 1/2...

0 0
1

0

0

1
�

x 6 1, y := 0
y = 0

y = 0

x = 1

x = 1

y = 1

y = 1

I How to push further the resolution of WTGs?

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 19/33

1BWTG: maximal fragment for corner-point abstraction
Generalisation by Engel Lefaucheux: two rates {p−, p+} included in
{0,+d ,−c} (d , c ∈ N)
In more general settings, players may need to play far from corners...

I With 3 weights in {−1, 0,+1}: value 1/2...

0 1
−1

−1
�

x 6 1
x = 1, x := 0

x 6 1 x = 1

x = 1

I With 2 weights in {−1, 0,+1} but 2 clocks: value 1/2...

0 0
1

0

0

1
�

x 6 1, y := 0
y = 0

y = 0

x = 1

x = 1

y = 1

y = 1

I How to push further the resolution of WTGs?

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 19/33

One-clock WTG... Almost!

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 20/33

Related work: 1-clock, non-negative weights

(Hansen et al., 2013): strategy improvement algorithm
(Bouyer et al., 2006b; Rutkowski, 2011): iterative elimination of locations

I precomputation: polynomial-time cascade of simplification of
1-clock WTGs into simple 1-clock WTGs (SWTGs)
I clock bounded by 1, no guards/invariants, no resets

I for SWTGs: compute value functions Val(s, ·) for all states s.

x1

9
v1(x)

x1

9

6
5

3

1
3

2
3

v2(x)

x1

8

6
5

3

1
3

2
3

v3(x)

x1

5

3

2
3

v4(x)

x1

5

v5(x)

1

2 4

53

⊥

r1 = 9

r2 = 3 r4 = 9

r5 = 0

r3 = 6

c(5,⊥) = 5

c(3,1) = 3

Figure 1: Example of an SPTG, showing value functions and an optimal strategy profile.

current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of

3

x1

9
v1(x)

x1

9

6
5

3

1
3

2
3

v2(x)

x1

8

6
5

3

1
3

2
3

v3(x)

x1

5

3

2
3

v4(x)

x1

5

v5(x)

1

2 4

53

⊥

r1 = 9

r2 = 3 r4 = 9

r5 = 0

r3 = 6

c(5,⊥) = 5

c(3,1) = 3

Figure 1: Example of an SPTG, showing value functions and an optimal strategy profile.

current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of

3

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 21/33

Related work: 1-clock, non-negative weights

(Hansen et al., 2013): strategy improvement algorithm
(Bouyer et al., 2006b; Rutkowski, 2011): iterative elimination of locations

I precomputation: polynomial-time cascade of simplification of
1-clock WTGs into simple 1-clock WTGs (SWTGs)
I clock bounded by 1, no guards/invariants, no resets

I for SWTGs: compute value functions Val(s, ·) for all states s.

x1

9
v1(x)

x1

9

6
5

3

1
3

2
3

v2(x)

x1

8

6
5

3

1
3

2
3

v3(x)

x1

5

3

2
3

v4(x)

x1

5

v5(x)

1

2 4

53

⊥

r1 = 9

r2 = 3 r4 = 9

r5 = 0

r3 = 6

c(5,⊥) = 5

c(3,1) = 3

Figure 1: Example of an SPTG, showing value functions and an optimal strategy profile.

current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of

3

x1

9
v1(x)

x1

9

6
5

3

1
3

2
3

v2(x)

x1

8

6
5

3

1
3

2
3

v3(x)

x1

5

3

2
3

v4(x)

x1

5

v5(x)

1

2 4

53

⊥

r1 = 9

r2 = 3 r4 = 9

r5 = 0

r3 = 6

c(5,⊥) = 5

c(3,1) = 3

Figure 1: Example of an SPTG, showing value functions and an optimal strategy profile.

current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of

3

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 21/33

SWTGs with arbitrary weights

Joint work with Thomas Brihaye, Gilles Geeraerts, Axel Haddad and Engel Lefaucheux (Brihaye et al., 2015)

−2 s1

−14 s2

4
s3

3
s4

8s5

−12s6

−16

s7
�

1

2

6
−7

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 22/33

SWTGs with arbitrary weights

Joint work with Thomas Brihaye, Gilles Geeraerts, Axel Haddad and Engel Lefaucheux (Brihaye et al., 2015)

