
PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata and

transitive closure logics

Benjamin Monmege

Benedikt Bollig, Paul Gastin, Marc Zeitoun

LSV, ENS Cachan, CNRS, INRIA.

ICALP 2010

July 10, 2010

1/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Motivations

Sequential setting: automata on (finite) words.

◮ Weighted automata: quantitative extension of classical automata.
◮ Classical: decide whether a given word is accepted or not,
◮ Weighted: compute a value in a semiring from input word.

◮ Weighted logics: a formula evaluated on a word produces a value.
◮ How often does a Boolean property hold?
◮ Is the number of nodes selected by a request at least 10?

◮ In this talk, we focus on expressiveness. Boolean setting:

Automata = FO+TC = MSO = EMSO = . . .

2/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Expressivity in weighted setting

wMSO

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Expressivity in weighted setting

wMSO

wAutomata

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Expressivity in weighted setting

wMSO

wAutomata

wFO

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Expressivity in weighted setting

wMSO

wAutomata

wFO
?

3/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Weighted automata
◮ Transitions carry weights from a semiring K = (K , +,×, 0, 1).

p qka

4/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Weighted automata
◮ Transitions carry weights from a semiring K = (K , +,×, 0, 1).

p qka

◮ Weight of a run: product of all transition weights in the semiring.

weight(p0

k1a1−−−→ p1

k2a2−−−→ · · ·
knan−−−→ pn) = k1k2 · · · kn

◮ Weight of a word: sum of all weights of runs on this word.

JAK(w) =
∑

ρ run of A on w

weight(ρ)

4/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Weighted automata
◮ Transitions carry weights from a semiring K = (K , +,×, 0, 1).

p qka

◮ Weight of a run: product of all transition weights in the semiring.

weight(p0

k1a1−−−→ p1

k2a2−−−→ · · ·
knan−−−→ pn) = k1k2 · · · kn

◮ Weight of a word: sum of all weights of runs on this word.

JAK(w) =
∑

ρ run of A on w

weight(ρ)

Example: Semirings

◮ B = ({0, 1},∨,∧, 0, 1) Boolean.

◮ P = (R+
, +,×, 0, 1) Probabilistic.

◮ N = (N, +,×, 0, 1) Natural.

◮ T = (N ∪ {∞}, min, +,∞, 0) Tropical.

4/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Examples of weighted automata

◮ Alphabet Σ, on (N, +,×, 0, 1)

2Σ

JAK(u) = 2|u| (deterministic)

◮ Alphabet Σ = {a, b}, on (Z, +,×, 0, 1)

1Σ 1Σ

1a

−1b
JAK(u) = |u|a − |u|b

◮ Alphabet {a, b, c}, on (N ∪ {∞}, min, +,∞, 0)

2b

1b

2a

4a

1c

2c

JAK(abnc) =

{
3 + 2n if n ≤ 3
6 + n if n ≥ 4

5/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Weighted automata cannot compute large weights

Lemma

A = (Q, µ) weighted automaton on N. There exists M such that

JAK(u) = O(M |u|).

◮ There are O(|Q||u|) runs on u,

◮ Each of which of weight exponential in |u| = n: k1 · · · kn ≤ (max k i)
n.

6/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Weighted MSO

Definition: Syntax of wMSO

ϕ ::= k | Pa(x) | x ≤ y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x ϕ | ∀x ϕ | ∃X ϕ | ∀X ϕ

where k ∈ K , a ∈ Σ, x , y are first-order variables, X is a set variable.

Definition: Semantics

◮ A formula ϕ without free variables defines a mapping JϕK : Σ+ → K .

◮ First order variables are interpreted as positions in the word.

◮ Pa(x) means “position x carries an a”.

◮ x ≤ y means “position x is before position y ”.

7/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Weighted MSO

Definition: Syntax of wMSO

ϕ ::= k | Pa(x) | x ≤ y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x ϕ | ∀x ϕ | ∃X ϕ | ∀X ϕ

where k ∈ K , a ∈ Σ, x , y are first-order variables, X is a set variable.

Definition: Semantics

◮ A formula ϕ without free variables defines a mapping JϕK : Σ+ → K .

◮ First order variables are interpreted as positions in the word.

◮ Pa(x) means “position x carries an a”.

◮ x ≤ y means “position x is before position y ”.

◮ Jϕ1 ∨ ϕ2K = Jϕ1K + Jϕ2K and Jϕ1 ∧ ϕ2K = Jϕ1K× Jϕ2K.

◮ ∃x ϕ interpreted as a sum over all positions.

