
Metric Interval Temporal Logic Revisited

MOVE seminar

Benjamin Monmege (LIF, Aix-Marseille Université)

Based on joint works with
Thomas Brihaye, Hsi-Ming Ho, Morgane Estiévenart (UMONS),

Gilles Geeraerts (ULB), and Nathalie Sznajder (LIP6)

30/03/2017

1 / 46

Timed systems

I Events (MoveUp, MoveDown, OpenDoor . . .)

I States (at which floor, opened/closed. . .)

I Timings (operation time, latency. . .)

0F

0 TO 1

0 TO -1

1F

OPENING · · ·

· · ·

· · ·

MoveUp

x := 0

OpenDoor

y := 0

Arrive

x = 5

MoveDown

x := 0

This is a timed automaton.

2 / 46

Timed systems

I Events (MoveUp, MoveDown, OpenDoor . . .)

I States (at which floor, opened/closed. . .)

I Timings (operation time, latency. . .)

0F

0 TO 1

0 TO -1

1F

OPENING · · ·

· · ·

· · ·

MoveUp

x := 0

OpenDoor

y := 0

Arrive

x = 5

MoveDown

x := 0

This is a timed automaton.

2 / 46

Timed systems

I Events (MoveUp, MoveDown, OpenDoor . . .)

I States (at which floor, opened/closed. . .)

I Timings (operation time, latency. . .)

0F

0 TO 1

0 TO -1

1F

OPENING · · ·

· · ·

· · ·

MoveUp

x := 0

OpenDoor

y := 0

Arrive

x = 5

MoveDown

x := 0

This is a timed automaton.

2 / 46

Timed systems

I Events (MoveUp, MoveDown, OpenDoor . . .)

I States (at which floor, opened/closed. . .)

I Timings (operation time, latency. . .)

0F

0 TO 1

0 TO -1

1F

OPENING · · ·

· · ·

· · ·

MoveUp

x := 0

OpenDoor

y := 0

Arrive

x = 5

MoveDown

x := 0

This is a timed automaton.

2 / 46

Timed systems

I Events (MoveUp, MoveDown, OpenDoor . . .)

I States (at which floor, opened/closed. . .)

I Timings (operation time, latency. . .)

0F

0 TO 1

0 TO -1

1F

OPENING · · ·

· · ·

· · ·

MoveUp

x := 0

OpenDoor

y := 0

Arrive

x = 5

MoveDown

x := 0

This is a timed automaton.

2 / 46

Timed systems

I Events (MoveUp, MoveDown, OpenDoor . . .)

I States (at which floor, opened/closed. . .)

I Timings (operation time, latency. . .)

0F

0 TO 1

0 TO -1

1F

OPENING · · ·

· · ·

· · ·

MoveUp

x := 0

OpenDoor

y := 0

Arrive

x = 5

MoveDown

x := 0

This is a timed automaton.

2 / 46

The two semantics

What we consider as a behaviour of the system?

0F

0 TO 1

0 TO -1

1F

OPENING · · ·

· · ·

· · ·

MoveUp

x := 0

OpenDoor

y := 0

Arrive

x = 5

MoveDown

x := 0

I Pointwise (event-based) view: timed word

(MoveUp, 1)(Arrive, 6). . .

I Continuous (state-based) view: signal from R>0 to states

0 1 2 3 4 5 6 7

0F 0 TO 1 1F

3 / 46

The two semantics

What we consider as a behaviour of the system?

0F

0 TO 1

0 TO -1

1F

OPENING · · ·

· · ·

· · ·

MoveUp

x := 0

OpenDoor

y := 0

Arrive

x = 5

MoveDown

x := 0

I Pointwise (event-based) view: timed word

(MoveUp, 1)(Arrive, 6). . .

I Continuous (state-based) view: signal from R>0 to states

0 1 2 3 4 5 6 7

0F 0 TO 1 1F

3 / 46

The two semantics

What we consider as a behaviour of the system?

0F

0 TO 1

0 TO -1

1F

OPENING · · ·

· · ·

· · ·

MoveUp

x := 0

OpenDoor

y := 0

Arrive

x = 5

MoveDown

x := 0

I Pointwise (event-based) view: timed word

(MoveUp, 1)(Arrive, 6). . .

I Continuous (state-based) view: signal from R>0 to states

0 1 2 3 4 5 6 7

0F 0 TO 1 1F

3 / 46

Metric Temporal Logic (MTL)

ϕ ::= > | a | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ

with a ∈ Σ, I ⊆ [0,∞) with bounds in N ∪ {+∞}.

In the pointwise semantics:

‘There is a MoveUp followed by an Arrive after 5 t.u.’

♦(MoveUp ∧ ♦[5,5]Arrive)

4 / 46

Metric Temporal Logic (MTL)

ϕ ::= > | a | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ

with a ∈ Σ, I ⊆ [0,∞) with bounds in N ∪ {+∞}.

In the pointwise semantics:

‘There is a MoveUp followed by an Arrive after 5 t.u.’

♦(MoveUp ∧ ♦[5,5]Arrive)

4 / 46

Metric Temporal Logic (MTL)

ϕ ::= > | a | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ

with a ∈ Σ, I ⊆ [0,∞) with bounds in N ∪ {+∞}.

In the pointwise semantics:

‘There is a MoveUp followed by an Arrive after 5 t.u.’

♦(MoveUp ∧ ♦[5,5]Arrive)

4 / 46

Metric Temporal Logic (MTL)

ϕ ::= > | a | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ

with a ∈ Σ, I ⊆ [0,∞) with bounds in N ∪ {+∞}.

In the pointwise semantics:

‘There is a MoveUp followed by an Arrive after 5 t.u.’

♦(MoveUp ∧ ♦[5,5]Arrive)

4 / 46

What do we want to do?

1. Satisfiability of an MTL formula
I check whether a specification is consistent

2. Model-check a timed model against an MTL formula
I verification of the system

3. Synthesise a valid system from an MTL specification, under certain
restrictions on the environment

I reactive synthesis task

5 / 46

What do we want to do?

1. Satisfiability of an MTL formula
I check whether a specification is consistent

2. Model-check a timed model against an MTL formula
I verification of the system

3. Synthesise a valid system from an MTL specification, under certain
restrictions on the environment

I reactive synthesis task

5 / 46

What do we want to do?

1. Satisfiability of an MTL formula
I check whether a specification is consistent

2. Model-check a timed model against an MTL formula
I verification of the system

3. Synthesise a valid system from an MTL specification, under certain
restrictions on the environment

I reactive synthesis task

5 / 46

Part 1: satisfiability and model-checking

Based on a joint work with Thomas Brihaye (UMONS),
Gilles Geeraerts (ULB), and Hsi-Ming Ho (UMONS)

Submitted at CAV 2017 @ Heidelberg

6 / 46

State of the art: fundamental difficulties

Theorem: [Alur and Dill, 1994]

Timed automata are not closed under complementation.

Theorem: [Alur and Dill, 1994]

Universality and language inclusion are undecidable for timed automata.

Theorem: [Alur and Dill, 1994, Ouaknine and Worrell, 2006]

Satisfiability and model checking for MTL are undecidable (over infinite
words).

Can we find a fully decidable subclass?

7 / 46

State of the art: fundamental difficulties

Theorem: [Alur and Dill, 1994]

Timed automata are not closed under complementation.

Theorem: [Alur and Dill, 1994]

Universality and language inclusion are undecidable for timed automata.

Theorem: [Alur and Dill, 1994, Ouaknine and Worrell, 2006]

Satisfiability and model checking for MTL are undecidable (over infinite
words).

Can we find a fully decidable subclass?

7 / 46

State of the art: fundamental difficulties

Theorem: [Alur and Dill, 1994]

Timed automata are not closed under complementation.

Theorem: [Alur and Dill, 1994]

Universality and language inclusion are undecidable for timed automata.

Theorem: [Alur and Dill, 1994, Ouaknine and Worrell, 2006]

Satisfiability and model checking for MTL are undecidable (over infinite
words).

Can we find a fully decidable subclass?

7 / 46

State of the art: fundamental difficulties

Theorem: [Alur and Dill, 1994]

Timed automata are not closed under complementation.

Theorem: [Alur and Dill, 1994]

Universality and language inclusion are undecidable for timed automata.

Theorem: [Alur and Dill, 1994, Ouaknine and Worrell, 2006]

Satisfiability and model checking for MTL are undecidable (over infinite
words).

Can we find a fully decidable subclass?

7 / 46

State of the art: fundamental difficulties

Theorem: [Alur and Dill, 1994]

Timed automata are not closed under complementation.

Theorem: [Alur and Dill, 1994]

Universality and language inclusion are undecidable for timed automata.

Theorem: [Alur and Dill, 1994, Ouaknine and Worrell, 2006]

Satisfiability and model checking for MTL are undecidable (over infinite
words).

Can we find a fully decidable subclass?

7 / 46

A brief history of time (in automata and logics)

I TPTL [Alur and Henzinger, 1989]

I ♦x .
(
MoveUp ∧ ♦y .(Arrive ∧ y = x + 5)

)
I MTL [Koymans, 1990]

I ♦(MoveUp ∧ ♦[5,5]Arrive)

I TA [Alur and Dill, 1994]

I TCTL [Alur, Courcoubetis, and Dill, 1990]

I A♦(MoveUp ∧ A♦[5,5]Arrive)

I MITL [Alur, Feder, and Henzinger, 1996]

I Same as MTL except that the bounding interval I must be
non-singular

I ♦(MoveUp ∧ ♦[4,6]Arrive)

I ECA [Alur, Fix, and Henzinger, 1999, Henzinger, Raskin, and Schobbens, 1998]

I ECL [Raskin and Schobbens, 1999]

I ♦(MoveUp ∧ .[5,5]Arrive)

8 / 46

A brief history of time (in automata and logics)

I TPTL [Alur and Henzinger, 1989]

I ♦x .
(
MoveUp ∧ ♦y .(Arrive ∧ y = x + 5)

)

I MTL [Koymans, 1990]

I ♦(MoveUp ∧ ♦[5,5]Arrive)

I TA [Alur and Dill, 1994]

I TCTL [Alur, Courcoubetis, and Dill, 1990]

I A♦(MoveUp ∧ A♦[5,5]Arrive)

I MITL [Alur, Feder, and Henzinger, 1996]

I Same as MTL except that the bounding interval I must be
non-singular

I ♦(MoveUp ∧ ♦[4,6]Arrive)

I ECA [Alur, Fix, and Henzinger, 1999, Henzinger, Raskin, and Schobbens, 1998]

I ECL [Raskin and Schobbens, 1999]

I ♦(MoveUp ∧ .[5,5]Arrive)

8 / 46

A brief history of time (in automata and logics)

I TPTL [Alur and Henzinger, 1989]

I ♦x .
(
MoveUp ∧ ♦y .(Arrive ∧ y = x + 5)

)
I MTL [Koymans, 1990]

I ♦(MoveUp ∧ ♦[5,5]Arrive)

I TA [Alur and Dill, 1994]

I TCTL [Alur, Courcoubetis, and Dill, 1990]

I A♦(MoveUp ∧ A♦[5,5]Arrive)

I MITL [Alur, Feder, and Henzinger, 1996]

I Same as MTL except that the bounding interval I must be
non-singular

I ♦(MoveUp ∧ ♦[4,6]Arrive)

I ECA [Alur, Fix, and Henzinger, 1999, Henzinger, Raskin, and Schobbens, 1998]

I ECL [Raskin and Schobbens, 1999]

I ♦(MoveUp ∧ .[5,5]Arrive)

8 / 46

A brief history of time (in automata and logics)

I TPTL [Alur and Henzinger, 1989]

I ♦x .
(
MoveUp ∧ ♦y .(Arrive ∧ y = x + 5)

)
I MTL [Koymans, 1990]

I ♦(MoveUp ∧ ♦[5,5]Arrive)

I TA [Alur and Dill, 1994]

I TCTL [Alur, Courcoubetis, and Dill, 1990]

I A♦(MoveUp ∧ A♦[5,5]Arrive)

I MITL [Alur, Feder, and Henzinger, 1996]

I Same as MTL except that the bounding interval I must be
non-singular

I ♦(MoveUp ∧ ♦[4,6]Arrive)

I ECA [Alur, Fix, and Henzinger, 1999, Henzinger, Raskin, and Schobbens, 1998]

I ECL [Raskin and Schobbens, 1999]

I ♦(MoveUp ∧ .[5,5]Arrive)

8 / 46

A brief history of time (in automata and logics)

I TPTL [Alur and Henzinger, 1989]

I ♦x .
(
MoveUp ∧ ♦y .(Arrive ∧ y = x + 5)

)
I MTL [Koymans, 1990]

I ♦(MoveUp ∧ ♦[5,5]Arrive)

I TA [Alur and Dill, 1994]

I TCTL [Alur, Courcoubetis, and Dill, 1990]

I A♦(MoveUp ∧ A♦[5,5]Arrive)

I MITL [Alur, Feder, and Henzinger, 1996]

I Same as MTL except that the bounding interval I must be
non-singular

I ♦(MoveUp ∧ ♦[4,6]Arrive)

I ECA [Alur, Fix, and Henzinger, 1999, Henzinger, Raskin, and Schobbens, 1998]

I ECL [Raskin and Schobbens, 1999]

I ♦(MoveUp ∧ .[5,5]Arrive)

8 / 46

A brief history of time (in automata and logics)

I TPTL [Alur and Henzinger, 1989]

I ♦x .
(
MoveUp ∧ ♦y .(Arrive ∧ y = x + 5)

)
I MTL [Koymans, 1990]

I ♦(MoveUp ∧ ♦[5,5]Arrive)

I TA [Alur and Dill, 1994]

I TCTL [Alur, Courcoubetis, and Dill, 1990]

I A♦(MoveUp ∧ A♦[5,5]Arrive)

I MITL [Alur, Feder, and Henzinger, 1996]

I Same as MTL except that the bounding interval I must be
non-singular

I ♦(MoveUp ∧ ♦[4,6]Arrive)

I ECA [Alur, Fix, and Henzinger, 1999, Henzinger, Raskin, and Schobbens, 1998]

I ECL [Raskin and Schobbens, 1999]