−2 s1

−14 s2

4
s3

3
s4

8s5

−12s6

−16

s7
�

1

2

6
−7

Val(s4, x) = sup06t61−x 3t − 7 = 3(1− x)− 7 = −3x − 4

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 22/33

SWTGs with arbitrary weights

Joint work with Thomas Brihaye, Gilles Geeraerts, Axel Haddad and Engel Lefaucheux (Brihaye et al., 2015)

−2 s1

−14 s2

4
s3

3
s4

8s5

−12s6

−16

s7
�

1

2

6
−7

Val(s4, x) = −3x − 4, Val(s7, x) = −16(1− x)

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 22/33

SWTGs with arbitrary weights

Joint work with Thomas Brihaye, Gilles Geeraerts, Axel Haddad and Engel Lefaucheux (Brihaye et al., 2015)

−2 s1

−14 s2

4
s3

3
s4

8s5

−12s6

−16

s7
�

1

2

6
−7

−10

−7
−4

6

Val(s4, x) = −3x − 4, Val(s7, x) = −16(1− x),
Val(s3, x) = inf06t61−x [4t + min(−3(x + t)− 4, 6− 16(1− (x + t)))] =

min(−3x − 4, 16x − 10)

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 22/33

Recursive elimination of states
I Player # prefers to stay as long as possible in states with minimal

rate
→ add a final state allowing him to stay until the end, and make the
state urgent

I Player 2 prefers to leave as soon as possible in states with minimal
rate
→ make the state urgent

Theorem:
For every SWTG, all value functions are piecewise affine, with at most an
exponential number of cutpoints (in number of states).

For general 1-clock WTGs?
I removing guards and invariants: previously used techniques work!
I removing resets: previously, bound the number of resets...

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 23/33

Recursive elimination of states
I Player # prefers to stay as long as possible in states with minimal

rate
→ add a final state allowing him to stay until the end, and make the
state urgent

I Player 2 prefers to leave as soon as possible in states with minimal
rate
→ make the state urgent

Theorem:
For every SWTG, all value functions are piecewise affine, with at most an
exponential number of cutpoints (in number of states).

For general 1-clock WTGs?
I removing guards and invariants: previously used techniques work!
I removing resets: previously, bound the number of resets...

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 23/33

Recursive elimination of states
I Player # prefers to stay as long as possible in states with minimal

rate
→ add a final state allowing him to stay until the end, and make the
state urgent

I Player 2 prefers to leave as soon as possible in states with minimal
rate
→ make the state urgent

Theorem:
For every SWTG, all value functions are piecewise affine, with at most an
exponential number of cutpoints (in number of states).

For general 1-clock WTGs?
I removing guards and invariants: previously used techniques work!
I removing resets: previously, bound the number of resets...

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 23/33

Solving SWTGs with arbitrary weights

x
0

1
4

1
2

3
4

1

Val(s2,x)
−9.5

−6 −5.5

−2
1

x
0

1
4

1
2

3
4

9
10 1

Val(s1,x)
−9.5

−6 −5.5

−2
−0.2

x
0

1
4

1
2 1

Val(s3,x)

−10

−6 −5.5−7

x
0 1

Val(s4,x)

−4

−7

x
0

3
4 1

Val(s5,x)
−14

−2
1

x
0 1

Val(s7,x)
−16

0

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 24/33

Bounding the number of resets needed is not possible

−1 0

1

�

x = 1, x := 0

W

x 6 1

x = 1

Player # can guarantee (i.e., ensure to be below) value ε for all ε > 0...

... but cannot obtain 0: hence, no optimal strategy...

... moreover, to obtain ε, # needs to loop at least W + d1/ log εe times
before reaching �!

Best we can do: exponential time algorithm for reset-acyclic
1-clock WTGs with arbitrary weights

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 25/33

Bounding the number of resets needed is not possible

−1 0

1

�

x = 1, x := 0

W

x 6 1

x = 1

Player # can guarantee (i.e., ensure to be below) value ε for all ε > 0...

... but cannot obtain 0: hence, no optimal strategy...

... moreover, to obtain ε, # needs to loop at least W + d1/ log εe times
before reaching �!

Best we can do: exponential time algorithm for reset-acyclic
1-clock WTGs with arbitrary weights

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 25/33

Bounding the number of resets needed is not possible

−1 0

1

�

x = 1, x := 0

W

x 6 1

x = 1

Player # can guarantee (i.e., ensure to be below) value ε for all ε > 0...

