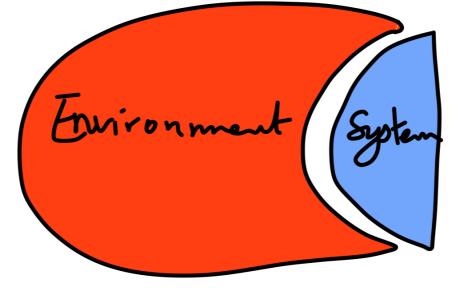
Quantitative Games on Graphs

Benjamin Monmege, Aix-Marseille Université

Séminaire ENS Rennes

Games for synthesis

Crucial to make the critical programs correct



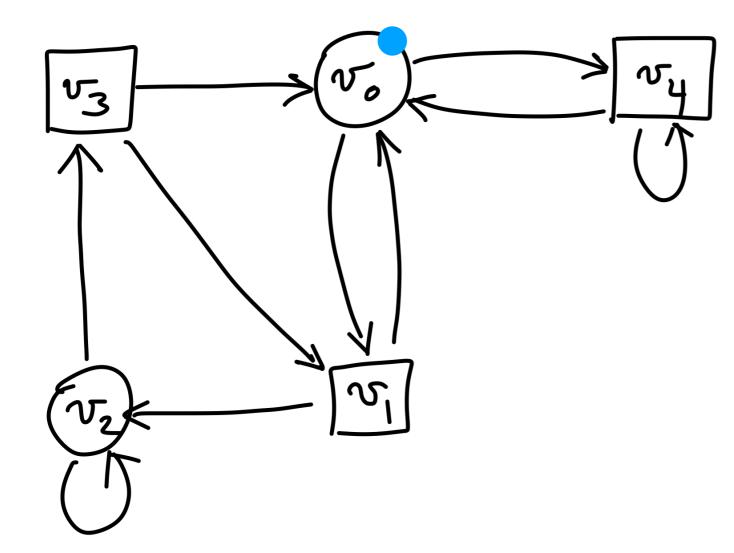
E Specification

Instead of verifying an existing system...

Synthesise a correct-by-design one!

Winning strategy = Correct system

2-player zero-sum games on graphs

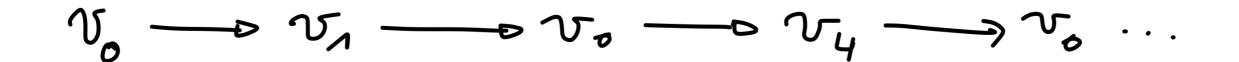


Finite directed graphs Vertices of Player ()

Vertices of Player

Play: move a token along vertices

Infinite number of rounds Outcome: infinite path



Who is winning?

$$Win_{O} \subseteq V^{\omega}$$

set of good outcomes for Player 1

$$\operatorname{Win}_{\Box} = V^{\omega} \backslash \operatorname{Win}_{O}$$

(zero-sum game)

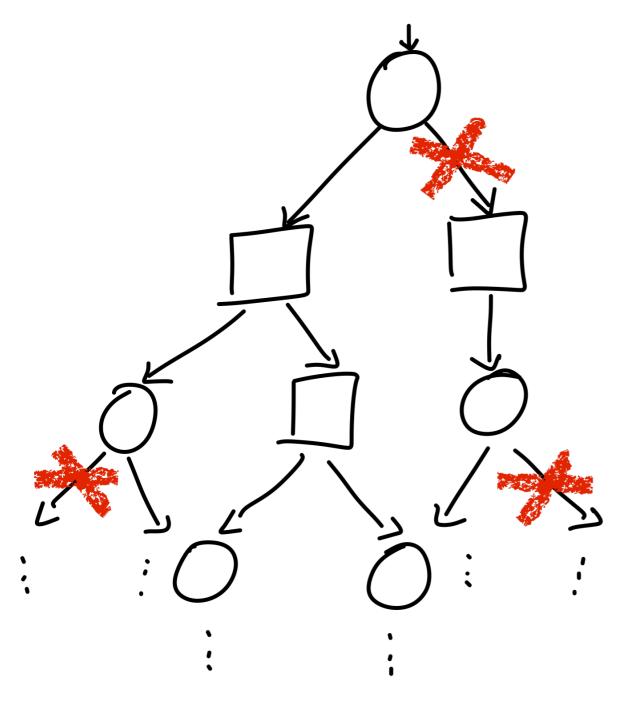
Examples of winning conditions:

 $Win_{O} = \{\pi \mid \pi \text{ visits } Good\}$ reachability

 $Win_O = \{\pi \mid \pi \text{ visits } Good \text{ infinitely often}\}$ Büchi

Strategies

Unfolding of the game graph:



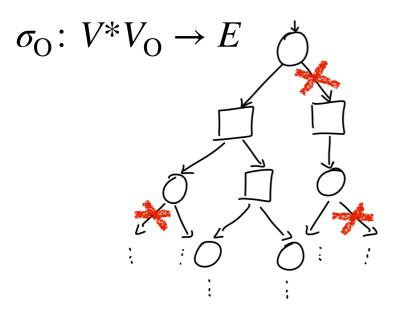
Strategy for Player : one choice in each node of Player in unfolding

$$\sigma_{\rm O} \colon V^* V_{\rm O} \to E$$

Strategy is **winning** if **all paths** of the resulting tree are winning

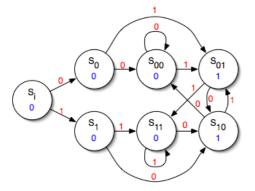
Types of strategies

Strategy (infinite memory)

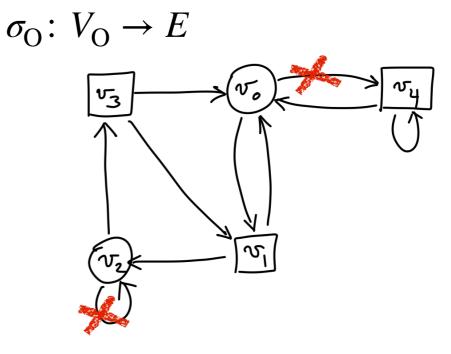


Finite memory strategy

 $\sigma_{\! \rm O} \colon V^* V_{\! \rm O} \to E \quad {\rm representable \ with \ a \ Moore \ machine}$