I ♦(MoveUp ∧ .[5,5]Arrive)

8 / 46

A brief history of time (in automata and logics)

I TPTL [Alur and Henzinger, 1989]

I ♦x .
(
MoveUp ∧ ♦y .(Arrive ∧ y = x + 5)

)
I MTL [Koymans, 1990]

I ♦(MoveUp ∧ ♦[5,5]Arrive)

I TA [Alur and Dill, 1994]

I TCTL [Alur, Courcoubetis, and Dill, 1990]

I A♦(MoveUp ∧ A♦[5,5]Arrive)

I MITL [Alur, Feder, and Henzinger, 1996]

I Same as MTL except that the bounding interval I must be
non-singular

I ♦(MoveUp ∧ ♦[4,6]Arrive)

I ECA [Alur, Fix, and Henzinger, 1999, Henzinger, Raskin, and Schobbens, 1998]

I ECL [Raskin and Schobbens, 1999]

I ♦(MoveUp ∧ .[5,5]Arrive)

8 / 46

A brief history of time (in automata and logics)

I TPTL [Alur and Henzinger, 1989]

I ♦x .
(
MoveUp ∧ ♦y .(Arrive ∧ y = x + 5)

)
I MTL [Koymans, 1990]

I ♦(MoveUp ∧ ♦[5,5]Arrive)

I TA [Alur and Dill, 1994]

I TCTL [Alur, Courcoubetis, and Dill, 1990]

I A♦(MoveUp ∧ A♦[5,5]Arrive)

I MITL [Alur, Feder, and Henzinger, 1996]

I Same as MTL except that the bounding interval I must be
non-singular

I ♦(MoveUp ∧ ♦[4,6]Arrive)

I ECA [Alur, Fix, and Henzinger, 1999, Henzinger, Raskin, and Schobbens, 1998]

I ECL [Raskin and Schobbens, 1999]

I ♦(MoveUp ∧ .[5,5]Arrive)

8 / 46

A brief history of time (in automata and logics)

I TPTL [Alur and Henzinger, 1989]

I ♦x .
(
MoveUp ∧ ♦y .(Arrive ∧ y = x + 5)

)
I MTL [Koymans, 1990]

I ♦(MoveUp ∧ ♦[5,5]Arrive)

I TA [Alur and Dill, 1994]

I TCTL [Alur, Courcoubetis, and Dill, 1990]

I A♦(MoveUp ∧ A♦[5,5]Arrive)

I MITL [Alur, Feder, and Henzinger, 1996]

I Same as MTL except that the bounding interval I must be
non-singular

I ♦(MoveUp ∧ ♦[4,6]Arrive)

I ECA [Alur, Fix, and Henzinger, 1999, Henzinger, Raskin, and Schobbens, 1998]

I ECL [Raskin and Schobbens, 1999]

I ♦(MoveUp ∧ .[5,5]Arrive)

8 / 46

Metric Interval Temporal Logic (MITL)

In real world there is no infinite precision!

Theorem: [Alur et al., 1996]

MITL can be translated into timed automata.

Theorem: [Alur et al., 1996]

Satisfiability and model checking for MITL are EXPSPACE-complete.

Too expensive?

Theorem: [Raskin and Schobbens, 1999]

Satisfiability and model checking for ECL are PSPACE-complete.

Theorem: [Wilke, 1994, Henzinger et al., 1998]

ECL with projection (i.e. outermost second-order quantification) is equally
expressive as timed automata.

9 / 46

Metric Interval Temporal Logic (MITL)

In real world there is no infinite precision!

Theorem: [Alur et al., 1996]

MITL can be translated into timed automata.

Theorem: [Alur et al., 1996]

Satisfiability and model checking for MITL are EXPSPACE-complete.

Too expensive?

Theorem: [Raskin and Schobbens, 1999]

Satisfiability and model checking for ECL are PSPACE-complete.

Theorem: [Wilke, 1994, Henzinger et al., 1998]

ECL with projection (i.e. outermost second-order quantification) is equally
expressive as timed automata.

9 / 46

Metric Interval Temporal Logic (MITL)

In real world there is no infinite precision!

Theorem: [Alur et al., 1996]

MITL can be translated into timed automata.

Theorem: [Alur et al., 1996]

Satisfiability and model checking for MITL are EXPSPACE-complete.

Too expensive?

Theorem: [Raskin and Schobbens, 1999]

Satisfiability and model checking for ECL are PSPACE-complete.

Theorem: [Wilke, 1994, Henzinger et al., 1998]

ECL with projection (i.e. outermost second-order quantification) is equally
expressive as timed automata.

9 / 46

Metric Interval Temporal Logic (MITL)

In real world there is no infinite precision!

Theorem: [Alur et al., 1996]

MITL can be translated into timed automata.

Theorem: [Alur et al., 1996]

Satisfiability and model checking for MITL are EXPSPACE-complete.

Too expensive?

Theorem: [Raskin and Schobbens, 1999]

Satisfiability and model checking for ECL are PSPACE-complete.

Theorem: [Wilke, 1994, Henzinger et al., 1998]

ECL with projection (i.e. outermost second-order quantification) is equally
expressive as timed automata.

9 / 46

Metric Interval Temporal Logic (MITL)

In real world there is no infinite precision!

Theorem: [Alur et al., 1996]

MITL can be translated into timed automata.

Theorem: [Alur et al., 1996]

Satisfiability and model checking for MITL are EXPSPACE-complete.

Too expensive?

Theorem: [Raskin and Schobbens, 1999]

Satisfiability and model checking for ECL are PSPACE-complete.

Theorem: [Wilke, 1994, Henzinger et al., 1998]

ECL with projection (i.e. outermost second-order quantification) is equally
expressive as timed automata.

9 / 46

Metric Interval Temporal Logic (MITL)

In real world there is no infinite precision!

Theorem: [Alur et al., 1996]

MITL can be translated into timed automata.

Theorem: [Alur et al., 1996]

Satisfiability and model checking for MITL are EXPSPACE-complete.

Too expensive?

Theorem: [Raskin and Schobbens, 1999]

Satisfiability and model checking for ECL are PSPACE-complete.

Theorem: [Wilke, 1994, Henzinger et al., 1998]

ECL with projection (i.e. outermost second-order quantification) is equally
expressive as timed automata.

9 / 46

Uppaal

I Started in 1995 (at Uppsala + Aalborg)

I Model checking networks of timed automata against a fragment of
TCTL

I a pretty restricted fragment, but at least reachability is supported

I The de facto standard tool for timed automata

10 / 46

Uppaal

I Started in 1995 (at Uppsala + Aalborg)

I Model checking networks of timed automata against a fragment of
TCTL

I a pretty restricted fragment, but at least reachability is supported

I The de facto standard tool for timed automata

10 / 46

Uppaal

I Started in 1995 (at Uppsala + Aalborg)

I Model checking networks of timed automata against a fragment of
TCTL

I a pretty restricted fragment, but at least reachability is supported

I The de facto standard tool for timed automata

10 / 46

Uppaal

I Started in 1995 (at Uppsala + Aalborg)

I Model checking networks of timed automata against a fragment of
TCTL

I a pretty restricted fragment, but at least reachability is supported

I The de facto standard tool for timed automata

10 / 46

Tool support for MITL

Practically non-existent. Why?

I Standard construction [Alur, Feder, and Henzinger, 1996]: monolithic and
notoriously complicated

I Simplified compositional constructions (notably [Maler, Nickovic, and

Pnueli, 2005]): based on a less common model (timed signal
transducers)

I Usage of continuous semantics, different from existing tools (such as
Uppaal) built upon pointwise semantics

Construction for ECL (≡ MITL0,∞) much simpler and adaptable to the
pointwise semantics [Henzinger, 1998].
Still, most LTL-to-BA constructions are monolithic : difficult to modify
them to incorporate time.

Other direction of research: usage of SMT solvers [Bersani, Rossi, and

San Pietro, 2015, Kindermann, Junttila, and Niemelä, 2013, Woźna-Szcześniak,

Szcześniak, M. Zbrzezny, and Zbrzezny, 2014]

11 / 46

Tool support for MITL

Practically non-existent. Why?

I Standard construction [Alur, Feder, and Henzinger, 1996]: monolithic and
notoriously complicated

I Simplified compositional constructions (notably [Maler, Nickovic, and

Pnueli, 2005]): based on a less common model (timed signal
transducers)

I Usage of continuous semantics, different from existing tools (such as
Uppaal) built upon pointwise semantics

Construction for ECL (≡ MITL0,∞) much simpler and adaptable to the
pointwise semantics [Henzinger, 1998].
Still, most LTL-to-BA constructions are monolithic : difficult to modify
them to incorporate time.

Other direction of research: usage of SMT solvers [Bersani, Rossi, and

San Pietro, 2015, Kindermann, Junttila, and Niemelä, 2013, Woźna-Szcześniak,

Szcześniak, M. Zbrzezny, and Zbrzezny, 2014]

11 / 46

Tool support for MITL

Practically non-existent. Why?

I Standard construction [Alur, Feder, and Henzinger, 1996]: monolithic and
notoriously complicated

I Simplified compositional constructions (notably [Maler, Nickovic, and

Pnueli, 2005]): based on a less common model (timed signal
transducers)

I Usage of continuous semantics, different from existing tools (such as
Uppaal) built upon pointwise semantics

Construction for ECL (≡ MITL0,∞) much simpler and adaptable to the
pointwise semantics [Henzinger, 1998].
Still, most LTL-to-BA constructions are monolithic : difficult to modify
them to incorporate time.

Other direction of research: usage of SMT solvers [Bersani, Rossi, and

San Pietro, 2015, Kindermann, Junttila, and Niemelä, 2013, Woźna-Szcześniak,

Szcześniak, M. Zbrzezny, and Zbrzezny, 2014]

11 / 46

Tool support for MITL

Practically non-existent. Why?

I Standard construction [Alur, Feder, and Henzinger, 1996]: monolithic and
notoriously complicated

I Simplified compositional constructions (notably [Maler, Nickovic, and

Pnueli, 2005]): based on a less common model (timed signal
transducers)

I Usage of continuous semantics, different from existing tools (such as
Uppaal) built upon pointwise semantics

Construction for ECL (≡ MITL0,∞) much simpler and adaptable to the
pointwise semantics [Henzinger, 1998].
Still, most LTL-to-BA constructions are monolithic : difficult to modify
them to incorporate time.

Other direction of research: usage of SMT solvers [Bersani, Rossi, and

San Pietro, 2015, Kindermann, Junttila, and Niemelä, 2013, Woźna-Szcześniak,

Szcześniak, M. Zbrzezny, and Zbrzezny, 2014]

11 / 46

Tool support for MITL

Practically non-existent. Why?

I Standard construction [Alur, Feder, and Henzinger, 1996]: monolithic and
notoriously complicated

I Simplified compositional constructions (notably [Maler, Nickovic, and

Pnueli, 2005]): based on a less common model (timed signal
transducers)

I Usage of continuous semantics, different from existing tools (such as
Uppaal) built upon pointwise semantics

Construction for ECL (≡ MITL0,∞) much simpler and adaptable to the
pointwise semantics [Henzinger, 1998].
Still, most LTL-to-BA constructions are monolithic : difficult to modify
them to incorporate time.

Other direction of research: usage of SMT solvers [Bersani, Rossi, and

San Pietro, 2015, Kindermann, Junttila, and Niemelä, 2013, Woźna-Szcześniak,

Szcześniak, M. Zbrzezny, and Zbrzezny, 2014]

11 / 46

Tool support for MITL

Practically non-existent. Why?

I Standard construction [Alur, Feder, and Henzinger, 1996]: monolithic and
notoriously complicated

I Simplified compositional constructions (notably [Maler, Nickovic, and

Pnueli, 2005]): based on a less common model (timed signal
transducers)

I Usage of continuous semantics, different from existing tools (such as
Uppaal) built upon pointwise semantics

Construction for ECL (≡ MITL0,∞) much simpler and adaptable to the
pointwise semantics [Henzinger, 1998].
Still, most LTL-to-BA constructions are monolithic : difficult to modify
them to incorporate time.

Other direction of research: usage of SMT solvers [Bersani, Rossi, and

San Pietro, 2015, Kindermann, Junttila, and Niemelä, 2013, Woźna-Szcześniak,

Szcześniak, M. Zbrzezny, and Zbrzezny, 2014]

11 / 46

Tool support for MITL

Practically non-existent. Why?

I Standard construction [Alur, Feder, and Henzinger, 1996]: monolithic and
notoriously complicated

I Simplified compositional constructions (notably [Maler, Nickovic, and

Pnueli, 2005]): based on a less common model (timed signal
transducers)

I Usage of continuous semantics, different from existing tools (such as
Uppaal) built upon pointwise semantics

Construction for ECL (≡ MITL0,∞) much simpler and adaptable to the
pointwise semantics [Henzinger, 1998].
Still, most LTL-to-BA constructions are monolithic : difficult to modify
them to incorporate time.

Other direction of research: usage of SMT solvers [Bersani, Rossi, and

San Pietro, 2015, Kindermann, Junttila, and Niemelä, 2013, Woźna-Szcześniak,

Szcześniak, M. Zbrzezny, and Zbrzezny, 2014]

11 / 46

A closer look

Theorem: [Alur, Feder, and Henzinger, 1996]

MITL can be translated into continuous timed automata.

Theorem: [Brihaye, Estiévenart, and Geeraerts, 2014]

MITL can be translated into pointwise timed automata.

This work:

I Compositional

I Less states (subsumes [Gastin and Oddoux, 2001])

I Less clocks

I Works well with Uppaal!

12 / 46

A closer look

Theorem: [Alur, Feder, and Henzinger, 1996]

MITL can be translated into continuous timed automata.

Theorem: [Brihaye, Estiévenart, and Geeraerts, 2014]

MITL can be translated into pointwise timed automata.

This work:

I Compositional

I Less states (subsumes [Gastin and Oddoux, 2001])

I Less clocks

I Works well with Uppaal!

12 / 46

A closer look

Theorem: [Alur, Feder, and Henzinger, 1996]

MITL can be translated into continuous timed automata.