... but cannot obtain 0: hence, no optimal strategy...

... moreover, to obtain ε, # needs to loop at least W + d1/ log εe times
before reaching �!

Best we can do: exponential time algorithm for reset-acyclic
1-clock WTGs with arbitrary weights

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 25/33

Bounding the number of resets needed is not possible

−1 0

1

�

x = 1, x := 0

W

x 6 1

x = 1

Player # can guarantee (i.e., ensure to be below) value ε for all ε > 0...

... but cannot obtain 0: hence, no optimal strategy...

... moreover, to obtain ε, # needs to loop at least W + d1/ log εe times
before reaching �!

Best we can do: exponential time algorithm for reset-acyclic
1-clock WTGs with arbitrary weights

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 25/33

Bounding the number of resets needed is not possible

−1 0

1

�

x = 1, x := 0

W

x 6 1

x = 1

Player # can guarantee (i.e., ensure to be below) value ε for all ε > 0...

... but cannot obtain 0: hence, no optimal strategy...

... moreover, to obtain ε, # needs to loop at least W + d1/ log εe times
before reaching �!

Best we can do: exponential time algorithm for reset-acyclic
1-clock WTGs with arbitrary weights

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 25/33

Finally several clocks...

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 26/33

More than one clock?

non-negative weights and strictly non-Zeno-cost cycles:
2-exponential algorithm (Bouyer et al., 2004c; Alur et al., 2004b)

Value iteration algorithm: compute F i(+∞)...

F(x)(s,ν) =


sup

(s,ν)
d,t−−→(s′,ν′)

(
d ×Weight(s) + Weight(t) + x(s′,ν′)

)
if s ∈ SMax

inf
(s,ν)

d,t−−→(s′,ν′)

(
d ×Weight(s) + Weight(t) + x(s′,ν′)

)
if s ∈ SMin

Stabilises after a number of iterations at most exponential in the size of
the game (because of the number of regions)

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 27/33

Extension to negative weights

Joint work with Damien Busatto-Gaston and Pierre-Alain Reynier (Busatto-Gaston et al., 2017)

Divergence property (of the underlying timed automaton):
Every execution following a cycle of the region automaton has a
total weight either 6 −1 or > 1

Theorem:
The value problem on divergent weighted timed games is in 2-EXP, and
is EXP-hard.

Theorem:
Deciding if a weighted timed game is divergent is PSPACE-complete.

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 28/33

Extension to negative weights

Joint work with Damien Busatto-Gaston and Pierre-Alain Reynier (Busatto-Gaston et al., 2017)

Divergence property (of the underlying timed automaton):
Every execution following a cycle of the region automaton has a
total weight either 6 −1 or > 1

Theorem:
The value problem on divergent weighted timed games is in 2-EXP, and
is EXP-hard.

Theorem:
Deciding if a weighted timed game is divergent is PSPACE-complete.

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 28/33

Extension to negative weights

Joint work with Damien Busatto-Gaston and Pierre-Alain Reynier (Busatto-Gaston et al., 2017)

Divergence property (of the underlying timed automaton):
Every execution following a cycle of the region automaton has a
total weight either 6 −1 or > 1

Theorem:
The value problem on divergent weighted timed games is in 2-EXP, and
is EXP-hard.

Theorem:
Deciding if a weighted timed game is divergent is PSPACE-complete.

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 28/33

Weighted timed games analysis

> 1

6 −1

divergence property

characterisation :

6 −1

> 1

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 29/33

Weighted timed games analysis

> 1

6 −1

divergence property

characterisation :

6 −1

> 1

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 29/33

Weighted timed games analysis

> 1

6 −1

divergence property

characterisation : 6 −1

> 1

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 29/33

Weighted timed games analysis

divergence property

characterisation : All the simple cycles in a SCC have the same sign

6 −1

> 1

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 29/33

Weighted timed games analysis

divergence property

characterisation : All the simple cycles in a SCC have the same sign

class decision value computation

6 −1

> 1

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 29/33

Value computation in divergent weighted timed games

I Remove +∞ states
I SCC decomposition
I Value computation SCC after SCC, bottom-up

positive SCC
I weighted timed games with non-negative weights and strictly

non-Zeno-cost cycles (Bouyer et al., 2004c; Alur et al., 2004b)
I The iterative algorithm converges in a number of steps linear with