◮ ∀x ϕ interpreted as a product over all positions.

7/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

wMSO: examples

◮ J∃x Pa(x)K = |u|a recognizable

◮ J∃x Pa(x) ∨ ∃x [−1 ∧ Pb(x)]K = |u|a − |u|b recognizable

◮ J∀y 2K(u) = 2|u|. recognizable

8/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

wMSO: examples

◮ J∃x Pa(x)K = |u|a recognizable

◮ J∃x Pa(x) ∨ ∃x [−1 ∧ Pb(x)]K = |u|a − |u|b recognizable

◮ J∀y 2K(u) = 2|u|. recognizable

◮ J∀x ∀y 2K(u) = 2|u|
2
. not recognizable

◮ =⇒ Recognizable are not stable under universal quantification.

8/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

wMSO: examples

◮ J∃x Pa(x)K = |u|a recognizable

◮ J∃x Pa(x) ∨ ∃x [−1 ∧ Pb(x)]K = |u|a − |u|b recognizable

◮ J∀y 2K(u) = 2|u|. recognizable

◮ J∀x ∀y 2K(u) = 2|u|
2
. not recognizable

◮ =⇒ Recognizable are not stable under universal quantification.

[DG’05] defined wRMSO, a fragment of wMSO (no second order universal
quantifications, and first order universal quantifications restricted over simple

formulas)

Theorem (Droste & Gastin’05)

Weighted automata = wRMSO

(effective translation).

8/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Another way of thinking ?

wMSO

wRMSO = wA

wFO

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Another way of thinking ?

wMSO

wRMSO = wA

wFO
?

◮ Extension of weighted automata to obtain a bigger class of power series : in
particular closed by first order quantifications

◮ Express the new model in an extension of weighted first order logic

9/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata
◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

u
⊲ ⊳

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata
◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

⊲ ⊳

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata
◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

⊲ ⊳

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata
◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

⊲ ⊳

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata
◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

⊲ ⊳

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata
◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

⊲ ⊳1

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata
◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

⊲ ⊳1

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata
◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

⊲ ⊳1

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata
◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

⊲ ⊳1 2

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata
◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

⊲ ⊳1 2

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata
◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

⊲ ⊳1 2

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata
◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

⊲ ⊳1 23

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata
◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

⊲ ⊳1 23

◮ Applicable transitions depend on current (state,letter,pebbles).

(p, ka, Pebbles, D, q), where D ∈ {←,→, lift, drop}.

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata
◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

⊲ ⊳1 23

◮ Applicable transitions depend on current (state,letter,pebbles).

(p, ka, Pebbles, D, q), where D ∈ {←,→, lift, drop}.
◮ Stack policy : only the most recently dropped pebble may be lifted

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata
◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

⊲ ⊳1 23

◮ Applicable transitions depend on current (state,letter,pebbles).

(p, ka, Pebbles, D, q), where D ∈ {←,→, lift, drop}.
◮ Stack policy : only the most recently dropped pebble may be lifted

◮ Weak pebbles : liftable only at the position of the pebble

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata
◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

⊲ ⊳1 23

◮ Applicable transitions depend on current (state,letter,pebbles).

(p, ka, Pebbles, D, q), where D ∈ {←,→, lift, drop}.
◮ Stack policy : only the most recently dropped pebble may be lifted

◮ Weak pebbles : liftable only at the position of the pebble

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata
◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

⊲ ⊳1 2

◮ Applicable transitions depend on current (state,letter,pebbles).

(p, ka, Pebbles, D, q), where D ∈ {←,→, lift, drop}.
◮ Stack policy : only the most recently dropped pebble may be lifted

◮ Weak pebbles : liftable only at the position of the pebble

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata

◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

◮ Applicable transitions depend on current (state,letter,pebbles).

(p, ka, Pebbles, D, q), where D ∈ {←,→, lift, drop}.

◮ Stack policy : only the most recently dropped pebble may be lifted

◮ Weak pebbles : liftable only at the position of the pebble

◮ Note. For Boolean word automata, this does not add expressive power.

2Σ

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata

◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

◮ Applicable transitions depend on current (state,letter,pebbles).

(p, ka, Pebbles, D, q), where D ∈ {←,→, lift, drop}.

◮ Stack policy : only the most recently dropped pebble may be lifted

◮ Weak pebbles : liftable only at the position of the pebble

2Σ, ∗,→Σ, ∗,← Σ, ∅,←

⊲, ∗,→ Σ, ∗, drop ⊲, ∗,→ ⊳, ∗,← Σ, •, lift

Σ ∪ {⊳}, ∗,→

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata

◮ Automaton with 2-way mechanism and pebbles {1, . . . , r}.