Theorem: [Brihaye, Estiévenart, and Geeraerts, 2014]

MITL can be translated into pointwise timed automata.

This work:

I Compositional

I Less states (subsumes [Gastin and Oddoux, 2001])

I Less clocks

I Works well with Uppaal!

12 / 46

A closer look

Theorem: [Alur, Feder, and Henzinger, 1996]

MITL can be translated into continuous timed automata.

Theorem: [Brihaye, Estiévenart, and Geeraerts, 2014]

MITL can be translated into pointwise timed automata.

This work:

I Compositional

I Less states (subsumes [Gastin and Oddoux, 2001])

I Less clocks

I Works well with Uppaal!

12 / 46

A closer look

Theorem: [Alur, Feder, and Henzinger, 1996]

MITL can be translated into continuous timed automata.

Theorem: [Brihaye, Estiévenart, and Geeraerts, 2014]

MITL can be translated into pointwise timed automata.

This work:

I Compositional

I Less states (subsumes [Gastin and Oddoux, 2001])

I Less clocks

I Works well with Uppaal!

12 / 46

A closer look

Theorem: [Alur, Feder, and Henzinger, 1996]

MITL can be translated into continuous timed automata.

Theorem: [Brihaye, Estiévenart, and Geeraerts, 2014]

MITL can be translated into pointwise timed automata.

This work:

I Compositional

I Less states (subsumes [Gastin and Oddoux, 2001])

I Less clocks

I Works well with Uppaal!

12 / 46

A closer look

Theorem: [Alur, Feder, and Henzinger, 1996]

MITL can be translated into continuous timed automata.

Theorem: [Brihaye, Estiévenart, and Geeraerts, 2014]

MITL can be translated into pointwise timed automata.

This work:

I Compositional

I Less states (subsumes [Gastin and Oddoux, 2001])

I Less clocks

I Works well with Uppaal!

12 / 46

A closer look

Theorem: [Alur, Feder, and Henzinger, 1996]

MITL can be translated into continuous timed automata.

Theorem: [Brihaye, Estiévenart, and Geeraerts, 2014]

MITL can be translated into pointwise timed automata.

This work:

I Compositional

I Less states (subsumes [Gastin and Oddoux, 2001])

I Less clocks

I Works well with Uppaal!

12 / 46

From LTL to alternating automata [Vardi, 1998]

�(a⇒ ♦b)

� ♦

b

a

a

b

A run on aaab:

�

�

�

� �

♦

♦ ♦

♦ ♦ ♦

13 / 46

From LTL to alternating automata [Vardi, 1998]

�(a⇒ ♦b)

� ♦

b

a

a

b

A run on aaab:

�

�

�

� �

♦

♦ ♦

♦ ♦ ♦

13 / 46

From LTL to alternating automata [Vardi, 1998]

�(a⇒ ♦b)

� ♦

b

a

a

b

A run on aaab:

�

�

�

� �

♦

♦ ♦

♦ ♦ ♦

13 / 46

From alternating automata to non-deterministic automata

Theorem: [Miyano and Hayashi, 1984]

An alternating Büchi automaton with n locations can be translated into a
non-deterministic Büchi automaton with 3n locations.

Theorem: [Gastin and Oddoux, 2001]

An LTL formula of size n can be translated into a non-deterministic Büchi
automaton with n × 2n locations.

The tool LTL2BA is still in wide use today.

14 / 46

From alternating automata to non-deterministic automata

Theorem: [Miyano and Hayashi, 1984]

An alternating Büchi automaton with n locations can be translated into a
non-deterministic Büchi automaton with 3n locations.

Theorem: [Gastin and Oddoux, 2001]

An LTL formula of size n can be translated into a non-deterministic Büchi
automaton with n × 2n locations.

The tool LTL2BA is still in wide use today.

14 / 46

From alternating automata to non-deterministic automata

Theorem: [Miyano and Hayashi, 1984]

An alternating Büchi automaton with n locations can be translated into a
non-deterministic Büchi automaton with 3n locations.

Theorem: [Gastin and Oddoux, 2001]

An LTL formula of size n can be translated into a non-deterministic Büchi
automaton with n × 2n locations.

The tool LTL2BA is still in wide use today.

14 / 46

Compositional Gastin-Oddoux

Idea: One component automaton for each location of alternating
automaton.

A set of locations is represented by a location of the product of
components, e.g.,

{s1, s3}
0 1s1

0 1s2

0 1s3

Component in state 1 ⇐⇒ corresponding location in the configuration of
the alternating automaton

How to synchronise these components?

15 / 46

Compositional Gastin-Oddoux

Idea: One component automaton for each location of alternating
automaton.

A set of locations is represented by a location of the product of
components, e.g.,

{s1, s3}
0 1s1

0 1s2

0 1s3

Component in state 1 ⇐⇒ corresponding location in the configuration of
the alternating automaton

How to synchronise these components?

15 / 46

Compositional Gastin-Oddoux

Idea: One component automaton for each location of alternating
automaton.

A set of locations is represented by a location of the product of
components, e.g.,

{s1, s3}
0 1s1

0 1s2

0 1s3

Component in state 1 ⇐⇒ corresponding location in the configuration of
the alternating automaton

How to synchronise these components?

15 / 46

Compositional Gastin-Oddoux

For each component Cϕ, we add a fresh proposition pϕ (a trigger).

E.g. Cϕ1Uϕ2 :

0 1

¬pϕ

pϕ ∧ ϕ2

pϕ ∧ ϕ1 ∧ ¬ϕ2

ϕ1 ∧ ¬ϕ2

ϕ2

Proposition:

If Cϕ1Uϕ2 accepts a (timed) word ρ then ρ |= �(pϕ ⇒ ϕ1 U ϕ2).

Proposition:

For each LTL formula ϕ over AP, we can construct a Büchi automaton
Aϕ = Cψ1 × · · · × Cψn over AP ∪ AP’ such that L(ϕ) = L(projAP(Aϕ)).

16 / 46

Compositional Gastin-Oddoux

For each component Cϕ, we add a fresh proposition pϕ (a trigger).

E.g. Cϕ1Uϕ2 :

0 1

¬pϕ

pϕ ∧ ϕ2

pϕ ∧ ϕ1 ∧ ¬ϕ2

ϕ1 ∧ ¬ϕ2

ϕ2

Proposition:

If Cϕ1Uϕ2 accepts a (timed) word ρ then ρ |= �(pϕ ⇒ ϕ1 U ϕ2).

Proposition:

For each LTL formula ϕ over AP, we can construct a Büchi automaton
Aϕ = Cψ1 × · · · × Cψn over AP ∪ AP’ such that L(ϕ) = L(projAP(Aϕ)).

16 / 46

Compositional Gastin-Oddoux

For each component Cϕ, we add a fresh proposition pϕ (a trigger).

E.g. Cϕ1Uϕ2 :

0 1

¬pϕ

pϕ ∧ ϕ2

pϕ ∧ ϕ1 ∧ ¬ϕ2

ϕ1 ∧ ¬ϕ2

ϕ2

Proposition:

If Cϕ1Uϕ2 accepts a (timed) word ρ then ρ |= �(pϕ ⇒ ϕ1 U ϕ2).

Proposition:

For each LTL formula ϕ over AP, we can construct a Büchi automaton
Aϕ = Cψ1 × · · · × Cψn over AP ∪ AP’ such that L(ϕ) = L(projAP(Aϕ)).

16 / 46

Compositional Gastin-Oddoux

For each component Cϕ, we add a fresh proposition pϕ (a trigger).

E.g. Cϕ1Uϕ2 :

0 1

¬pϕ

pϕ ∧ ϕ2

pϕ ∧ ϕ1 ∧ ¬ϕ2

ϕ1 ∧ ¬ϕ2

ϕ2

Proposition:

If Cϕ1Uϕ2 accepts a (timed) word ρ then ρ |= �(pϕ ⇒ ϕ1 U ϕ2).

Proposition:

For each LTL formula ϕ over AP, we can construct a Büchi automaton
Aϕ = Cψ1 × · · · × Cψn over AP ∪ AP’ such that L(ϕ) = L(projAP(Aϕ)).

16 / 46

Compositional Gastin-Oddoux

For each component Cϕ, we add a fresh proposition pϕ (a trigger).

E.g. Cϕ1Uϕ2 :

0 1

¬pϕ

pϕ ∧ ϕ2

pϕ ∧ ϕ1 ∧ ¬ϕ2

ϕ1 ∧ ¬ϕ2

ϕ2

Proposition:

If Cϕ1Uϕ2 accepts a (timed) word ρ then ρ |= �(pϕ ⇒ ϕ1 U ϕ2).

Proposition:

For each LTL formula ϕ over AP, we can construct a Büchi automaton
Aϕ = Cψ1 × · · · × Cψn over AP ∪ AP’ such that L(ϕ) = L(projAP(Aϕ)).

16 / 46

Compositional Gastin-Oddoux

For each component Cϕ, we add a fresh proposition pϕ (a trigger).

E.g. Cϕ1Uϕ2 :

0 1

¬pϕ

pϕ ∧ ϕ2

pϕ ∧ ϕ1 ∧ ¬ϕ2

ϕ1 ∧ ¬ϕ2

ϕ2

Proposition:

If Cϕ1Uϕ2 accepts a (timed) word ρ then ρ |= �(pϕ ⇒ ϕ1 U ϕ2).

Proposition:

For each LTL formula ϕ over AP, we can construct a Büchi automaton
Aϕ = Cψ1 × · · · × Cψn over AP ∪ AP’ such that L(ϕ) = L(projAP(Aϕ)).

16 / 46

Compositional Gastin-Oddoux

For each component Cϕ, we add a fresh proposition pϕ (a trigger).

E.g. Cϕ1Uϕ2 :

0 1

¬pϕ

pϕ ∧ ϕ2

pϕ ∧ ϕ1 ∧ ¬ϕ2

ϕ1 ∧ ¬ϕ2

ϕ2

Proposition:

If Cϕ1Uϕ2 accepts a (timed) word ρ then ρ |= �(pϕ ⇒ ϕ1 U ϕ2).

Proposition:

For each LTL formula ϕ over AP, we can construct a Büchi automaton
Aϕ = Cψ1 × · · · × Cψn over AP ∪ AP’ such that L(ϕ) = L(projAP(Aϕ)).

16 / 46

Compositional Gastin-Oddoux

For each component Cϕ, we add a fresh proposition pϕ (a trigger).

E.g. Cϕ1Uϕ2 :

0 1

¬pϕ

pϕ ∧ ϕ2

pϕ ∧ ϕ1 ∧ ¬ϕ2

ϕ1 ∧ ¬ϕ2

ϕ2

Proposition:

If Cϕ1Uϕ2 accepts a (timed) word ρ then ρ |= �(pϕ ⇒ ϕ1 U ϕ2).

Proposition:

For each LTL formula ϕ over AP, we can construct a Büchi automaton
Aϕ = Cψ1 × · · · × Cψn over AP ∪ AP’ such that L(ϕ) = L(projAP(Aϕ)).

16 / 46

Compositional Gastin-Oddoux

For each component Cϕ, we add a fresh proposition pϕ (a trigger).

E.g. Cϕ1Uϕ2 :

0 1

¬pϕ

pϕ ∧ ϕ2

pϕ ∧ ϕ1 ∧ ¬ϕ2

ϕ1 ∧ ¬ϕ2

ϕ2

Proposition:

If Cϕ1Uϕ2 accepts a (timed) word ρ then ρ |= �(pϕ ⇒ ϕ1 U ϕ2).

Proposition:

For each LTL formula ϕ over AP, we can construct a Büchi automaton
Aϕ = Cψ1 × · · · × Cψn over AP ∪ AP’ such that L(ϕ) = L(projAP(Aϕ)).

16 / 46

Compositional Gastin-Oddoux

For each component Cϕ, we add a fresh proposition pϕ (a trigger).

E.g. Cϕ1Uϕ2 :

0 1

¬pϕ

pϕ ∧ ϕ2

pϕ ∧ ϕ1 ∧ ¬ϕ2

ϕ1 ∧ ¬ϕ2

ϕ2

Proposition:

If Cϕ1Uϕ2 accepts a (timed) word ρ then ρ |= �(pϕ ⇒ ϕ1 U ϕ2).

Proposition:

For each LTL formula ϕ over AP, we can construct a Büchi automaton
Aϕ = Cψ1 × · · · × Cψn over AP ∪ AP’ such that L(ϕ) = L(projAP(Aϕ)).

16 / 46

Compositional Gastin-Oddoux: full example
ϕ = �(p ⇒ ♦q) ≡ ⊥R (¬p ∨ > U q)

1 0
pϕ ¬pϕ

0 1
pϕ ∧ (¬p ∧ ¬p♦q ∨ p ∧ p♦q)

¬pϕ ∧ ¬p♦q ¬p ∧ ¬p♦q ∨ p ∧ p♦q

0 1

p♦q ∧ ¬q
¬p♦q

p♦q ∧ q
q

¬q

17 / 46

Compositional Gastin-Oddoux: full example
ϕ = �(p ⇒ ♦q) ≡ ⊥R (¬p ∨ > U q)

100 010 011

pϕ ∧ p♦q ∧ p ∧ ¬q

pϕ ∧ ¬p ∧ ¬p♦q
pϕ ∧ p ∧ p♦q ∧ q

¬p ∧ ¬p♦q
p ∧ p♦q ∧ q

p♦q ∧ p ∧ ¬q

¬q ∧ (¬p ∧ ¬p♦q ∨ p ∧ p♦q)

q ∧ (¬p ∧ ¬p♦q ∨ p ∧ p♦q)

17 / 46

Compositional Gastin-Oddoux: full example
ϕ = �(p ⇒ ♦q) ≡ ⊥R (¬p ∨ > U q)

¬p ∨ p ∧ q

p ∧ ¬q

¬q

q

17 / 46

From MITL to one-clock alternating timed automata
(OCATA) [Ouaknine and Worrell, 2005]

�(a⇒ ♦[0,2]b)

� ♦

b

a x := 0

a, b

b

x ∈ [0, 2]

A run on (a, 0.5)(a, 0.6)(a, 1.2)(b, 2.3):

�0

�0.5

�0.6

�1.2 �2.3

♦0
x = 1.1

♦0 ♦0.6
x = 1.7

♦0 ♦0.1 ♦0.7
x = 1.8

In this case we can simply keep the ‘oldest’ ♦.