the region automaton’s size

negative SCC
I Outside of the attractor of player 2 toward � ⇒ −∞
I The iterative algorithm converges on the other states in a number of

steps linear with the region automaton’s size, with −∞ initialisation

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 30/33

Value computation in divergent weighted timed games

I Remove +∞ states
I SCC decomposition
I Value computation SCC after SCC, bottom-up

positive SCC
I weighted timed games with non-negative weights and strictly

non-Zeno-cost cycles (Bouyer et al., 2004c; Alur et al., 2004b)
I The iterative algorithm converges in a number of steps linear with

the region automaton’s size

negative SCC
I Outside of the attractor of player 2 toward � ⇒ −∞
I The iterative algorithm converges on the other states in a number of

steps linear with the region automaton’s size, with −∞ initialisation

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 30/33

Value computation in divergent weighted timed games

I Remove +∞ states
I SCC decomposition
I Value computation SCC after SCC, bottom-up

positive SCC
I weighted timed games with non-negative weights and strictly

non-Zeno-cost cycles (Bouyer et al., 2004c; Alur et al., 2004b)
I The iterative algorithm converges in a number of steps linear with

the region automaton’s size

negative SCC
I Outside of the attractor of player 2 toward � ⇒ −∞
I The iterative algorithm converges on the other states in a number of

steps linear with the region automaton’s size, with −∞ initialisation

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 30/33

What to do in case of undecidability?

I Adding cycles of weight = 0 to divergent WTG =⇒ Undecidable!

I Already with only non-negative weights (Bouyer et al., 2015): but
possible to approximate the value (with elementary complexity)...

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 31/33

What to do in case of undecidability?

I Adding cycles of weight = 0 to divergent WTG =⇒ Undecidable!
I Already with only non-negative weights (Bouyer et al., 2015): but

possible to approximate the value (with elementary complexity)...

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 31/33

Extension in the negative case?
Ongoing work with Damien Busatto-Gaston and Pierre-Alain Reynier

Almost-divergent WTG: every SCC of the region automaton has all its cycles
either (> 1 or = 0), or (6 −1 or = 0)

s0

s

Ks′

s

s

sf

Ks′′

sf

stop leaf

0 1

−3 −1 2 1

2

3

1

4

−3

1

−3

Theorem:
I Approximation is decidable (in doubly exponential time complexity)

for almost-divergent WTGs.
I We also provide a (semi-)symbolic algorithm that does not rely on

an a-priori discretisation of the regions with a fixed granularity 1/N.
I circumvent the need for an SCC decomposition?

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 32/33

Extension in the negative case?
Ongoing work with Damien Busatto-Gaston and Pierre-Alain Reynier

Almost-divergent WTG: every SCC of the region automaton has all its cycles
either (> 1 or = 0), or (6 −1 or = 0)

s0

s

Ks′

s

s

sf

Ks′′

sf

stop leaf

0 1

−3 −1 2 1

2

3

1

4

−3

1

−3

Theorem:
I Approximation is decidable (in doubly exponential time complexity)

for almost-divergent WTGs.
I We also provide a (semi-)symbolic algorithm that does not rely on

an a-priori discretisation of the regions with a fixed granularity 1/N.
I circumvent the need for an SCC decomposition?

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 32/33

Extension in the negative case?
Ongoing work with Damien Busatto-Gaston and Pierre-Alain Reynier

Almost-divergent WTG: every SCC of the region automaton has all its cycles
either (> 1 or = 0), or (6 −1 or = 0)

s0

s

Ks′

s

s

sf

Ks′′

sf

stop leaf

0 1

−3 −1 2 1

2

3

1

4

−3

1

−3

Theorem:
I Approximation is decidable (in doubly exponential time complexity)

for almost-divergent WTGs.
I We also provide a (semi-)symbolic algorithm that does not rely on

an a-priori discretisation of the regions with a fixed granularity 1/N.

I circumvent the need for an SCC decomposition?

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 32/33

Extension in the negative case?
Ongoing work with Damien Busatto-Gaston and Pierre-Alain Reynier

Almost-divergent WTG: every SCC of the region automaton has all its cycles
either (> 1 or = 0), or (6 −1 or = 0)

s0

s

Ks′

s

s

sf

Ks′′

sf

stop leaf

0 1

−3 −1 2 1

2

3

1

4

−3

1

−3

Theorem:
I Approximation is decidable (in doubly exponential time complexity)

for almost-divergent WTGs.
I We also provide a (semi-)symbolic algorithm that does not rely on

an a-priori discretisation of the regions with a fixed granularity 1/N.
I circumvent the need for an SCC decomposition?