Memoryless/positional strategy



Randomised strategy

$$\sigma_{\rm O}: V^*V_{\rm O} \to {\rm Distr}(E)$$

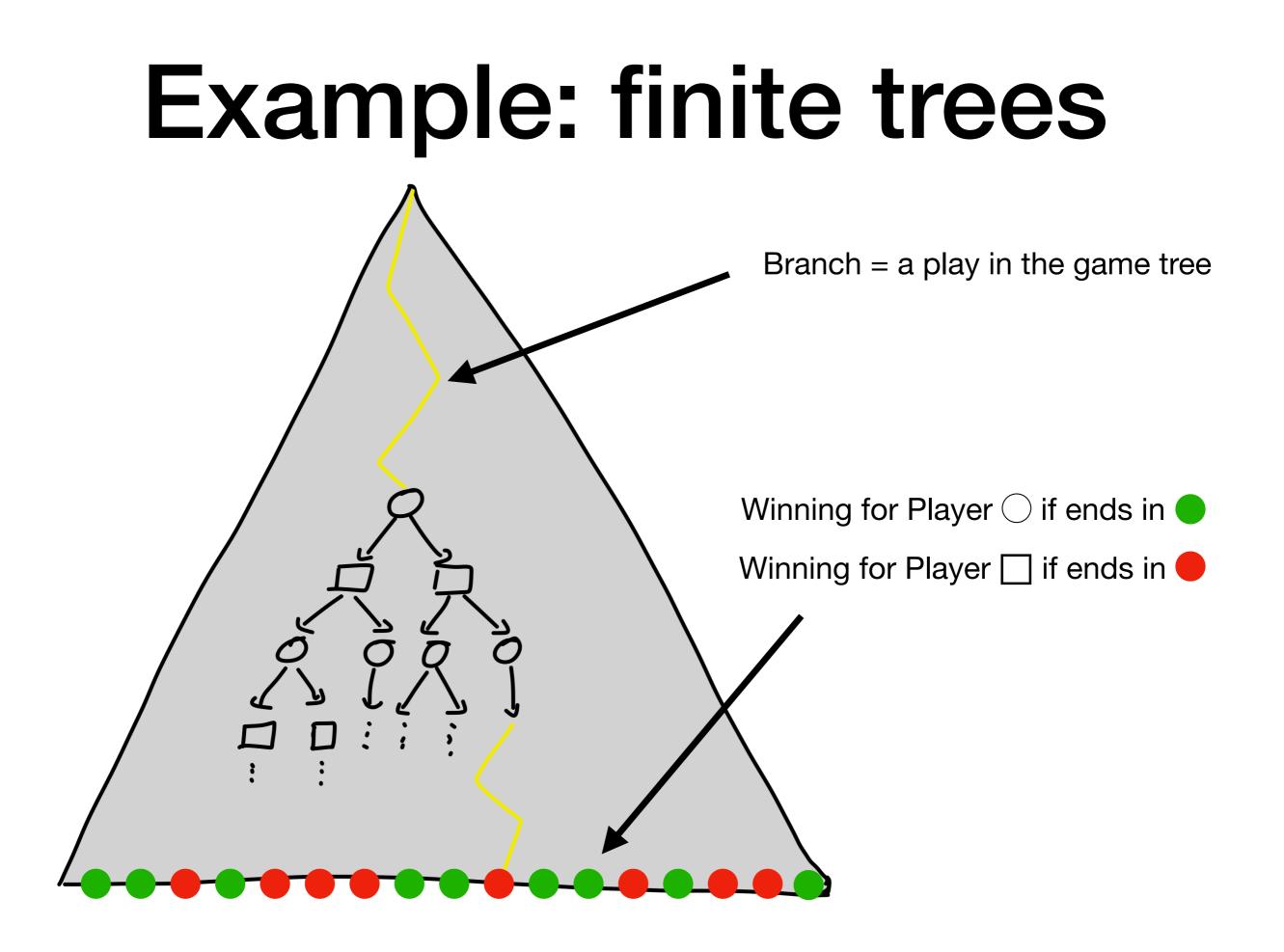
Decision problem

Given a game graph G and a winning condition Win_O decide if Player O has a winning strategy.

What about Player **?**

Determinacy (true in a large class of objectives, e.g. all ω-regular objectives)

either Player \bigcirc has a winning strategy for Win_O or Player \square has a winning strategy for $Win_{\square} = V^{\omega} \setminus Win_O$



Example: finite trees

Zermelo's theorem

either Player O has a strategy to force

or Player in has a strategy to force

= determinacy

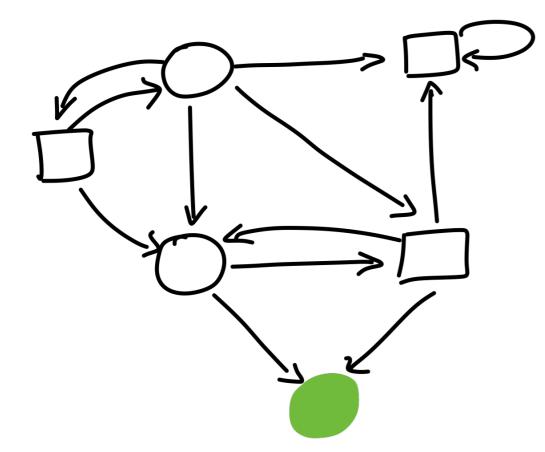
Proof by induction on the depth of the tree

Each node can be labelled bottom-up:

• in green if Player 🔾 can force 🔵 from there

• *in red if Player* a can force from there

Example: reachability in graphs

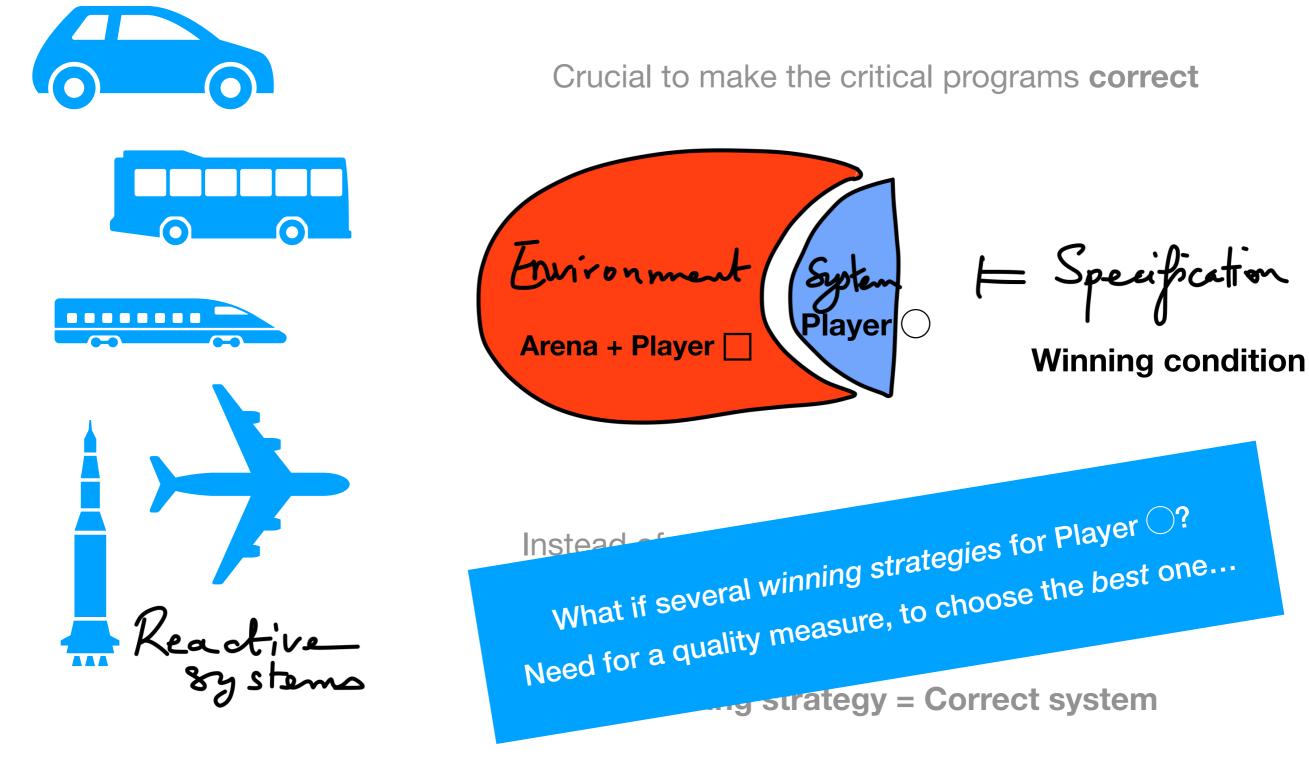


Win_O = {
$$\pi \mid \pi$$
 visits Good}
Win_D = { $\pi \mid \pi$ avoids Good}

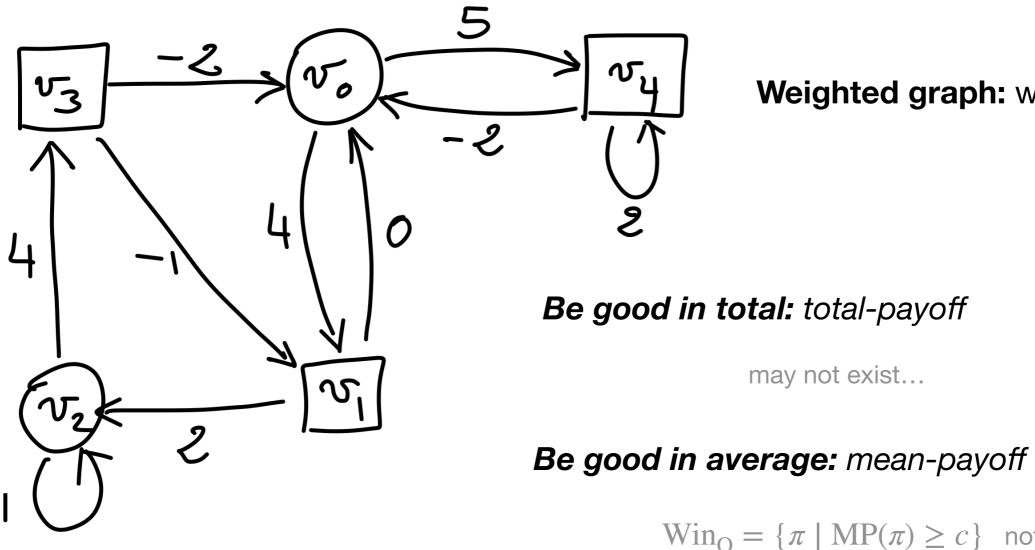
Apply the same bottom-up rule...