18 / 46

From MITL to one-clock alternating timed automata
(OCATA) [Ouaknine and Worrell, 2005]

�(a⇒ ♦[0,2]b)

� ♦

b

a x := 0

a, b

b

x ∈ [0, 2]

A run on (a, 0.5)(a, 0.6)(a, 1.2)(b, 2.3):

�0

�0.5

�0.6

�1.2 �2.3

♦0
x = 1.1

♦0 ♦0.6
x = 1.7

♦0 ♦0.1 ♦0.7
x = 1.8

In this case we can simply keep the ‘oldest’ ♦.

18 / 46

From MITL to one-clock alternating timed automata
(OCATA) [Ouaknine and Worrell, 2005]

�(a⇒ ♦[0,2]b)

� ♦

b

a x := 0

a, b

b

x ∈ [0, 2]

A run on (a, 0.5)(a, 0.6)(a, 1.2)(b, 2.3):

�0

�0.5

�0.6

�1.2 �2.3

♦0
x = 1.1

♦0 ♦0.6
x = 1.7

♦0 ♦0.1 ♦0.7
x = 1.8

In this case we can simply keep the ‘oldest’ ♦.

18 / 46

From MITL to one-clock alternating timed automata
(OCATA) [Ouaknine and Worrell, 2005]

�(a⇒ ♦[0,2]b)

� ♦

b

a x := 0

a, b

b

x ∈ [0, 2]

A run on (a, 0.5)(a, 0.6)(a, 1.2)(b, 2.3):

�0

�0.5

�0.6

�1.2 �2.3

♦0
x = 1.1

♦0 ♦0.6
x = 1.7

♦0 ♦0.1 ♦0.7
x = 1.8

In this case we can simply keep the ‘oldest’ ♦.
18 / 46

MITL0,∞
The MITL fragment in which all intervals are of the form < c , 6 c , > c
or > c .

E.g., Cϕ1U[2,∞]ϕ2 :

0 1

pχ ∧ ϕ1, x := 0

¬pχ, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

1′

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

Proposition:

For each MITL0,∞ formula ϕ with n timed subformulas, we can construct
a projection-equivalent timed automaton Aϕ that uses n clocks.

19 / 46

MITL0,∞
The MITL fragment in which all intervals are of the form < c , 6 c , > c
or > c .

E.g., Cϕ1U[0,2]ϕ2 :

0 1

¬r

r ∧ ϕ2

r ∧ ϕ1 ∧ ¬ϕ2, x := 0

ϕ1 ∧ ¬ϕ2, x 6 2

ϕ2, x 6 2

E.g., Cϕ1U[2,∞]ϕ2 :

0 1

pχ ∧ ϕ1, x := 0

¬pχ, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

1′

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

Proposition:

For each MITL0,∞ formula ϕ with n timed subformulas, we can construct
a projection-equivalent timed automaton Aϕ that uses n clocks.

19 / 46

MITL0,∞
The MITL fragment in which all intervals are of the form < c , 6 c , > c
or > c .

E.g., Cϕ1U[0,2]ϕ2 :

0 1

¬r

r ∧ ϕ2

r ∧ ϕ1 ∧ ¬ϕ2, x := 0

ϕ1 ∧ ¬ϕ2, x 6 2

ϕ2, x 6 2

E.g., Cϕ1U[2,∞]ϕ2 :

0 1

pχ ∧ ϕ1, x := 0

¬pχ, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

1′

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

Proposition:

For each MITL0,∞ formula ϕ with n timed subformulas, we can construct
a projection-equivalent timed automaton Aϕ that uses n clocks.

19 / 46

MITL0,∞
The MITL fragment in which all intervals are of the form < c , 6 c , > c
or > c .

E.g., Cϕ1U[0,2]ϕ2 :

0 1

¬r

r ∧ ϕ2

r ∧ ϕ1 ∧ ¬ϕ2, x := 0

ϕ1 ∧ ¬ϕ2, x 6 2

ϕ2, x 6 2

E.g., Cϕ1U[2,∞]ϕ2 :

0 1

pχ ∧ ϕ1, x := 0

¬pχ, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

1′

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

Proposition:

For each MITL0,∞ formula ϕ with n timed subformulas, we can construct
a projection-equivalent timed automaton Aϕ that uses n clocks.

19 / 46

MITL0,∞
The MITL fragment in which all intervals are of the form < c , 6 c , > c
or > c .

E.g., Cϕ1U[0,2]ϕ2 :

0 1

¬r

r ∧ ϕ2

r ∧ ϕ1 ∧ ¬ϕ2, x := 0

ϕ1 ∧ ¬ϕ2, x 6 2

ϕ2, x 6 2

E.g., Cϕ1U[2,∞]ϕ2 :

0 1

pχ ∧ ϕ1, x := 0

¬pχ, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

1′

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

Proposition:

For each MITL0,∞ formula ϕ with n timed subformulas, we can construct
a projection-equivalent timed automaton Aϕ that uses n clocks.

19 / 46

MITL0,∞
The MITL fragment in which all intervals are of the form < c , 6 c , > c
or > c .

E.g., Cϕ1U[0,2]ϕ2 :

0 1

¬r

r ∧ ϕ2

r ∧ ϕ1 ∧ ¬ϕ2, x := 0

ϕ1 ∧ ¬ϕ2, x 6 2

ϕ2, x 6 2

E.g., Cϕ1U[2,∞]ϕ2 :

0 1

pχ ∧ ϕ1, x := 0

¬pχ, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

1′

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

Proposition:

For each MITL0,∞ formula ϕ with n timed subformulas, we can construct
a projection-equivalent timed automaton Aϕ that uses n clocks.

19 / 46

MITL0,∞
The MITL fragment in which all intervals are of the form < c , 6 c , > c
or > c .

E.g., Cϕ1U[0,2]ϕ2 :

0 1

¬r

r ∧ ϕ2

r ∧ ϕ1 ∧ ¬ϕ2, x := 0

ϕ1 ∧ ¬ϕ2, x 6 2

ϕ2, x 6 2

E.g., Cϕ1U[2,∞]ϕ2 :

0 1

pχ ∧ ϕ1, x := 0

¬pχ, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

1′

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

Proposition:

For each MITL0,∞ formula ϕ with n timed subformulas, we can construct
a projection-equivalent timed automaton Aϕ that uses n clocks.

19 / 46

MITL0,∞
The MITL fragment in which all intervals are of the form < c , 6 c , > c
or > c .

E.g., Cϕ1U[2,∞]ϕ2 :

0 1

pχ ∧ ϕ1, x := 0

¬pχ, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

1′

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

Proposition:

For each MITL0,∞ formula ϕ with n timed subformulas, we can construct
a projection-equivalent timed automaton Aϕ that uses n clocks.

19 / 46

MITL0,∞
The MITL fragment in which all intervals are of the form < c , 6 c , > c
or > c .

E.g., Cϕ1U[2,∞]ϕ2 :

0 1

pχ ∧ ϕ1, x := 0

¬pχ, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

1′

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

Proposition:

For each MITL0,∞ formula ϕ with n timed subformulas, we can construct
a projection-equivalent timed automaton Aϕ that uses n clocks.

19 / 46

MITL0,∞
The MITL fragment in which all intervals are of the form < c , 6 c , > c
or > c .

E.g., Cϕ1U[2,∞]ϕ2 :

0 1

pχ ∧ ϕ1, x := 0

¬pχ, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

1′

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ2 ∧ x > 2, x := 0

¬pχ ∧ ϕ1 ∧ ¬ϕ2

¬pχ ∧ ϕ1 ∧ x < 2
pχ ∧ ϕ1

pχ ∧ ϕ1 ∧ ϕ2 ∧ x > 2, x := 0

Proposition:

For each MITL0,∞ formula ϕ with n timed subformulas, we can construct
a projection-equivalent timed automaton Aϕ that uses n clocks.

19 / 46

Full MITL: inspired by interval semantics for OCATA

New semantics for OCATA [Brihaye, Estiévenart, and Geeraerts, 2013]:

I allows one to bound the number of clock copies

I sufficiently expressive for MITL

ϕ = �(a⇒ ♦[[1, 2]]b)

a

0.5

a

0.6

a

1.2

b

2.3

[
0.3

]
1.3

To check that this timed word satisfies ϕ, we do not need to remember
the exact timestamp of each a

20 / 46

Full MITL: inspired by interval semantics for OCATA

New semantics for OCATA [Brihaye, Estiévenart, and Geeraerts, 2013]:

I allows one to bound the number of clock copies

I sufficiently expressive for MITL

ϕ = �(a⇒ ♦[[1, 2]]b)

a

0.5

a

0.6

a

1.2

b

2.3

[
0.3

]
1.3

To check that this timed word satisfies ϕ, we do not need to remember
the exact timestamp of each a

20 / 46

Full MITL: inspired by interval semantics for OCATA

New semantics for OCATA [Brihaye, Estiévenart, and Geeraerts, 2013]:

I allows one to bound the number of clock copies

I sufficiently expressive for MITL

ϕ = �(a⇒ ♦[[1, 2]]b)

a

0.5

a

0.6

a

1.2

b

2.3
[

0.3

]
1.3

To check that this timed word satisfies ϕ, we do not need to remember
the exact timestamp of each a

20 / 46

Full MITL: inspired by interval semantics for OCATA

New semantics for OCATA [Brihaye, Estiévenart, and Geeraerts, 2013]:

I allows one to bound the number of clock copies

I sufficiently expressive for MITL

ϕ = �(a⇒ ♦[[1, 2]]b)

a

0.5

a

0.6

a

1.2

b

2.3
[

0.3

]
1.3

To check that this timed word satisfies ϕ, we do not need to remember
the exact timestamp of each a

20 / 46

Example run with the interval semantics

� ♦

b

a y := 0

a

b

y ∈ [1, 2]

�0

�0.5

�0.6 �1.2 �2.3

♦0 ♦[][0, .1] ♦[][0, 0.7]
1.1 t.u.

a

0.5

a

0.6

a

1.2

b

2.3

21 / 46

Example run with the interval semantics

� ♦

b

a y := 0

a

b

y ∈ [1, 2]

�0

�0.5

�0.6 �1.2 �2.3

♦0 ♦[][0, .1] ♦[][0, 0.7]
1.1 t.u.

a

0.5

a

0.6

a

1.2

b

2.3

21 / 46

ϕ = ϕ1 U[a,b] ϕ2, with 0 < a < b < +∞: improvement on
the interval semantics

×
τ1

[
τ1 + a

]
τ1 + b

×
τ2

[
τ2 + a

]
τ2 + b

×
τ3

[
τ3 + a

]
τ3 + b

Case 1: [
ϕ2

]

Case 2: [
ϕ2

) (
ϕ2

]

Case 3: [
ϕ2

) (
ϕ2

]

Case 4: [
ϕ2

)(
ϕ2

]

Case 1: {1, 2, 3}
Case 2: {1}, {2, 3}
Case 3: {1, 2}, {3}
Case 4: {1, 2}, {2, 3} or {1, 2, 3}, {2, 3}
In each case we only need to keep track of two clock values.

22 / 46

ϕ = ϕ1 U[a,b] ϕ2, with 0 < a < b < +∞: improvement on
the interval semantics

×
τ1

[
τ1 + a

]
τ1 + b

×
τ2

[
τ2 + a

]
τ2 + b

×
τ3

[
τ3 + a

]
τ3 + b

Case 1: [
ϕ2

]

Case 2: [
ϕ2

) (
ϕ2

]

Case 3: [
ϕ2

) (
ϕ2

]

Case 4: [
ϕ2

)(
ϕ2

]

Case 1: {1, 2, 3}

Case 2: {1}, {2, 3}
Case 3: {1, 2}, {3}
Case 4: {1, 2}, {2, 3} or {1, 2, 3}, {2, 3}
In each case we only need to keep track of two clock values.

22 / 46

ϕ = ϕ1 U[a,b] ϕ2, with 0 < a < b < +∞: improvement on
the interval semantics

×
τ1

[
τ1 + a

]
τ1 + b

×
τ2

[
τ2 + a

]
τ2 + b

×
τ3

[
τ3 + a

]
τ3 + b

Case 1: [
ϕ2

]

Case 2: [
ϕ2

) (
ϕ2

]

Case 3: [
ϕ2

) (
ϕ2

]

Case 4: [
ϕ2

)(
ϕ2

]

Case 1: {1, 2, 3}
Case 2: {1}, {2, 3}

Case 3: {1, 2}, {3}
Case 4: {1, 2}, {2, 3} or {1, 2, 3}, {2, 3}
In each case we only need to keep track of two clock values.

22 / 46

ϕ = ϕ1 U[a,b] ϕ2, with 0 < a < b < +∞: improvement on
the interval semantics

×
τ1

[
τ1 + a

]
τ1 + b

×
τ2

[
τ2 + a

]
τ2 + b

×
τ3

[
τ3 + a

]
τ3 + b

Case 1: [
ϕ2

]

Case 2: [
ϕ2

) (
ϕ2

]

Case 3: [
ϕ2

) (
ϕ2

]

Case 4: [
ϕ2

)(
ϕ2

]

Case 1: {1, 2, 3}
Case 2: {1}, {2, 3}
Case 3: {1, 2}, {3}

Case 4: {1, 2}, {2, 3} or {1, 2, 3}, {2, 3}
In each case we only need to keep track of two clock values.

22 / 46

ϕ = ϕ1 U[a,b] ϕ2, with 0 < a < b < +∞: improvement on
the interval semantics

×
τ1

[
τ1 + a

]
τ1 + b

×
τ2

[
τ2 + a

]
τ2 + b

×
τ3

[
τ3 + a

]
τ3 + b

Case 1: [
ϕ2

]

Case 2: [
ϕ2

) (
ϕ2

]

Case 3: [
ϕ2

) (
ϕ2

]

Case 4: [
ϕ2

)(
ϕ2

]

Case 1: {1, 2, 3}
Case 2: {1}, {2, 3}
Case 3: {1, 2}, {3}
Case 4: {1, 2}, {2, 3} or {1, 2, 3}, {2, 3}

In each case we only need to keep track of two clock values.