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 32/33

Conclusion

1WTG?

1WTG reset-acyclic
exp / exp
poly-hard

divergent WTG
2-exp / 2-exp

exp-hard

almost-divergent WTG
approx / approx

2-exp. + symbolic algorithm

1BWTG
poly / pseudo-poly
(+) (-)

WTG
undec / undec

> 3 clocks / > 2 clocks

tool?

2 clocks?

gap?

Thank you!

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 33/33

Conclusion

1WTG?

1WTG reset-acyclic
exp / exp
poly-hard

divergent WTG
2-exp / 2-exp

exp-hard

almost-divergent WTG
approx / approx

2-exp. + symbolic algorithm

1BWTG
poly / pseudo-poly
(+) (-)

WTG
undec / undec

> 3 clocks / > 2 clocks

tool?

2 clocks?

gap?

Thank you!

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 33/33

Conclusion

1WTG?

1WTG reset-acyclic
exp / exp
poly-hard

divergent WTG
2-exp / 2-exp

exp-hard

almost-divergent WTG
approx / approx

2-exp. + symbolic algorithm

1BWTG
poly / pseudo-poly
(+) (-)

WTG
undec / undec

> 3 clocks / > 2 clocks

tool?

2 clocks?

gap?

Thank you!

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 33/33

Conclusion

1WTG?

1WTG reset-acyclic
exp / exp
poly-hard

divergent WTG
2-exp / 2-exp

exp-hard

almost-divergent WTG
approx / approx

2-exp. + symbolic algorithm

1BWTG
poly / pseudo-poly
(+) (-)

WTG
undec / undec

> 3 clocks / > 2 clocks

tool?

2 clocks?

gap?

Thank you!

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 33/33

Conclusion

1WTG?

1WTG reset-acyclic
exp / exp
poly-hard

divergent WTG
2-exp / 2-exp

exp-hard

almost-divergent WTG
approx / approx

2-exp. + symbolic algorithm

1BWTG
poly / pseudo-poly
(+) (-)

WTG
undec / undec

> 3 clocks / > 2 clocks

tool?

2 clocks?

gap?

Thank you!

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 33/33

Conclusion

1WTG?

1WTG reset-acyclic
exp / exp
poly-hard

divergent WTG
2-exp / 2-exp

exp-hard

almost-divergent WTG
approx / approx

2-exp. + symbolic algorithm

1BWTG
poly / pseudo-poly
(+) (-)

WTG
undec / undec

> 3 clocks / > 2 clocks

tool?

2 clocks?

gap?

Thank you!

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 33/33

Conclusion

1WTG?

1WTG reset-acyclic
exp / exp
poly-hard

divergent WTG
2-exp / 2-exp

exp-hard

almost-divergent WTG
approx / approx

2-exp. + symbolic algorithm

1BWTG
poly / pseudo-poly
(+) (-)

WTG
undec / undec

> 3 clocks / > 2 clocks

tool?

2 clocks?

gap?

Thank you!

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 33/33

Conclusion

1WTG?

1WTG reset-acyclic
exp / exp
poly-hard

divergent WTG
2-exp / 2-exp

exp-hard

almost-divergent WTG
approx / approx

2-exp. + symbolic algorithm

1BWTG
poly / pseudo-poly
(+) (-)

WTG
undec / undec

> 3 clocks / > 2 clocks

tool?

2 clocks?

gap?

Thank you!

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 33/33

Conclusion

1WTG?

1WTG reset-acyclic
exp / exp
poly-hard

divergent WTG
2-exp / 2-exp

exp-hard

almost-divergent WTG
approx / approx

2-exp. + symbolic algorithm

1BWTG
poly / pseudo-poly
(+) (-)

WTG
undec / undec

> 3 clocks / > 2 clocks

tool?

2 clocks?

gap?

Thank you!

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 33/33

Conclusion

1WTG?

1WTG reset-acyclic
exp / exp
poly-hard

divergent WTG
2-exp / 2-exp

exp-hard

almost-divergent WTG
approx / approx

2-exp. + symbolic algorithm

1BWTG
poly / pseudo-poly
(+) (-)

WTG
undec / undec

> 3 clocks / > 2 clocks

tool?