◮ Applicable transitions depend on current (state,letter,pebbles).

(p, ka, Pebbles, D, q), where D ∈ {←,→, lift, drop}.

◮ Stack policy : only the most recently dropped pebble may be lifted

◮ Weak pebbles : liftable only at the position of the pebble

2Σ, ∗,→Σ, ∗,← Σ, ∅,←

⊲, ∗,→ Σ, ∗, drop ⊲, ∗,→ ⊳, ∗,← Σ, •, lift

Σ ∪ {⊳}, ∗,→

◮ Computes 2|u|
2
: pebbles add expressive power.

10/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata are stable under wFO

Definition: Weighted First-order logic

ϕ ::= k | Pa(x) | x ≤ y | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x ϕ | ∀x ϕ

where k ∈ K , a ∈ Σ, x , y are first-order variables.

11/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata are stable under wFO

Lemma

Pebble weighted automata are stable under wFO constructs.

Proof idea for ∀: consider a p-pebble automaton A over Σx , we want to
compute ∀x A(x). Add first pebble interpreted as free variable.

Drop pebble 1 successively on each position.

Ã

11/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata are stable under wFO

Lemma

Pebble weighted automata are stable under wFO constructs.

Proof idea for ∀: consider a p-pebble automaton A over Σx , we want to
compute ∀x A(x). Add first pebble interpreted as free variable.

Drop pebble 1 successively on each position.

Ã

Σ, ∗,← Σ, ∅,←

⊲, ∗,→ Σ, ∗, drop ⊲, ∗,→ ⊳, ∗,← Σ, •, lift

Σ ∪ {⊳}, ∗,→

11/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted automata are stable under wFO

Lemma

Pebble weighted automata are stable under wFO constructs.

Proof idea for ∀: consider a p-pebble automaton A over Σx , we want to
compute ∀x A(x). Add first pebble interpreted as free variable.

Drop pebble 1 successively on each position.

Ã

Σ, ∗,← Σ, ∅,←

⊲, ∗,→ Σ, ∗, drop ⊲, ∗,→ ⊳, ∗,← Σ, •, lift

Σ ∪ {⊳}, ∗,→

For ∃: nondeterministically drop pebble 1.

Ã

Σ, ∗,→ Σ, ∗,← Σ, ∅,← Σ, ∗,→

⊲, ∗,→ Σ, ∗, drop ⊲, ∗,→ ⊳, ∗,← Σ, •, lift

11/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Pebble weighted Automata vs. wFO

wMSO
pwA=?

wA=wRMSO

wFO

12/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Transitive closure logics

◮ For ϕ with at least two first order free variables, define

ϕ
1(x , y) = ϕ(x , y)

ϕ
n(x , y) = ∃z0 · · · ∃zn

(
x = z0 ∧ zn = y ∧ diff(z0, . . . , zn) ∧

[∧
1≤ℓ≤n ϕ(zℓ−1, zℓ)

])
.

x yz2 z3 z1

ϕ

ϕ

ϕ ϕ

13/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Transitive closure logics

◮ For ϕ with at least two first order free variables, define

ϕ
1(x , y) = ϕ(x , y)

ϕ
n(x , y) = ∃z0 · · · ∃zn

(
x = z0 ∧ zn = y ∧ diff(z0, . . . , zn) ∧

[∧
1≤ℓ≤n ϕ(zℓ−1, zℓ)

])
.

x yz2 z3 z1

ϕ

ϕ

ϕ ϕ

◮ The transitive closure operator is defined by TCxyϕ =
∨

n≥1
ϕ

n
.

13/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Transitive closure logics

◮ For ϕ with at least two first order free variables, define

ϕ
1(x , y) = ϕ(x , y)

ϕ
n(x , y) = ∃z0 · · · ∃zn

(
x = z0 ∧ zn = y ∧ diff(z0, . . . , zn) ∧

[∧
1≤ℓ≤n ϕ(zℓ−1, zℓ)

])
.

x yz2 z3 z1

ϕ

ϕ

ϕ ϕ

◮ The transitive closure operator is defined by TCxyϕ =
∨

n≥1
ϕ

n
.

