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Priced Timed Games
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x > 1
x := 0, 0

x > 1, 2

Timed Automaton
with partition of states

between 2 players
+ reachability objective

+ rates in locations
+ costs over transitions

Semantics in terms of
infinite game with weights

(`1, 0)
0.4,↘−−−−→(`4, 0.4)

0.6,→−−−−→(`5, 0)
1.5,←−−−−→(`4, 0)

1.1,→−−−−→(`5, 0)
2,↗−−−→(�, 2)

0.4 + 1 −3× 0.6 +1.5 −3× 1.1 +2× 2 + 2 = 3.8

(`1, 0)
0.2,↗−−−−→(`2, 0)

0.9,→−−−−→(`3, 0.9)
0.2,

	

−−−−→(`3, 0)
0.9,

	

−−−−→(`3, 0) · · ·
0.2 +0.9 −0.2 −0.9 · · · = +∞ (� not reached)

Cost of a play:

{
+∞ if � not reached

total payoff up to � otherwise
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Strategies and objectives

1 `1[x 6 1]

2

`2

[x 6 2]

−1

`3

[x 6 2]

−3

`4

[x 6 2]

1

`5

[x 6 2]

� `6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

Strategy for each player: mapping of finite runs to a delay and an action

Goal of player #: reach � and minimize the cost
Goal of player 2: avoid � or, if not possible, maximize the cost

Main object of interest:
Val(`, v) = inf

σ#∈Strat#
sup

σ2∈Strat2

Wt(Play((`, v), σ#, σ2)) ∈ R ∪ {−∞,+∞}

What player # can guarantee as a payoff? and design good strategies
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State of the art

F6K�: ∃ a strategy in the PTG (priced timed game) for player #
reaching � with a cost 6 K?

I One-player case (Priced timed automata): optimal reachability
problem is PSPACE-complete

I Algorithm based on regions [Bouyer, Brihaye, Bruyère, and Raskin,

2007];
I and hardness shown for timed automata with at least 2 clocks

[Fearnley and Jurdziński, 2013, Haase, Ouaknine, and Worrell, 2012]

I 2-player PTGs: undecidable [Bouyer, Brihaye, and Markey, 2006a], even
with only non-negative costs and 3 clocks

I PTGs with non-negative costs and strictly non-Zeno cost
cycles: exponential algorithm [Bouyer, Cassez, Fleury, and Larsen, 2004,

Alur, Bernadsky, and Madhusudan, 2004]

I One-clock PTGs with non-negative costs: exponential algorithm
[Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011, Hansen,

Ibsen-Jensen, and Miltersen, 2013]

This talk: PTGs with negative costs
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[Fearnley and Jurdziński, 2013, Haase, Ouaknine, and Worrell, 2012]

I 2-player PTGs: undecidable [Bouyer, Brihaye, and Markey, 2006a], even
with only non-negative costs and 3 clocks

I PTGs with non-negative costs and strictly non-Zeno cost
cycles: exponential algorithm [Bouyer, Cassez, Fleury, and Larsen, 2004,

Alur, Bernadsky, and Madhusudan, 2004]

I One-clock PTGs with non-negative costs: exponential algorithm
[Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011, Hansen,

Ibsen-Jensen, and Miltersen, 2013]

This talk: PTGs with negative costs
4/12



Undecidability Results:

Constrained-Price Reachability

I Known: F6K� undecidable for 3 or more clocks

Proof by reduction of 2-counter machines: x1 = 1
2c1

, x2 = 1
3c2

, x3 for work

Theorem:
F6K� undecidable for PTGs with 2 or more clocks
idem for F>K�, F>K�, F=K�, F<K�

New encoding: x1 = 1
5c1 7c2

, x2 for work

Simulation of “`k : decrement c1; goto `k+1” for Reach(= 1)

0

`k

−1

Check

0

Go

`k+1

1

Abort

0

T1x2 := 0 x2 = 0

x2 = 0

x2 > 1

−1

L

−5

M

2

N

0

T

x1 = 1

x1 := 0

x2 = 1

x2 := 0

x2 = 1

x2 := 0

x1 6 1

W
D

1

5/12



Other Undecidability Results

Theorem: Time-bounded Reachability

The following problem is undecidable for PTGs with 6 or more clocks:

Input: K ,T ∈ N

Question: F6T
6K�: ∃ strategy for # that reaches �

with cost 6 K within time T?

Theorem: Repeated Reachability

The following problem is undecidable for PTGs with 3 or more clocks:

Input: η > 0
Question: GF[−η,η]�: ∃ strategy for # that visits �

infinitely often with a cost in [−η, η]?

6/12



Regain decidability?
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More complex when negative costs

I Value −∞: detection is as hard as mean-payoff. No hope for
complexity better than NP ∩ co-NP, or pseudo-polynomial

I Memory complexity

I Player # needs memory, even in the untimed setting: as seen in
Axel’s talk

I Player 2 may require infinite memory

0 −1�

x := 0

x > 0
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One-clock Bi-Valued PTGs (1BPTGs)

Assumption: rates of locations {p−, p+} included in {0,+d ,−d}
(d ∈ N) (no assumption on costs of transitions)

1 `1[x 6 1]

1

`2

[x 6 2]

−1

`3

[x 6 2]

−1

`4

[x 6 2]

1

`5

[x 6 2]

� `6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

I Techniques of [Bouyer, Cassez, Fleury, and Larsen, 2004, Alur, Bernadsky, and

Madhusudan, 2004] not applicable, e.g., because of Zeno costs cycles
I Exponential algorithms of [Bouyer, Larsen, Markey, and Rasmussen, 2006b,

Rutkowski, 2011, Hansen, Ibsen-Jensen, and Miltersen, 2013] not working
because of presence of negative costs
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Results

Intuition: it is sufficient for both players to play arbitrarily close to
borders of regions, so that corner-point abstraction [Bouyer, Brinksma, and

Larsen, 2008] can be adapted to this game setting...

Theorem:

I Computation of the value Val(`, v) of states of a 1BPTG in
pseudo-polynomial time

I Synthesis of ε-optimal strategies for player # in pseudo-polynomial
time

Theorem: Non-negative case

In case of a 1BPTG with only non-negative costs, all complexities drop
down to polynomial.
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Sketch of proof

1. Reduce the space of strategies in the 1BPTG
I restrict to uniform strategies w.r.t. timed behaviors

2. Build a finite priced game G
I based on corner-point abstraction

3. Study G
I thanks to the results presented in Axel’s talk

4. Lift results of G to the original 1BPTG
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{0}

{0} [0, η] [1−η, 1) [1, 1+η] [2−η, 2]

{0} (0, η] [1−η, 1) {1} {0}

�

0

1 1
2

2

0
1

1
2

0
0

0

1 1 1

0

0

−1

−1

1

3
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Summary and Future Work

Complete article published in the proceedings of CONCUR 20141

Results
I More undecidability results due to the presence of negative costs

I 1BPTGs are determined: Val(`, v) = Val(`, v)

I Computation of the values, and synthesis of ε-optimal strategies for
both players, in pseudo-polynomial time

I Strategy complexity: finite memory for #, infinite memory for 2
I In case of > 0 prices, non-trivial class of 1-clock PTGs in PTIME

I Lifting of corner point abstraction to quantitative game setting

I Implementation and test of this algorithm for real instances

I Decidability results for a bigger subset of PTGs with negative
weights? careful since players may need to play far from boundaries
in case of 2 clocks, or 1 clock and 3 distinct rates...

1See also http://arxiv.org/abs/1404.5894 for a complete version
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Thank you for your attention

Questions?
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