2 clocks?

gap?

Thank you!

Benjamin Monmege (Aix-Marseille Université) Min = #,Max = 2 33/33

References I

Alur, R., Bernadsky, M., and Madhusudan, P. (2004a). Optimal reachability for
weighted timed games. In Proceedings of the 31st International Colloquium on
Automata, Languages and Programming (ICALP’04), volume 3142 of Lecture
Notes in Computer Science, pages 122–133. Springer.

Alur, R., Bernadsky, M., and Madhusudan, P. (2004b). Optimal reachability for
weighted timed games. In Proceedings of the 31st International Colloquium on
Automata, Languages and Programming (ICALP’04), volume 3142 of LNCS, pages
122–133. Springer.

Bouyer, P., Brihaye, T., Bruyère, V., and Raskin, J.-F. (2007). On the optimal
reachability problem of weighted timed automata. Formal Methods in System
Design, 31(2):135–175.

Bouyer, P., Brihaye, T., and Markey, N. (2006a). Improved undecidability results on
weighted timed automata. Information Processing Letters, 98(5):188–194.

Bouyer, P., Brinksma, E., and Larsen, K. G. (2004a). Staying alive as cheaply as
possible. In Hybrid Systems: Computation and Control, pages 203–218. Springer.

Bouyer, P., Cassez, F., Fleury, E., and Larsen, K. G. (2004b). Optimal strategies in
priced timed game automata. In Proceedings of the 24th Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’04), volume 3328 of Lecture Notes in Computer Science, pages 148–160.
Springer.

References II
Bouyer, P., Cassez, F., Fleury, E., and Larsen, K. G. (2004c). Optimal strategies in

priced timed game automata. In Proceedings of the 24th Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’04), volume 3328 of LNCS, pages 148–160. Springer.

Bouyer, P., Jaziri, S., and Markey, N. (2015). On the value problem in weighted timed
games. In Proceedings of the 26th International Conference on Concurrency Theory
(CONCUR’15), volume 42 of Leibniz International Proceedings in Informatics,
pages 311–324. Leibniz-Zentrum für Informatik.

Bouyer, P., Larsen, K. G., Markey, N., and Rasmussen, J. I. (2006b). Almost optimal
strategies in one-clock priced timed games. In Proceedings of the 26th Conference
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’06), volume 4337 of Lecture Notes in Computer Science, pages 345–356.
Springer.

Brihaye, T., Bruyère, V., and Raskin, J.-F. (2005). On optimal timed strategies. In
Proceedings of the Third international conference on Formal Modeling and Analysis
of Timed Systems (FORMATS’05), volume 3829 of Lecture Notes in Computer
Science, pages 49–64. Springer.

Brihaye, T., Geeraerts, G., Haddad, A., Lefaucheux, E., and Monmege, B. (2015).
Simple priced timed games are not that simple. In Proceedings of the 35th IARCS
Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’15), volume 45 of LIPIcs, pages 278–292. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

References III
Brihaye, T., Geeraerts, G., Haddad, A., and Monmege, B. (2016). Pseudopolynomial

iterative algorithm to solve total-payoff games and min-cost reachability games.
Acta Informatica.

Brihaye, T., Geeraerts, G., Narayanan Krishna, S., Manasa, L., Monmege, B., and
Trivedi, A. (2014). Adding negative prices to priced timed games. In Proceedings of
the 25th International Conference on Concurrency Theory (CONCUR’14), volume
8704, pages 560–575. Springer.

Busatto-Gaston, D., Monmege, B., and Reynier, P.-A. (2017). Optimal reachability in
divergent weighted timed games. In Esparza, J. and Murawski, A. S., editors,
Proceedings of the 20th International Conference on Foundations of Software
Science and Computation Structures (FoSSaCS’17), volume 10203 of Lecture
Notes in Computer Science, pages 162–178, Uppsala, Sweden. Springer.

Fearnley, J. and Jurdziński, M. (2013). Reachability in two-clock timed automata is
PSPACE-complete. In Proceedings of ICALP’13, volume 7966 of Lecture Notes in
Computer Science, pages 212–223. Springer.

Haase, C., Ouaknine, J., and Worrell, J. (2012). On the relationship between
reachability problems in timed and counter automata. In Proceedings of RP’12,
pages 54–65.