◮ Bounded transitive closure : N-TCxyϕ = TCxy (x − N ≤ y ≤ x + N ∧ ϕ)

x yz1 z3 z2

≤ N

≤ N

≤ N

13/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Bounded transitive closure and pebble automata

◮ Express N-TCxyϕ with 2 additional pebbles: p-pebble automaton A on Σxy

recognizing JϕK and a word (w , x → i , y → j)

i j

14/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Bounded transitive closure and pebble automata

◮ Express N-TCxyϕ with 2 additional pebbles: p-pebble automaton A on Σxy

recognizing JϕK and a word (w , x → i , y → j)

ji

1

1. B goes to i and drops pebble 1

14/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Bounded transitive closure and pebble automata

◮ Express N-TCxyϕ with 2 additional pebbles: p-pebble automaton A on Σxy

recognizing JϕK and a word (w , x → i , y → j)

ji

1 2

≤ N

1. B goes to i and drops pebble 1

2. Choose nondeterministically a position at distance ≤ N and drops pebble 2

3. B simulates A on w where x and y are mapped to the positions of pebbles

14/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Bounded transitive closure and pebble automata

◮ Express N-TCxyϕ with 2 additional pebbles: p-pebble automaton A on Σxy

recognizing JϕK and a word (w , x → i , y → j)

ji

1

≤ N

1. B goes to i and drops pebble 1

2. Choose nondeterministically a position at distance ≤ N and drops pebble 2

3. B simulates A on w where x and y are mapped to the positions of pebbles

4. B lifts pebble 2 and pebble 1, and drop again pebble 1.

14/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Bounded transitive closure and pebble automata

◮ Express N-TCxyϕ with 2 additional pebbles: p-pebble automaton A on Σxy

recognizing JϕK and a word (w , x → i , y → j)

ji
1

1. B goes to i and drops pebble 1

2. Choose nondeterministically a position at distance ≤ N and drops pebble 2

3. B simulates A on w where x and y are mapped to the positions of pebbles

4. B lifts pebble 2 and pebble 1, and drop again pebble 1.

14/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Bounded transitive closure and pebble automata

◮ Express N-TCxyϕ with 2 additional pebbles: p-pebble automaton A on Σxy

recognizing JϕK and a word (w , x → i , y → j)

ji
1 2

≤ N

1. B goes to i and drops pebble 1

2. Choose nondeterministically a position at distance ≤ N and drops pebble 2

3. B simulates A on w where x and y are mapped to the positions of pebbles

4. B lifts pebble 2 and pebble 1, and drop again pebble 1.

14/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Bounded transitive closure and pebble automata

◮ Express N-TCxyϕ with 2 additional pebbles: p-pebble automaton A on Σxy

recognizing JϕK and a word (w , x → i , y → j)

ji
1

1. B goes to i and drops pebble 1

2. Choose nondeterministically a position at distance ≤ N and drops pebble 2

3. B simulates A on w where x and y are mapped to the positions of pebbles

4. B lifts pebble 2 and pebble 1, and drop again pebble 1.

◮ Question: how to extend this result to unbounded steps ?

14/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Expressiveness

Theorem (Bollig, Gastin, M., Zeitoun)

wFO + TC with bounded steps = weighted pebble automata.

◮ Proof of ⊆ done by the previous slides

◮ Proof of ⊇ generalizes the translation 2-way → 1-way automata.

◮ Uses an intermediate automaton model (nested automata): one-way
automata than can do several runs by marking some positions to keep
informations

15/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Flavor of the proof of ⊇ : 1 pebble → 1 nested

⊲ . . . a b . . . ⊳ 2

p0

→ p1

p2

←p3

p4

drop

p5

p̂5

lift

p6

p7

drop

p8

p̂8

lift

p9

→p10

p11

→

q q′

⊲ . . . (a, 1) . . . ⊳

(p5, 1)

(p̂5, 1)

(p8, 2)

(p̂8, 2)

final

16/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Summary and some short-term questions
Summary:

◮ Pebbles add expressive power in weighted extensions of automata
◮ Natural logical equivalence of pebble jumps and transitive closure steps

wMSO
pwA = wFO+BTC

wA=wRMSO

wFO

17/17

PebbleWA-ICALP.tex 1230 2010-07-07 13:59:03Z bm

Summary and some short-term questions

Summary:

◮ Pebbles add expressive power in weighted extensions of automata

◮ Natural logical equivalence of pebble jumps and transitive closure steps

Perspectives:

1. Algorithms. (SAT is decidable for positive semiring.)

2. Relax bounded assumption.

3. Weak pebbles vs. strong pebbles.

4. Extension of weighted pebbles automata to others structures : trees (and
query language XPath...), infinite words

17/17