22 / 46

ϕ = ϕ1 U[a,b] ϕ2, with 0 < a < b < +∞: improvement on
the interval semantics

×
τ1

[
τ1 + a

]
τ1 + b

×
τ2

[
τ2 + a

]
τ2 + b

×
τ3

[
τ3 + a

]
τ3 + b

Case 1: [
ϕ2

]

Case 2: [
ϕ2

) (
ϕ2

]

Case 3: [
ϕ2

) (
ϕ2

]

Case 4: [
ϕ2

)(
ϕ2

]

Case 1: {1, 2, 3}
Case 2: {1}, {2, 3}
Case 3: {1, 2}, {3}
Case 4: {1, 2}, {2, 3} or {1, 2, 3}, {2, 3}
In each case we only need to keep track of two clock values.

22 / 46

ϕ = ϕ1 U[a,b] ϕ2, with 0 < a < b < +∞: improvement on
the interval semantics

×
τ4

[
τ4 + a

]
τ4 + b

Case 1: [
ϕ2

]

Case 2: [
ϕ2

) (
ϕ2

]

Case 3: [
ϕ2

) (
ϕ2

]

Case 4: [
ϕ2

)(
ϕ2

]

Case 1: Another branching into Case 1, Case 3 and Case 4
Case 2: Done
Case 3: Done
Case 4: Done

Proposition:

For each MITL formula ϕ = ϕ1 UI ϕ2, Cϕ uses 2 · d sup I
|I | e+ 2 clocks.

Up to half the number of clocks obtained in [Brihaye, Estiévenart, and

Geeraerts, 2014]

23 / 46

ϕ = ϕ1 U[a,b] ϕ2, with 0 < a < b < +∞: improvement on
the interval semantics

×
τ4

[
τ4 + a

]
τ4 + b

Case 1: [
ϕ2

]

Case 2: [
ϕ2

) (
ϕ2

]

Case 3: [
ϕ2

) (
ϕ2

]

Case 4: [
ϕ2

)(
ϕ2

]

Case 1: Another branching into Case 1, Case 3 and Case 4
Case 2: Done
Case 3: Done
Case 4: Done

Proposition:

For each MITL formula ϕ = ϕ1 UI ϕ2, Cϕ uses 2 · d sup I
|I | e+ 2 clocks.

Up to half the number of clocks obtained in [Brihaye, Estiévenart, and

Geeraerts, 2014]

23 / 46

ϕ = ϕ1 U[a,b] ϕ2, with 0 < a < b < +∞: improvement on
the interval semantics

×
τ4

[
τ4 + a

]
τ4 + b

Case 1: [
ϕ2

]

Case 2: [
ϕ2

) (
ϕ2

]

Case 3: [
ϕ2

) (
ϕ2

]

Case 4: [
ϕ2

)(
ϕ2

]

Case 1: Another branching into Case 1, Case 3 and Case 4
Case 2: Done
Case 3: Done
Case 4: Done

Proposition:

For each MITL formula ϕ = ϕ1 UI ϕ2, Cϕ uses 2 · d sup I
|I | e+ 2 clocks.

Up to half the number of clocks obtained in [Brihaye, Estiévenart, and

Geeraerts, 2014]
23 / 46

Experiments

We have implemented the translation in the tool MightyL.

F (k, I) =
∧k

i=1♦Ipi G(k, I) =
∧k

i=1�Ipi

U(k, I) = (· · · (p1 UI p2) UI · · ·) UI pk R(k, I) = (· · · (p1 RI p2)RI · · ·)RI pk

θ(k, I) = ¬((
∧k

i=1�♦pi)⇒ �(q ⇒ ♦I r)) µ(k) =
∧k

i=1♦[3(i−1),3i]ti ∧ �¬p

Formula MightyL LTSmin Uppaal
F (5, [0,∞)) 9ms 3.48s/2.18s/0.12s 0.75s
F (5, [0, 2]) 7ms 3.76s/2.23s/0.15s 0.84s
F (5, [2,∞)) 6ms 3.76s/2.26s/0.91s 1.64s
F (3, [1, 2]) 70ms 6m5.15s/38.01s/0.22s 9.00s
F (5, [1, 2]) 70ms >15m 2m6s
G(5, [0,∞)) 10ms 3.83s/2.43s/0.05s 0.75s
G(5, [0, 2]) 10ms 4.01s/2.51s/0.10s 0.82s
G(5, [2,∞)) 9ms 4.06s/2.47s/0.04s 0.85s
G(5, [1, 2]) 15ms 7.81s/2.99s/0.09s 1.12s

µ(1) 13ms - 0.39s
µ(2) 21ms - 2.33s
µ(3) 76ms - 15.77s
µ(4) 87ms - 2m23s

Formula MightyL LTSmin Uppaal
U(5, [0,∞)) 16ms 1.90s/1.44s/0.05s 0.41s
U(5, [0, 2]) 8ms 2.08s/1.54s/0.06s 0.42s
U(5, [2,∞)) 8ms 2.08s/1.53s/0.09s 0.52s
U(3, [1, 2]) 49ms 4m0.14s/23.54s/0.09s 4.92s
U(5, [1, 2]) 97ms >15m 21.80s
R(5, [0,∞)) 7ms 1.86s/1.42s/0.03s 0.40s
R(5, [0, 2]) 7ms 1.97s/1.44s/0.03s 0.40s
R(5, [2,∞)) 7ms 1.92s/1.42s/0.03s 0.42s
R(5, [1, 2]) 10ms 5.37s/2.16s/0.04s 0.62s

θ(1, [100, 1000]) 9ms 1.88s/1.74s/0.04s 0.25s
θ(2, [100, 1000]) 13ms 5.04s/3.17s/0.19s 0.86s
θ(3, [100, 1000]) 14ms 36.57s/16.27s/3.20s 21.84s
θ(4, [100, 1000]) 15ms 5m30s/4m18s/2m16s 18m39s

Formula MightyL LTSmin Uppaal SMT-based approach
♦[0,30](p ⇒ �[0,20]p) valid 7ms 0.98s 0.32s 7s
�[0,30]¬p ∨ ♦[0,20]p valid 7ms 0.95s 0.14s not considered

♦[0,30]p ∧ ♦[0,20]p redundant 13ms 1.99s 0.44s 14s
�[0,20]♦[0,20]p ∧ �[0,40]p ∧ ♦[20,40]> redundant 22ms 1m26s 2.63s not considered

24 / 46

http://depinf-pc5.ulb.ac.be/~mightyl/

Experiments

We have implemented the translation in the tool MightyL.

F (k, I) =
∧k

i=1♦Ipi G(k, I) =
∧k

i=1�Ipi

U(k, I) = (· · · (p1 UI p2) UI · · ·) UI pk R(k, I) = (· · · (p1 RI p2)RI · · ·)RI pk

θ(k, I) = ¬((
∧k

i=1�♦pi)⇒ �(q ⇒ ♦I r)) µ(k) =
∧k

i=1♦[3(i−1),3i]ti ∧ �¬p

Formula MightyL LTSmin Uppaal
F (5, [0,∞)) 9ms 3.48s/2.18s/0.12s 0.75s
F (5, [0, 2]) 7ms 3.76s/2.23s/0.15s 0.84s
F (5, [2,∞)) 6ms 3.76s/2.26s/0.91s 1.64s
F (3, [1, 2]) 70ms 6m5.15s/38.01s/0.22s 9.00s
F (5, [1, 2]) 70ms >15m 2m6s
G(5, [0,∞)) 10ms 3.83s/2.43s/0.05s 0.75s
G(5, [0, 2]) 10ms 4.01s/2.51s/0.10s 0.82s
G(5, [2,∞)) 9ms 4.06s/2.47s/0.04s 0.85s
G(5, [1, 2]) 15ms 7.81s/2.99s/0.09s 1.12s

µ(1) 13ms - 0.39s
µ(2) 21ms - 2.33s
µ(3) 76ms - 15.77s
µ(4) 87ms - 2m23s

Formula MightyL LTSmin Uppaal
U(5, [0,∞)) 16ms 1.90s/1.44s/0.05s 0.41s
U(5, [0, 2]) 8ms 2.08s/1.54s/0.06s 0.42s
U(5, [2,∞)) 8ms 2.08s/1.53s/0.09s 0.52s
U(3, [1, 2]) 49ms 4m0.14s/23.54s/0.09s 4.92s
U(5, [1, 2]) 97ms >15m 21.80s
R(5, [0,∞)) 7ms 1.86s/1.42s/0.03s 0.40s
R(5, [0, 2]) 7ms 1.97s/1.44s/0.03s 0.40s
R(5, [2,∞)) 7ms 1.92s/1.42s/0.03s 0.42s
R(5, [1, 2]) 10ms 5.37s/2.16s/0.04s 0.62s

θ(1, [100, 1000]) 9ms 1.88s/1.74s/0.04s 0.25s
θ(2, [100, 1000]) 13ms 5.04s/3.17s/0.19s 0.86s
θ(3, [100, 1000]) 14ms 36.57s/16.27s/3.20s 21.84s
θ(4, [100, 1000]) 15ms 5m30s/4m18s/2m16s 18m39s

Formula MightyL LTSmin Uppaal SMT-based approach
♦[0,30](p ⇒ �[0,20]p) valid 7ms 0.98s 0.32s 7s
�[0,30]¬p ∨ ♦[0,20]p valid 7ms 0.95s 0.14s not considered

♦[0,30]p ∧ ♦[0,20]p redundant 13ms 1.99s 0.44s 14s
�[0,20]♦[0,20]p ∧ �[0,40]p ∧ ♦[20,40]> redundant 22ms 1m26s 2.63s not considered

24 / 46

http://depinf-pc5.ulb.ac.be/~mightyl/

Experiments

We have implemented the translation in the tool MightyL.

F (k, I) =
∧k

i=1♦Ipi G(k, I) =
∧k

i=1�Ipi

U(k, I) = (· · · (p1 UI p2) UI · · ·) UI pk R(k, I) = (· · · (p1 RI p2)RI · · ·)RI pk

θ(k, I) = ¬((
∧k

i=1�♦pi)⇒ �(q ⇒ ♦I r)) µ(k) =
∧k

i=1♦[3(i−1),3i]ti ∧ �¬p

Formula MightyL LTSmin Uppaal
F (5, [0,∞)) 9ms 3.48s/2.18s/0.12s 0.75s
F (5, [0, 2]) 7ms 3.76s/2.23s/0.15s 0.84s
F (5, [2,∞)) 6ms 3.76s/2.26s/0.91s 1.64s
F (3, [1, 2]) 70ms 6m5.15s/38.01s/0.22s 9.00s
F (5, [1, 2]) 70ms >15m 2m6s
G(5, [0,∞)) 10ms 3.83s/2.43s/0.05s 0.75s
G(5, [0, 2]) 10ms 4.01s/2.51s/0.10s 0.82s
G(5, [2,∞)) 9ms 4.06s/2.47s/0.04s 0.85s
G(5, [1, 2]) 15ms 7.81s/2.99s/0.09s 1.12s

µ(1) 13ms - 0.39s
µ(2) 21ms - 2.33s
µ(3) 76ms - 15.77s
µ(4) 87ms - 2m23s

Formula MightyL LTSmin Uppaal
U(5, [0,∞)) 16ms 1.90s/1.44s/0.05s 0.41s
U(5, [0, 2]) 8ms 2.08s/1.54s/0.06s 0.42s
U(5, [2,∞)) 8ms 2.08s/1.53s/0.09s 0.52s
U(3, [1, 2]) 49ms 4m0.14s/23.54s/0.09s 4.92s
U(5, [1, 2]) 97ms >15m 21.80s
R(5, [0,∞)) 7ms 1.86s/1.42s/0.03s 0.40s
R(5, [0, 2]) 7ms 1.97s/1.44s/0.03s 0.40s
R(5, [2,∞)) 7ms 1.92s/1.42s/0.03s 0.42s
R(5, [1, 2]) 10ms 5.37s/2.16s/0.04s 0.62s

θ(1, [100, 1000]) 9ms 1.88s/1.74s/0.04s 0.25s
θ(2, [100, 1000]) 13ms 5.04s/3.17s/0.19s 0.86s
θ(3, [100, 1000]) 14ms 36.57s/16.27s/3.20s 21.84s
θ(4, [100, 1000]) 15ms 5m30s/4m18s/2m16s 18m39s

Formula MightyL LTSmin Uppaal SMT-based approach
♦[0,30](p ⇒ �[0,20]p) valid 7ms 0.98s 0.32s 7s
�[0,30]¬p ∨ ♦[0,20]p valid 7ms 0.95s 0.14s not considered

♦[0,30]p ∧ ♦[0,20]p redundant 13ms 1.99s 0.44s 14s
�[0,20]♦[0,20]p ∧ �[0,40]p ∧ ♦[20,40]> redundant 22ms 1m26s 2.63s not considered

24 / 46

http://depinf-pc5.ulb.ac.be/~mightyl/

Summary for the satisfiability/model-checking of MITL

Contributions:

I A compositional translation from MITL to timed automata

I An implementation that works with Uppaal and the like

Possible future directions:

I Native support for ECL

I Past modalities, counting modalities

I Antichain-based optimisations

I ...

25 / 46

Summary for the satisfiability/model-checking of MITL

Contributions:

I A compositional translation from MITL to timed automata

I An implementation that works with Uppaal and the like

Possible future directions:

I Native support for ECL

I Past modalities, counting modalities

I Antichain-based optimisations

I ...

25 / 46

Part 2: reactive synthesis

Based on a joint work with Thomas Brihaye (UMONS),
Morgane Estiévenart (UMONS), Gilles Geeraerts (ULB),

Hsi-Ming Ho (UMONS) and Nathalie Sznajder (LIP6, UPMC)

Published at FORMATS 2016 @ Quebec City

26 / 46

Reactive synthesis
Σ = ΣC] ΣE

I controllable actions owned by controller C:
{MoveUp,MoveDown,OpenDoor,Opened, . . .}

I uncontrollable actions owned by environment E:
{0F-Up, 0F-Down, . . . , -1F, 0F, . . .Open,Close, . . .}

+ state (at which floor, opening, . . .)

