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Priced Timed Games
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Timed Automaton
with partition of states

between 2 players
+ reachability objective

+ rates in locations
+ costs over transitions

Semantics in terms of
infinite game with weights

(`1, 0)
0.4,↘−−−−→(`4, 0.4)

0.6,→−−−−→(`5, 0)
1.5,←−−−−→(`4, 0)

1.1,→−−−−→(`5, 0)
2,↗−−−→(�, 2)

0.4 + 1 −3× 0.6 +1.5 −3× 1.1 +2× 2 + 2 = 3.8

(`1, 0)
0.2,↗−−−−→(`2, 0)

0.9,→−−−−→(`3, 0.9)
0.2,

	

−−−−→(`3, 0)
0.9,

	

−−−−→(`3, 0) · · ·
0.2 +0.9 −0.2 −0.9 · · · = +∞ (� not reached)

Cost of a play:

{
+∞ if � not reached

total payoff up to � otherwise
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Strategies and objectives
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Strategy for each player: mapping of finite runs to a delay and an action

Goal of player #: reach � and minimize the cost
Goal of player 2: avoid � or, if not possible, maximize the cost

Main object of interest:
Val(`, v) = inf

σ#∈Strat#
sup

σ2∈Strat2

Wt(Play((`, v), σ#, σ2)) ∈ R ∪ {−∞,+∞}
Val(`, v) = sup

σ2∈Strat2

inf
σ#∈Strat#

Wt(Play((`, v), σ#, σ2)) ∈ R ∪ {−∞,+∞}
What can players guarantee as a payoff? and design good strategies
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State of the art
F6K�: ∃ a strategy in the PTG (priced timed game) for player #
reaching � with a cost 6 K?

I One-player case (Priced timed automata): optimal reachability
problem is PSPACE-complete

I Algorithm based on regions [Bouyer, Brihaye, Bruyère, and Raskin,

2007];
I and hardness shown for timed automata with at least 2 clocks

[Fearnley and Jurdziński, 2013, Haase, Ouaknine, and Worrell, 2012]

I 2-player PTGs: undecidable [Brihaye, Bruyère, and Raskin, 2005, Bouyer,

Brihaye, and Markey, 2006a], even with only non-negative costs and 3
clocks

I PTGs with non-negative costs and strictly non-Zeno cost
cycles: exponential algorithm [Bouyer, Cassez, Fleury, and Larsen, 2004,

Alur, Bernadsky, and Madhusudan, 2004]

I One-clock PTGs with non-negative costs: exponential algorithm
[Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011, Hansen,

Ibsen-Jensen, and Miltersen, 2013]

This talk: PTGs with negative costs
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More complex when negative costs

I Value −∞: detection is as hard as mean-payoff. No hope for
complexity better than NP ∩ co-NP, or pseudo-polynomial

I Memory complexity

I Player # needs memory, even in the untimed setting

0 0

�

−1

−w

0

0

I Player 2 may require infinite memory

0 −1�

x := 0

x > 0
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Known results with negative costs [Brihaye, Geeraerts, Krishna,

Manasa, Monmege, and Trivedi, 2014]

I F6K� undecidable for 2 or more clocks

Proof by reduction of 2-counter machines.

I Pseudo-polynomial algorithm for One-clock Bi-valued PTG

Assumption: rates of locations {p−, p+} included in {0,+d ,−d}
(d ∈ N) (no assumption on costs of transitions)

1 `1[x 6 1]

1

`2

[x 6 2]

−1

`3

[x 6 2]

−1

`4

[x 6 2]

1

`5

[x 6 2]

� `6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

Method: Corner point abstraction.
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Solving min-cost reachability games [Brihaye, Geeraerts,

Haddad, and Monmege, 2015]
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1BPTG: maximal fragment for corner-point abstraction

Players may need to play far from corners...

I With 3 weights in {−1, 0,+1}: value 1/2...

0 1
−1

−1
�

x 6 1
x = 1, x := 0

x 6 1 x = 1

x = 1

I With 2 weights in {−1, 0,+1} but 2 clocks: value 1/2...

0 0
1

0

0

1
�

x 6 1, y := 0
y = 0

y = 0

x = 1

x = 1

y = 1

y = 1

8/20



Inspired by other previous techniques for 1-clock PTGs?

[Hansen, Ibsen-Jensen, and Miltersen, 2013]: strategy improvement algorithm

[Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011]: iterative elimination of locations

I precomputation: polynomial-time cascade of simplification of
1-clock PTGs into simple 1-clock PTGs (SPTGs)

I clock bounded by 1, no guards/invariants, no resets

I for SPTGs: compute value functions Val(`, x).
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Figure 1: Example of an SPTG, showing value functions and an optimal strategy profile.

current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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SPTGs with arbitrary weights
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SPTGs with arbitrary weights
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Recursive elimination of states

Intuition from [Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011]:

I Player # prefers to stay as long as possible in locations with
minimal price: add a final location allowing him to stay until the
end, and make the location urgent

I Player 2 prefers to leave as soon as possible in locations with
minimal price: make the location urgent

Problem: intuition not always true... you may have to change decision!
Recursive algorithm + construction of the value functions from right
(x = 1) to left (x = 0)

Challenges with arbitrary weights:

I Proof of correctness does not generalise: initially two distinct proofs
for # and 2

I Proof of termination does not generalise: difficult because of the
double recursion...
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Make a symmetric treatment of # and 2

Theorem
PTGs are determined (Val = Val), and value functions are continuous
(over regions).

Determinacy follows from Gale-Stewart determinacy result...

Advantage: both players are dual...

Theorem
For every SPTG, all value functions are piecewise affine, with at most an
exponential number of cutpoints (in number of locations).
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Make a symmetric treatment of # and 2

Theorem
PTGs are determined (Val = Val), and value functions are continuous
(over regions).

Determinacy follows from Gale-Stewart determinacy result...

Advantage: both players are dual...

Theorem
For every SPTG, all value functions are piecewise affine, with at most an
exponential number of cutpoints (in number of locations).

For general 1-clock PTGs?

I removing guards and invariants: previously used techniques work!

I removing resets: previously, bound the number of resets...
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Bounding the number of resets needed is not possible

−1 0

1

�

x = 1, x := 0

W

x 6 1

x = 1

Player # can guarantee (i.e., ensure to be below) value ε for all ε > 0...

... but cannot obtain 0: hence, no optimal strategy...

... moreover, to obtain ε, # needs to loop at least W + d1/ log εe times
before reaching �!
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Current solution: Reset-acyclic 1-clock PTGs

exponential time algorithm for reset-acyclic 1-clock PTGs with
arbitrary weights
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Summary and Future Work

Results
I Extension of iterative elimination for reset-acyclic 1-clock PTGs with

arbitrary weights

I Study of the value function: determination, upper and lower bound,
number of cutpoints. . .

I Future work: final extension of the result for all 1-clock PTGs?

I Use the result for 1-clock to approximate/compute the value of
general PTGs with adequate structural properties

I Implementation and test of different algorithms on real instances

Thank you for your attention
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