Hansen, T. D., Ibsen-Jensen, R., and Miltersen, P. B. (2013). A faster algorithm for
solving one-clock priced timed games. In Proceedings of the 24th International
Conference on Concurrency Theory (CONCUR’13), volume 8052 of LNCS, pages
531–545. Springer.

References IV

Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Rudolf, G., and Zhao,
J. (2008). On short paths interdiction problems: Total and node-wise limited
interdiction. Theory of Computing Systems, 43(2):204–233.

Rutkowski, M. (2011). Two-player reachability-price games on single-clock timed
automata. In Proceedings of the Ninth Workshop on Quantitative Aspects of
Programming Languages (QAPL’11), volume 57 of Electronic Proceedings in
Theoretical Computer Science, pages 31–46.

Sketch of proof for 1BWTG

1. Reduce the space of strategies in the 1BWTG
I restrict to uniform strategies w.r.t. timed behaviours

2. Build a finite weighted game G
I based on a refinement of the region abstraction

3. Study G

4. Lift results of G to the original 1BWTG

1. Reduce the space of strategies
Intuition: no need for both players to play far from borders of regions

1 s1[x 6 1]

1
s2

[x 6 2]
−1

s3

[x 6 2]

−1
s4

[x 6 2]
1
s5

[x 6 2]

� s6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

Regions:
{0}, (0, 1), {1}, (1, 2), {2}, (2,+∞)

Player # wants to leave as soon as possible a state with rate p+, and
wants to stay as long as possible in a state with rate p−: so, he will
always play η-close to a border...

Lemma:
Both players can play arbitrarily close to borders w.l.o.g.: for every η

Valη(s, v) 6 Val(s, v) 6 Val(s, v) 6 Valη(s, v)

2. Finite weighted game abstraction

1 s1[x 6 1]

1
s2

[x 6 2]
−1

s3

[x 6 2]

−1
s4

[x 6 2]
1
s5

[x 6 2]

� s6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

η-regions: {0}, (0, η), (1− η, 1), {1}, (1, 1 + η), (2− η, 2), {2}, (2,+∞)

2. Finite weighted game abstraction

{0}

{0} [0, η] [1−η, 1) [1, 1+η] [2−η, 2]

{0} (0, η] [1−η, 1) {1} {0}

�

0

1 1
2

2

0 1

1
2

0
0

0

1 1 1

0
0

−1
−1

1

3

3. Study G: values, optimal strategies of a min-cost reachability game

(Brihaye et al., 2016)

{0}

{0} [0, η] [1−η, 1) [1, 1+η] [2−η, 2]

{0}]0, η] [1−η, 1) {1} {0}

�

0

1 1
2

2

0 1

1
2

0
0

0

1 1 1

0
0

−1
−1

1

3

Optimal value: ValG(s1, {0}) = +2 (for both players)

4. Lift results to the original 1BWTG

Reconstruct strategies in the 1BWTG from optimal strategies of G

Lemma:
For all ε > 0, there exists η > 0 such that:
ValG(s, {0})− ε 6 Valη(s, 0) 6 Val(s, 0) 6 Val(s, 0) 6 Valη(s, 0) 6 ValG(s, {0}) + ε

I So Val(s, 0) = Val(s, 0), i.e., determination
I ε-optimal strategies for both players

I Finite memory for player # (finite memory in finite weighted games)
I Infinite memory for player 2 (even though memoryless in finite

weighted games), because it needs to ensure convergence of its
differences between the 1BWTG and G

I Overall complexity: pseudo-polynomial (polynomial if non-negative
costs) in the size of G, which is polynomial in the 1BWTG (because
1 clock)

4. Lift results to the original 1BWTG

Reconstruct strategies in the 1BWTG from optimal strategies of G

Lemma:
For all ε > 0, there exists η > 0 such that:
ValG(s, {0})− ε 6 Valη(s, 0) 6 Val(s, 0) 6 Val(s, 0) 6 Valη(s, 0) 6 ValG(s, {0}) + ε

I So Val(s, 0) = Val(s, 0), i.e., determination
I ε-optimal strategies for both players

I Finite memory for player # (finite memory in finite weighted games)
I Infinite memory for player 2 (even though memoryless in finite

weighted games), because it needs to ensure convergence of its
differences between the 1BWTG and G

I Overall complexity: pseudo-polynomial (polynomial if non-negative
costs) in the size of G, which is polynomial in the 1BWTG (because
1 clock)

	References