+ timing restrictions (latency, . . .)

=

Plant P: a DTA over Σ

0F

0 TO 1

0 TO -1

1F

· · ·

· · ·

· · ·

ΣE

ΣE ΣE

ΣE

MoveUp

x := 0

Arrive

x = 5

MoveDown

x := 0

27 / 46

Reactive synthesis
Σ = ΣC] ΣE

I controllable actions owned by controller C:
{MoveUp,MoveDown,OpenDoor,Opened, . . .}

I uncontrollable actions owned by environment E:
{0F-Up, 0F-Down, . . . , -1F, 0F, . . .Open,Close, . . .}

+ state (at which floor, opening, . . .)

+ timing restrictions (latency, . . .)

=

Plant P: a DTA over Σ

0F

0 TO 1

0 TO -1

1F

· · ·

· · ·

· · ·

ΣE

ΣE ΣE

ΣE

MoveUp

x := 0

Arrive

x = 5

MoveDown

x := 0

27 / 46

Reactive synthesis
Σ = ΣC] ΣE

I controllable actions owned by controller C:
{MoveUp,MoveDown,OpenDoor,Opened, . . .}

I uncontrollable actions owned by environment E:
{0F-Up, 0F-Down, . . . , -1F, 0F, . . .Open,Close, . . .}

+ state (at which floor, opening, . . .)

+ timing restrictions (latency, . . .)

=

Plant P: a DTA over Σ

0F

0 TO 1

0 TO -1

1F

· · ·

· · ·

· · ·

ΣE

ΣE ΣE

ΣE

MoveUp

x := 0

Arrive

x = 5

MoveDown

x := 0

27 / 46

Reactive synthesis
Σ = ΣC] ΣE

I controllable actions owned by controller C:
{MoveUp,MoveDown,OpenDoor,Opened, . . .}

I uncontrollable actions owned by environment E:
{0F-Up, 0F-Down, . . . , -1F, 0F, . . .Open,Close, . . .}

+ state (at which floor, opening, . . .)

+ timing restrictions (latency, . . .)

=

Plant P: a DTA over Σ

0F

0 TO 1

0 TO -1

1F

· · ·

· · ·

· · ·

ΣE

ΣE ΣE

ΣE

MoveUp

x := 0

Arrive

x = 5

MoveDown

x := 0

27 / 46

Reactive synthesis
Σ = ΣC] ΣE

I controllable actions owned by controller C:
{MoveUp,MoveDown,OpenDoor,Opened, . . .}

I uncontrollable actions owned by environment E:
{0F-Up, 0F-Down, . . . , -1F, 0F, . . .Open,Close, . . .}

+ state (at which floor, opening, . . .)

+ timing restrictions (latency, . . .)

=

Plant P: a DTA over Σ

0F

0 TO 1

0 TO -1

1F

· · ·

· · ·

· · ·

ΣE

ΣE ΣE

ΣE

MoveUp

x := 0

Arrive

x = 5

MoveDown

x := 0

27 / 46

Reactive synthesis

A run of P can be seen as a play of the timed game between C and E.

In each round, each player proposes a pair (delay, action) enabled in P:

CLOSING

CloseDoor

x := 0
Closed

x = 2

Open

(∆C ,Closed) (∆E ,Open)

Only action(s) with the shortest delay min(∆C ,∆E) may be played.

28 / 46

Reactive synthesis

A run of P can be seen as a play of the timed game between C and E.
In each round, each player proposes a pair (delay, action) enabled in P:

CLOSING

CloseDoor

x := 0
Closed

x = 2

Open

(∆C ,Closed) (∆E ,Open)

Only action(s) with the shortest delay min(∆C ,∆E) may be played.

28 / 46

Reactive synthesis

A run of P can be seen as a play of the timed game between C and E.
In each round, each player proposes a pair (delay, action) enabled in P:

CLOSING

CloseDoor

x := 0
Closed

x = 2

Open

(∆C ,Closed) (∆E ,Open)

Only action(s) with the shortest delay min(∆C ,∆E) may be played.

28 / 46

Reactive synthesis

A run of P can be seen as a play of the timed game between C and E.
In each round, each player proposes a pair (delay, action) enabled in P:

CLOSING

CloseDoor

x := 0
Closed

x = 2

Open

(∆C ,Closed) (∆E ,Open)

Only action(s) with the shortest delay min(∆C ,∆E) may be played.

28 / 46

Reactive synthesis

A run of P can be seen as a play of the timed game between C and E.
In each round, each player proposes a pair (delay, action) enabled in P:

CLOSING

CloseDoor

x := 0
Closed

x = 2

Open

(∆C ,Closed) (∆E ,Open)

Only action(s) with the shortest delay min(∆C ,∆E) may be played.

28 / 46

Reactive synthesis

‘The lift responds to any call in less than 10 t.u.’

· · ·

· · ·

· · ·

1F-Up

x := 0

MoveUp

x < 10

-1F-Up

x := 0
MoveDown

x < 10

Specification L: a set of timed words over Σ

Reactive synthesis problem (RS)

Given plant P and specification L, find a strategy of Controller such that
no matter what Environment does, every play satisfies the specification.

Realizability problem: the special case where all actions are always
enabled, i.e., P is a universal DTA over Σ.

29 / 46

Reactive synthesis

‘The lift responds to any call in less than 10 t.u.’

· · ·

· · ·

· · ·

1F-Up

x := 0

MoveUp

x < 10

-1F-Up

x := 0
MoveDown

x < 10

Specification L: a set of timed words over Σ

Reactive synthesis problem (RS)

Given plant P and specification L, find a strategy of Controller such that
no matter what Environment does, every play satisfies the specification.

Realizability problem: the special case where all actions are always
enabled, i.e., P is a universal DTA over Σ.

29 / 46

Reactive synthesis

‘The lift responds to any call in less than 10 t.u.’

· · ·

· · ·

· · ·

1F-Up

x := 0

MoveUp

x < 10

-1F-Up

x := 0
MoveDown

x < 10

Specification L: a set of timed words over Σ

Reactive synthesis problem (RS)

Given plant P and specification L, find a strategy of Controller such that
no matter what Environment does, every play satisfies the specification.

Realizability problem: the special case where all actions are always
enabled, i.e., P is a universal DTA over Σ.

29 / 46

Reactive synthesis

‘The lift responds to any call in less than 10 t.u.’

· · ·

· · ·

· · ·

1F-Up

x := 0

MoveUp

x < 10

-1F-Up

x := 0
MoveDown

x < 10

Specification L: a set of timed words over Σ

Reactive synthesis problem (RS)

Given plant P and specification L, find a strategy of Controller such that
no matter what Environment does, every play satisfies the specification.

Realizability problem: the special case where all actions are always
enabled, i.e., P is a universal DTA over Σ.

29 / 46

Reactive synthesis

‘The lift responds to any call in less than 10 t.u.’

· · ·

· · ·

· · ·

1F-Up

x := 0

MoveUp

x < 10

-1F-Up

x := 0
MoveDown

x < 10

Specification L: a set of timed words over Σ

Reactive synthesis problem (RS)

Given plant P and specification L, find a strategy of Controller such that
no matter what Environment does, every play satisfies the specification.

Realizability problem: the special case where all actions are always
enabled, i.e., P is a universal DTA over Σ.

29 / 46

Metric Temporal Logic (MTL)

ϕ ::= > | a | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ

with a ∈ Σ, I ⊆ [0,∞) with bounds in Q ∪ {+∞}

Models: finite (or infinite) timed words σ = (a1, t1)(a2, t2) · · ·

Theorem: [Doyen, Geeraerts, Raskin, and Reichert, 2009]

Reactive synthesis problem is undecidable for ECL (hence, MTL) specifi-
cations, even without plant.

30 / 46

A toy example

Let P be a universal plant, and the spec be

‘Each a is followed exactly 1 t.u. later by a b.’

As an MTL formula:

�(a =⇒ ¬♦>1> ∨ ♦=1b)

CONTROLLABLE for RS: C acknowledges each a (in chronological
order)
by playing a b 1 t.u. after

I C requires unbounded memory: unboundedly many a’s in 1 t.u.

NOT CONTROLLABLE for IRS

I each T has a bounded set of clocks

Theorem: [Doyen, Geeraerts, Raskin, and Reichert, 2009]

The infinite-word realizability problem is undecidable for ECL specifica-
tions.

31 / 46

A toy example

Let P be a universal plant, and the spec be

‘Each a is followed exactly 1 t.u. later by a b.’

As an MTL formula:

�(a =⇒ ¬♦>1> ∨ ♦=1b)

CONTROLLABLE for RS: C acknowledges each a (in chronological
order)
by playing a b 1 t.u. after

I C requires unbounded memory: unboundedly many a’s in 1 t.u.

NOT CONTROLLABLE for IRS

I each T has a bounded set of clocks

Theorem: [Doyen, Geeraerts, Raskin, and Reichert, 2009]

The infinite-word realizability problem is undecidable for ECL specifica-
tions.

31 / 46

A toy example

Let P be a universal plant, and the spec be

‘Each a is followed exactly 1 t.u. later by a b.’

As an MTL formula:

�(a =⇒ ¬♦>1> ∨ ♦=1b)

CONTROLLABLE for RS: C acknowledges each a (in chronological
order)
by playing a b 1 t.u. after

I C requires unbounded memory: unboundedly many a’s in 1 t.u.

NOT CONTROLLABLE for IRS

I each T has a bounded set of clocks

Theorem: [Doyen, Geeraerts, Raskin, and Reichert, 2009]

The infinite-word realizability problem is undecidable for ECL specifica-
tions.

31 / 46

A toy example

Let P be a universal plant, and the spec be

‘Each a is followed exactly 1 t.u. later by a b.’

As an MTL formula:

�(a =⇒ ¬♦>1> ∨ ♦=1b)

CONTROLLABLE for RS: C acknowledges each a (in chronological
order)
by playing a b 1 t.u. after

I C requires unbounded memory: unboundedly many a’s in 1 t.u.

NOT CONTROLLABLE for IRS

I each T has a bounded set of clocks

Theorem: [Doyen, Geeraerts, Raskin, and Reichert, 2009]

The infinite-word realizability problem is undecidable for ECL specifica-
tions.

31 / 46

A toy example

Let P be a universal plant, and the spec be

‘Each a is followed exactly 1 t.u. later by a b.’

As an MTL formula:

�(a =⇒ ¬♦>1> ∨ ♦=1b)

CONTROLLABLE for RS: C acknowledges each a (in chronological
order)
by playing a b 1 t.u. after

I C requires unbounded memory: unboundedly many a’s in 1 t.u.

NOT CONTROLLABLE for IRS

I each T has a bounded set of clocks

Theorem: [Doyen, Geeraerts, Raskin, and Reichert, 2009]

The infinite-word realizability problem is undecidable for ECL specifica-
tions.

31 / 46

Implementable reactive synthesis (IRS)

C = deterministic symbolic transition system T
I set of locations; if finite → T is a DTA

I finite set of clocks X

I finite set of possible clock constraints precision (m,K):

g ::= > | g∧g | x < α/m | x 6 α/m | x = α/m | x > α/m | x > α/m

with x ∈ X , m ∈ N and 0 6 α 6 K .

Definition

Implementable reactive synthesis problem (IRS): Given P and L, find
such a T that no matter what E does, every play satisfies the specification.

32 / 46

Implementable reactive synthesis (IRS)

C = deterministic symbolic transition system T
I set of locations; if finite → T is a DTA

I finite set of clocks X

I finite set of possible clock constraints precision (m,K):

g ::= > | g∧g | x < α/m | x 6 α/m | x = α/m | x > α/m | x > α/m

with x ∈ X , m ∈ N and 0 6 α 6 K .

Definition

Implementable reactive synthesis problem (IRS): Given P and L, find
such a T that no matter what E does, every play satisfies the specification.

32 / 46

A toy example

Let P be a universal plant, and the spec be

‘Each a is followed exactly 1 t.u. later by a b.’

As an MTL formula:

�(a =⇒ ¬♦>1> ∨ ♦=1b)

CONTROLLABLE for RS: C acknowledges each a (in chronological
order)
by playing a b 1 t.u. after

I C requires unbounded memory: unboundedly many a’s in 1 t.u.

NOT CONTROLLABLE for IRS

I each T has a bounded set of clocks

Theorem: [Doyen, Geeraerts, Raskin, and Reichert, 2009]

The infinite-word realizability problem is undecidable for ECL specifica-
tions.

33 / 46

A toy example

Let P be a universal plant, and the spec be

‘Each a is followed exactly 1 t.u. later by a b.’

As an MTL formula:

�(a =⇒ ¬♦>1> ∨ ♦=1b)

CONTROLLABLE for RS: C acknowledges each a (in chronological
order)
by playing a b 1 t.u. after

I C requires unbounded memory: unboundedly many a’s in 1 t.u.

NOT CONTROLLABLE for IRS

I each T has a bounded set of clocks

Theorem: [Doyen, Geeraerts, Raskin, and Reichert, 2009]

The infinite-word realizability problem is undecidable for ECL specifica-
tions.

33 / 46

Reactive synthesis for MTL
Reactive synthesis Undec. [Doyen, Geeraerts, Raskin, and Reichert, 2009]

Implementable reactive synthesis Undec. [Bouyer, Bozzelli, and Chevalier, 2006]

Controller = timed automaton

34 / 46

Reactive synthesis for MTL
Reactive synthesis Undec. [Doyen, Geeraerts, Raskin, and Reichert, 2009]

Implementable reactive synthesis Undec. [Bouyer, Bozzelli, and Chevalier, 2006]

Controller = timed automaton

34 / 46

Recovering decidability...

Clock constraints in T :

g ::= > | g ∧ g | x < α/m | x 6 α/m | x = α/m | x > α/m | x > α/m

with x ∈ X , m ∈ N and 0 6 α 6 K .

Fix X and (m,K) =⇒ the alphabet of T is given!

Definition

Bounded-resources reactive synthesis problem (BResRS): Given P, L,
and a set of clocks X and precision (m,K), find such a resource-bounded
T that no matter what E does, every play satisfies the specification.

35 / 46

Recovering decidability...

Clock constraints in T :

g ::= > | g ∧ g | x < α/m | x 6 α/m | x = α/m | x > α/m | x > α/m

with x ∈ X , m ∈ N and 0 6 α 6 K .

Fix X and (m,K) =⇒ the alphabet of T is given!

Definition

Bounded-resources reactive synthesis problem (BResRS): Given P, L,
and a set of clocks X and precision (m,K), find such a resource-bounded
T that no matter what E does, every play satisfies the specification.

35 / 46

Recovering decidability...

Clock constraints in T :

g ::= > | g ∧ g | x < α/m | x 6 α/m | x = α/m | x > α/m | x > α/m

with x ∈ X , m ∈ N and 0 6 α 6 K .

Fix X and (m,K) =⇒ the alphabet of T is given!

Definition

Bounded-resources reactive synthesis problem (BResRS): Given P, L,
and a set of clocks X and precision (m,K), find such a resource-bounded
T that no matter what E does, every play satisfies the specification.

35 / 46

Reactive synthesis for MTL
Reactive synthesis Undec. [Doyen, Geeraerts, Raskin, and Reichert, 2009]

Implementable reactive synthesis Undec. [Bouyer, Bozzelli, and Chevalier, 2006]

Controller = timed automaton

Clocks- and precision-bounded reactive synthesis
Dec. & Non-elem. over finite words [Bouyer, Bozzelli, and Chevalier, 2006]

Bounding resources
of controller

Clocks-bounded reactive synthesis

Undec.

Precision-bounded reactive synthesis

Undec.

36 / 46

Reactive synthesis for MTL
Reactive synthesis Undec. [Doyen, Geeraerts, Raskin, and Reichert, 2009]

Implementable reactive synthesis Undec. [Bouyer, Bozzelli, and Chevalier, 2006]

Controller = timed automaton

Clocks- and precision-bounded reactive synthesis
Dec. & Non-elem. over finite words [Bouyer, Bozzelli, and Chevalier, 2006]

Bounding resources
of controller

Clocks-bounded reactive synthesis

Undec.

Precision-bounded reactive synthesis

Undec.

36 / 46

Reactive synthesis for MTL
Reactive synthesis Undec. [Doyen, Geeraerts, Raskin, and Reichert, 2009]

Implementable reactive synthesis Undec. [Bouyer, Bozzelli, and Chevalier, 2006]

Controller = timed automaton

Clocks- and precision-bounded reactive synthesis
Dec. & Non-elem. over finite words [Bouyer, Bozzelli, and Chevalier, 2006]

Bounding resources
of controller

Clocks-bounded reactive synthesis

Undec.

Precision-bounded reactive synthesis

Undec.

36 / 46

Reactive synthesis for MTL
Reactive synthesis Undec. [Doyen, Geeraerts, Raskin, and Reichert, 2009]

Implementable reactive synthesis Undec. [Bouyer, Bozzelli, and Chevalier, 2006]

Controller = timed automaton

Clocks- and precision-bounded reactive synthesis
Dec. & Non-elem. over finite words [Bouyer, Bozzelli, and Chevalier, 2006]

Bounding resources
of controller

Clocks-bounded reactive synthesis
Undec.

Precision-bounded reactive synthesis
Undec.

36 / 46

Regaining hope? Less expressive specifications

Undecidability proofs heavily use ‘punctuality’ of MTL:
request → ♦=1grant

request → ♦[1,2]grant

request → ♦63grant

MITL = non-punctual fragment of MTL:

ϕ ::= > | a | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ

with a ∈ Σ, I ⊆ [0,∞) is a non-singular with bounds in Q ∪ {+∞}

37 / 46

Contribution: reactive synthesis for MITL
Reactive synthesis

Undec. (even without plant)

Implementable reactive synthesis

Undec.

Controller = timed automaton

Clocks- and precision-bounded reactive synthesis

Dec. & 3-EXPTIME over finite words [D’Souza and Madhusudan, 2002]

On-the-fly algo: interval sem. [Brihaye, Estiévenart, and Geeraerts, 2013]

Bounding resources
of controller

Clocks-bounded reactive synthesis

Undec.

Precision-bounded reactive synthesis

Undec.

38 / 46

Contribution: reactive synthesis for MITL
Reactive synthesis Undec. (even without plant)

Implementable reactive synthesis

Undec.

Controller = timed automaton

Clocks- and precision-bounded reactive synthesis

Dec. & 3-EXPTIME over finite words [D’Souza and Madhusudan, 2002]

On-the-fly algo: interval sem. [Brihaye, Estiévenart, and Geeraerts, 2013]

Bounding resources
of controller

Clocks-bounded reactive synthesis

Undec.

Precision-bounded reactive synthesis

Undec.

38 / 46

Contribution: reactive synthesis for MITL
Reactive synthesis Undec. (even without plant)

Implementable reactive synthesis Undec.

Controller = timed automaton

Clocks- and precision-bounded reactive synthesis

Dec. & 3-EXPTIME over finite words [D’Souza and Madhusudan, 2002]

On-the-fly algo: interval sem. [Brihaye, Estiévenart, and Geeraerts, 2013]

Bounding resources
of controller

Clocks-bounded reactive synthesis

Undec.

Precision-bounded reactive synthesis

Undec.

38 / 46

Contribution: reactive synthesis for MITL
Reactive synthesis Undec. (even without plant)

Implementable reactive synthesis Undec.

Controller = timed automaton

Clocks- and precision-bounded reactive synthesis

Dec. & 3-EXPTIME over finite words [D’Souza and Madhusudan, 2002]

On-the-fly algo: interval sem. [Brihaye, Estiévenart, and Geeraerts, 2013]

Bounding resources
of controller

Clocks-bounded reactive synthesis
Undec.

Precision-bounded reactive synthesis
Undec.

38 / 46

Contribution: reactive synthesis for MITL
Reactive synthesis Undec. (even without plant)

Implementable reactive synthesis Undec.

Controller = timed automaton

Clocks- and precision-bounded reactive synthesis
Dec. & 3-EXPTIME over finite words [D’Souza and Madhusudan, 2002]

On-the-fly algo: interval sem. [Brihaye, Estiévenart, and Geeraerts, 2013]

Bounding resources
of controller

Clocks-bounded reactive synthesis
Undec.

Precision-bounded reactive synthesis
Undec.

38 / 46

Contribution: reactive synthesis for MITL
Reactive synthesis Undec. (even without plant)

Implementable reactive synthesis Undec.

Controller = timed automaton

Clocks- and precision-bounded reactive synthesis
Dec. & 3-EXPTIME over finite words [D’Souza and Madhusudan, 2002]

On-the-fly algo: interval sem. [Brihaye, Estiévenart, and Geeraerts, 2013]

Bounding resources
of controller

Clocks-bounded reactive synthesis
Undec.

Precision-bounded reactive synthesis
Undec.

38 / 46

From MTL to OCATA

ϕ = �(a⇒ ♦[[1, 2]]b)

� ♦

b

a y := 0

a

b

y ∈ [1, 2]

Execution on the timed word (a, 0.5)(a, 0.6)(a, 1.2)(b, 2.3):

�0

�0.5

�0.6

�1.2 �2.3

♦0
y = 1.1

♦0 ♦0.6
y = 1.7

♦0 ♦0.1 ♦0.7
y = 1.8

39 / 46

From MTL to OCATA

ϕ = �(a⇒ ♦[[1, 2]]b)

� ♦

b

a y := 0

a

b

y ∈ [1, 2]

Execution on the timed word (a, 0.5)(a, 0.6)(a, 1.2)(b, 2.3):

�0

�0.5

�0.6

�1.2 �2.3

♦0
y = 1.1

♦0 ♦0.6
y = 1.7

♦0 ♦0.1 ♦0.7
y = 1.8

39 / 46

Bounded-resources reactive synthesis for MTL

I Action (a, g ,R)
I a: an action in ΣC ∪ ΣC

I g : guard over clocks of X and XP
I R: resets of clocks of X

(q, {H1,H2, . . . ,Hn})

(q′, {H ′
1,H

′
2, . . . ,H

′
n′})

a, g ,R

I Finite abstraction is a (time-abstract) bisimulation

I Sufficient to detect when a bad configuration has been reached: one
Hi contains only accepting locations of the OCATA A (≡ ¬ϕ)

I If tree finite and winning strategy: we have a (finite) controller T

40 / 46

Bounded-resources reactive synthesis for MTL

I Action (a, g ,R)
I a: an action in ΣC ∪ ΣC

I g : guard over clocks of X and XP
I R: resets of clocks of X

(q, {H1,H2, . . . ,Hn})

(q′, {H ′
1,H

′
2, . . . ,H

′
n′})

a, g ,R

I Finite abstraction is a (time-abstract) bisimulation

I Sufficient to detect when a bad configuration has been reached: one
Hi contains only accepting locations of the OCATA A (≡ ¬ϕ)

I If tree finite and winning strategy: we have a (finite) controller T

40 / 46

Bounded-resources reactive synthesis for MTL

I Action (a, g ,R)
I a: an action in ΣC ∪ ΣC

I g : guard over clocks of X and XP
I R: resets of clocks of X

(q, {H1,H2, . . . ,Hn})

(q′, {H ′
1,H

′
2, . . . ,H

′
n′})

a, g ,R

I Finite abstraction is a (time-abstract) bisimulation

I Sufficient to detect when a bad configuration has been reached: one
Hi contains only accepting locations of the OCATA A (≡ ¬ϕ)

I If tree finite and winning strategy: we have a (finite) controller T

40 / 46

Bounded-resources reactive synthesis for MTL

I Action (a, g ,R)
I a: an action in ΣC ∪ ΣC

I g : guard over clocks of X and XP
I R: resets of clocks of X

(q, {H1,H2, . . . ,Hn})

(q′, {H ′
1,H

′
2, . . . ,H

′
n′})

a, g ,R

I Finite abstraction is a (time-abstract) bisimulation

I Sufficient to detect when a bad configuration has been reached: one
Hi contains only accepting locations of the OCATA A (≡ ¬ϕ)

I If tree finite and winning strategy: we have a (finite) controller T

40 / 46

Make the tree finite

For MTL specifications [Bouyer, Bozzelli, and Chevalier, 2006]: stop the
computation with a well-quasi order v on the labels of the nodes

u1

u2

u3

u4

u5 u6

v

v

I Correctness: this finite tree is sufficient to answer the problem

I Complexity: non-primitive recursive due to well-quasi orderings

41 / 46

Make the tree finite

For MTL specifications [Bouyer, Bozzelli, and Chevalier, 2006]: stop the
computation with a well-quasi order v on the labels of the nodes

u1

u2

u3

u4

u5 u6

v

v

I Correctness: this finite tree is sufficient to answer the problem

I Complexity: non-primitive recursive due to well-quasi orderings

41 / 46

Make the tree finite

For MTL specifications [Bouyer, Bozzelli, and Chevalier, 2006]: stop the
computation with a well-quasi order v on the labels of the nodes

u1

u2

u3

u4

u5 u6

v

v

I Correctness: this finite tree is sufficient to answer the problem

I Complexity: non-primitive recursive due to well-quasi orderings

41 / 46

Make the tree finite

For MTL specifications [Bouyer, Bozzelli, and Chevalier, 2006]: stop the
computation with a well-quasi order v on the labels of the nodes

u1

u2

u3

u4

u5 u6

v

v

I Correctness: this finite tree is sufficient to answer the problem

I Complexity: non-primitive recursive due to well-quasi orderings

41 / 46

Make the tree finite

For MTL specifications [Bouyer, Bozzelli, and Chevalier, 2006]: stop the
computation with a well-quasi order v on the labels of the nodes

u1

u2

u3

u4

u5 u6

v

v

I Correctness: this finite tree is sufficient to answer the problem

I Complexity: non-primitive recursive due to well-quasi orderings

41 / 46

Make the tree finite for MITL

I The tree is finite by using interval semantics for OCATA [Brihaye,

Estiévenart, and Geeraerts, 2013]: triply-exponential size

I We obtain the same complexity as [D’Souza and Madhusudan, 2002], but
with an on-the-fly exploration: may terminate more quickly

I Experimental results on a scheduling problem
Realisable instances

T n # clocks exec. time (sec) / #nodes

1 1 0 46 / 52
1 1 1 199 / 147
1 1 2 4,599 / 1,343
2 2 1 2,632 / 645
2 2 2 18,453 / 2,358
3 3 1 182,524 / 2,297
3 3 2 >5min
4 4 0 54,893 / 667
4 4 1 >5min

Unealisable instances

T n # clocks exec. time (sec) / #nodes

2 1 0 77 / 84
2 1 1 824 / 311
2 1 2 3,079 / 1,116
3 2 1 17,134 / 1698
3 2 2 >5min
4 3 0 10,621 / 540
4 3 1 >5min

I Can handle small but non-trivial examples: but do not scale well

I This was before MightyL, which could make things easier...

42 / 46

Make the tree finite for MITL

I The tree is finite by using interval semantics for OCATA [Brihaye,

Estiévenart, and Geeraerts, 2013]: triply-exponential size

I We obtain the same complexity as [D’Souza and Madhusudan, 2002], but
with an on-the-fly exploration: may terminate more quickly

I Experimental results on a scheduling problem
Realisable instances

T n # clocks exec. time (sec) / #nodes

1 1 0 46 / 52
1 1 1 199 / 147
1 1 2 4,599 / 1,343
2 2 1 2,632 / 645
2 2 2 18,453 / 2,358
3 3 1 182,524 / 2,297
3 3 2 >5min
4 4 0 54,893 / 667
4 4 1 >5min

Unealisable instances

T n # clocks exec. time (sec) / #nodes

2 1 0 77 / 84
2 1 1 824 / 311
2 1 2 3,079 / 1,116
3 2 1 17,134 / 1698
3 2 2 >5min
4 3 0 10,621 / 540
4 3 1 >5min

I Can handle small but non-trivial examples: but do not scale well

I This was before MightyL, which could make things easier...

42 / 46

Make the tree finite for MITL

I The tree is finite by using interval semantics for OCATA [Brihaye,

Estiévenart, and Geeraerts, 2013]: triply-exponential size

I We obtain the same complexity as [D’Souza and Madhusudan, 2002], but
with an on-the-fly exploration: may terminate more quickly

I Experimental results on a scheduling problem
Realisable instances

T n # clocks exec. time (sec) / #nodes

1 1 0 46 / 52
1 1 1 199 / 147
1 1 2 4,599 / 1,343
2 2 1 2,632 / 645
2 2 2 18,453 / 2,358
3 3 1 182,524 / 2,297
3 3 2 >5min
4 4 0 54,893 / 667
4 4 1 >5min

Unealisable instances

T n # clocks exec. time (sec) / #nodes

2 1 0 77 / 84
2 1 1 824 / 311
2 1 2 3,079 / 1,116
3 2 1 17,134 / 1698
3 2 2 >5min
4 3 0 10,621 / 540
4 3 1 >5min

I Can handle small but non-trivial examples: but do not scale well

I This was before MightyL, which could make things easier...

42 / 46

Make the tree finite for MITL

I The tree is finite by using interval semantics for OCATA [Brihaye,

Estiévenart, and Geeraerts, 2013]: triply-exponential size

I We obtain the same complexity as [D’Souza and Madhusudan, 2002], but
with an on-the-fly exploration: may terminate more quickly

I Experimental results on a scheduling problem
Realisable instances

T n # clocks exec. time (sec) / #nodes

1 1 0 46 / 52
1 1 1 199 / 147
1 1 2 4,599 / 1,343
2 2 1 2,632 / 645
2 2 2 18,453 / 2,358
3 3 1 182,524 / 2,297
3 3 2 >5min
4 4 0 54,893 / 667
4 4 1 >5min

Unealisable instances

T n # clocks exec. time (sec) / #nodes

2 1 0 77 / 84
2 1 1 824 / 311
2 1 2 3,079 / 1,116
3 2 1 17,134 / 1698
3 2 2 >5min
4 3 0 10,621 / 540
4 3 1 >5min

I Can handle small but non-trivial examples: but do not scale well

I This was before MightyL, which could make things easier...

42 / 46

Make the tree finite for MITL

I The tree is finite by using interval semantics for OCATA [Brihaye,

Estiévenart, and Geeraerts, 2013]: triply-exponential size

I We obtain the same complexity as [D’Souza and Madhusudan, 2002], but
with an on-the-fly exploration: may terminate more quickly

I Experimental results on a scheduling problem
Realisable instances

T n # clocks exec. time (sec) / #nodes

1 1 0 46 / 52
1 1 1 199 / 147
1 1 2 4,599 / 1,343
2 2 1 2,632 / 645
2 2 2 18,453 / 2,358
3 3 1 182,524 / 2,297
3 3 2 >5min
4 4 0 54,893 / 667
4 4 1 >5min

Unealisable instances

T n # clocks exec. time (sec) / #nodes

2 1 0 77 / 84
2 1 1 824 / 311
2 1 2 3,079 / 1,116
3 2 1 17,134 / 1698
3 2 2 >5min
4 3 0 10,621 / 540
4 3 1 >5min

I Can handle small but non-trivial examples: but do not scale well

I This was before MightyL, which could make things easier...

42 / 46

Summary for the reactive synthesis for MITL
For almost all reactive synthesis problems, MITL is as hard as MTL...

... except for resources-bounded problem over finite words:
I Non-elementary for MTL;
I 3-EXPTIME for MITL;
I on-the-fly algorithm

Other fragments?? Hopeless!
Safety-MTL coFlat-MTL Open-MITL Closed-MITL

implementable RS undec. undec. undec. undec.
clock-bounded RS undec. undec. undec. undec.

precision-bounded RS undec. undec. undec. undec.

Possible future directions:
I Decidable fragments for BPrecRS/BClockRS
I Heuristics for speed-up for the on-the-fly algorithm: well-quasi

orderings as in [Bouyer, Bozzelli, and Chevalier, 2006], zone-based
versions?

I Experiments of the on-the-fly algorithm over the fragments
I Robustness of controllers

Thank you for your attention! Questions?

43 / 46

Summary for the reactive synthesis for MITL
For almost all reactive synthesis problems, MITL is as hard as MTL...

... except for resources-bounded problem over finite words:
I Non-elementary for MTL;
I 3-EXPTIME for MITL;
I on-the-fly algorithm

Other fragments?? Hopeless!
Safety-MTL coFlat-MTL Open-MITL Closed-MITL

implementable RS undec. undec. undec. undec.
clock-bounded RS undec. undec. undec. undec.

precision-bounded RS undec. undec. undec. undec.

Possible future directions:
I Decidable fragments for BPrecRS/BClockRS
I Heuristics for speed-up for the on-the-fly algorithm: well-quasi

orderings as in [Bouyer, Bozzelli, and Chevalier, 2006], zone-based
versions?

I Experiments of the on-the-fly algorithm over the fragments
I Robustness of controllers

Thank you for your attention! Questions?

43 / 46

Summary for the reactive synthesis for MITL
For almost all reactive synthesis problems, MITL is as hard as MTL...

... except for resources-bounded problem over finite words:
I Non-elementary for MTL;
I 3-EXPTIME for MITL;
I on-the-fly algorithm

Other fragments?? Hopeless!
Safety-MTL coFlat-MTL Open-MITL Closed-MITL

implementable RS
clock-bounded RS

precision-bounded RS

Safety-MTL coFlat-MTL Open-MITL Closed-MITL
implementable RS undec. undec. undec. undec.
clock-bounded RS undec. undec. undec. undec.

precision-bounded RS undec. undec. undec. undec.

Possible future directions:
I Decidable fragments for BPrecRS/BClockRS
I Heuristics for speed-up for the on-the-fly algorithm: well-quasi

orderings as in [Bouyer, Bozzelli, and Chevalier, 2006], zone-based
versions?

I Experiments of the on-the-fly algorithm over the fragments
I Robustness of controllers

Thank you for your attention! Questions?

43 / 46

Summary for the reactive synthesis for MITL
For almost all reactive synthesis problems, MITL is as hard as MTL...

... except for resources-bounded problem over finite words:
I Non-elementary for MTL;
I 3-EXPTIME for MITL;
I on-the-fly algorithm

Other fragments?? Hopeless!
Safety-MTL coFlat-MTL Open-MITL Closed-MITL

implementable RS undec. undec. undec. undec.
clock-bounded RS undec. undec. undec. undec.

precision-bounded RS undec. undec. undec. undec.

Possible future directions:
I Decidable fragments for BPrecRS/BClockRS
I Heuristics for speed-up for the on-the-fly algorithm: well-quasi

orderings as in [Bouyer, Bozzelli, and Chevalier, 2006], zone-based
versions?

I Experiments of the on-the-fly algorithm over the fragments
I Robustness of controllers

Thank you for your attention! Questions?

43 / 46

Summary for the reactive synthesis for MITL
For almost all reactive synthesis problems, MITL is as hard as MTL...

... except for resources-bounded problem over finite words:
I Non-elementary for MTL;
I 3-EXPTIME for MITL;
I on-the-fly algorithm

Other fragments?? Hopeless!
Safety-MTL coFlat-MTL Open-MITL Closed-MITL

implementable RS undec. undec. undec. undec.
clock-bounded RS undec. undec. undec. undec.

precision-bounded RS undec. undec. undec. undec.

Possible future directions:
I Decidable fragments for BPrecRS/BClockRS
I Heuristics for speed-up for the on-the-fly algorithm: well-quasi

orderings as in [Bouyer, Bozzelli, and Chevalier, 2006], zone-based
versions?

I Experiments of the on-the-fly algorithm over the fragments
I Robustness of controllers

Thank you for your attention! Questions?

43 / 46

Summary for the reactive synthesis for MITL
For almost all reactive synthesis problems, MITL is as hard as MTL...

... except for resources-bounded problem over finite words:
I Non-elementary for MTL;
I 3-EXPTIME for MITL;
I on-the-fly algorithm

Other fragments?? Hopeless!
Safety-MTL coFlat-MTL Open-MITL Closed-MITL

implementable RS undec. undec. undec. undec.
clock-bounded RS undec. undec. undec. undec.

precision-bounded RS undec. undec. undec. undec.

Possible future directions:
I Decidable fragments for BPrecRS/BClockRS
I Heuristics for speed-up for the on-the-fly algorithm: well-quasi

orderings as in [Bouyer, Bozzelli, and Chevalier, 2006], zone-based
versions?

I Experiments of the on-the-fly algorithm over the fragments
I Robustness of controllers

Thank you for your attention! Questions?
43 / 46

References I

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science, 126
(2):183–235, 1994.

Rajeev Alur and Thomas A. Henzinger. A really temporal logic. In 30th Annual Symposium on
Foundations of Computer Science (FOCS’89), pages 164–169. IEEE Computer Society Press,
1989. doi: 10.1109/SFCS.1989.63473.

Rajeev Alur, Costas A. Courcoubetis, and David L. Dill. Model-checking for real-time systems. In
Proceedings of the Fifth Annual Symposium on Logic in Computer Science (LICS ’90), pages
414–425. IEEE Computer Society Press, 1990. doi: 10.1109/LICS.1990.113766.

Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality.
Journal of the ACM, 43(1):116–146, 1996.

Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata: A determinizable class
of timed automata. Theoretical Computer Science, 211(1-2):253–273, 1999.

Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro. An SMT-based approach to
satisfiability checking of MITL. Information and Computation, 245:72–97, 2015.

Patricia Bouyer, Laura Bozzelli, and Fabrice Chevalier. Controller synthesis for MTL specifications.
In Proceedings of the 17th International Conference on Concurrency Theory (CONCUR’06),
volume 4137 of Lecture Notes in Computer Science, pages 450–464. Springer, 2006.

Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts. On MITL and alternating timed
automata. In Proceedings of the 11th international conference on Formal Modeling and
Analysis of Timed Systems (FORMATS’13), volume 8053 of Lecture Notes in Computer
Science, pages 47–61. Springer, 2013.

Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts. On MITL and alternating timed
automata of infinite words. In Proceedings of the 12th International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS’14), volume 8711 of Lecture Notes in
Computer Science. Springer, 2014.

44 / 46

References II

Laurent Doyen, Gilles Geeraerts, Jean-François Raskin, and Julien Reichert. Realizability of
real-time logics. In Proceedings of the 7th International Conference on Formal Modeling and
Analysis of Timed Systems (FORMATS’09), volume 5813 of Lecture Notes in Computer
Science, pages 133–148. Springer, 2009.

Deepak D’Souza and P. Madhusudan. Timed control synthesis for external specifications. In
Proceedings of the 19th Annual conference on Theoretical Aspects of Computer Science
(STACS’02), volume 2285 of Lecture Notes in Computer Science, pages 571–582. Springer,
2002.

Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation. In Proceedings of the
13th International Conference on Computer Aided Verification (CAV’01), volume 2102 of
Lecture Notes in Computer Science, pages 53–65. Springer, 2001.

Thomas A. Henzinger. It’s about time: Real-time logics reviewed. In Proceedings of the 9th
International Conference on Concurrency Theory (CONCUR ’98), volume 1466 of Lecture
Notes in Computer Science, pages 439–454. Springer, 1998. doi: 10.1007/BFb0055640.

Thomas A. Henzinger, Jean-François Raskin, and Pierre-Yves Schobbens. The regular real-time
languages. In Proceedings of the 25th International Colloquium on Automata, Languages and
Programming (ICALP’98), volume 1443 of Lecture Notes in Computer Science, pages 580–591.
Springer, 1998. doi: 10.1007/BFb0055086.

Roland Kindermann, Tommi A. Junttila, and Ilkka Niemelä. Bounded model checking of an MITL
fragment for timed automata. In Proceedings of the 13th International Conference on
Application of Concurrency to System Design (ACSD’13), pages 216–225. IEEE Computer
Society Press, 2013. doi: 10.1109/ACSD.2013.25.

Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems, 2
(4):255–299, 1990.

45 / 46

References III
Oded Maler, Dejan Nickovic, and Amir Pnueli. Real time temporal logic: Past, present, future. In

Proceedings of the Third International Conference on Formal Modeling and Analysis of Timed
Systems (FORMATS’05), volume 3829 of Lecture Notes in Computer Science, pages 2–16.
Springer, 2005.

Satoru Miyano and Takeshi Hayashi. Alternating finite automata on omega-words. Theoretical
Computer Science, 32:321–330, 1984. doi: 10.1016/0304-3975(84)90049-5.

Joël Ouaknine and James Worrell. On the decidability of metric temporal logic. In Proceedings of
the 20th Annual Symposium on Logic in Computer Science (LICS’05), pages 188–197. IEEE
Computer Society Press, 2005.

Joël Ouaknine and James Worrell. Safety metric temporal logic is fully decidable. In Proceedings
of the 12th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’06), volume 3920 of Lecture Notes in Computer Science, pages 411–425.
Springer, 2006.

Jean-François Raskin and Pierre-Yves Schobbens. The logic of event clocks: Decidability,
complexity and expressiveness. Journal of Automata, Languages and Combinatorics, 4(3):
247–282, 1999.

Moshe Y. Vardi. Reasoning about the past with two-way automata. In Kim G. Larsen, Sven
Skyum, and Glynn Winskel, editors, Automata, Languages and Programming, volume 1443 of
Lecture Notes in Computer Science, pages 628–641, 1998.

Thomas Wilke. Specifying timed state sequences in powerful decidable logics and timed automata.
In Formal Techniques in Real-Time and Fault-Tolerant Systems, volume 863 of Lecture Notes
in Computer Science, pages 694–715. Springer, 1994.

Bożena Woźna-Szcześniak, Ireneusz Szcześniak, Agnieszka M. Zbrzezny, and Andrzej Zbrzezny.
Bounded model checking for weighted interpreted systems and for flat weighted epistemic
computation tree logic. In Proceedings of the 17th International Conference on Principles and
Practice of Multi-Agent Systems (PRIMA’14), volume 8861 of Lecture Notes in Artificial
Intelligence, pages 107–115. Springer, 2014.

46 / 46