...to decide the winner and find winning strategies

Games for synthesis



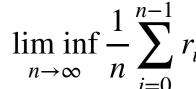
Quantitative games on graphs



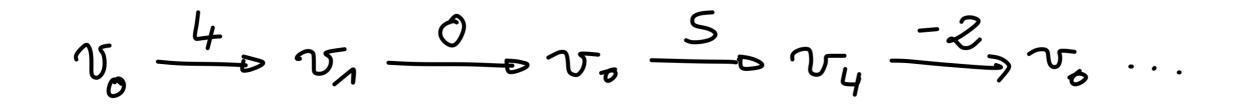
Weighted graph: weights=rewards

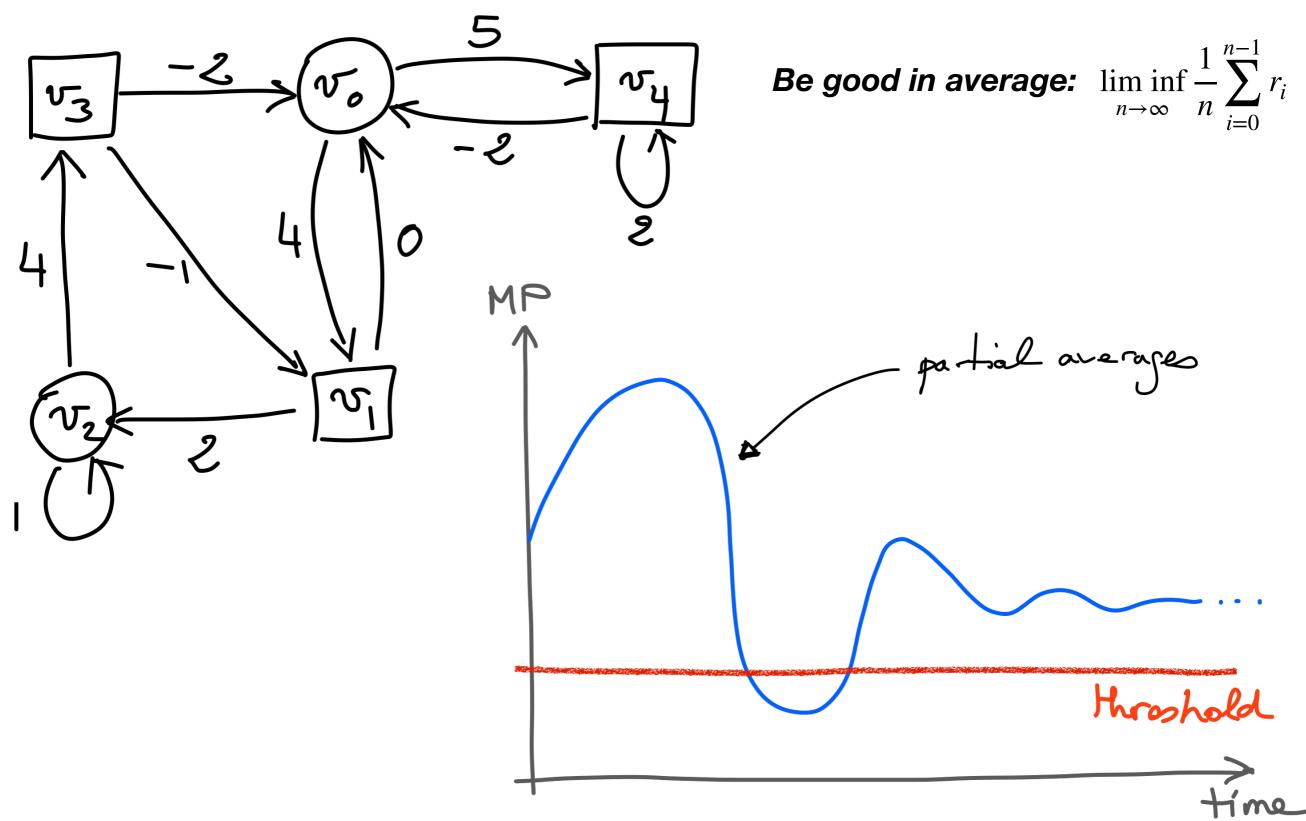
Be good in total: total-payoff

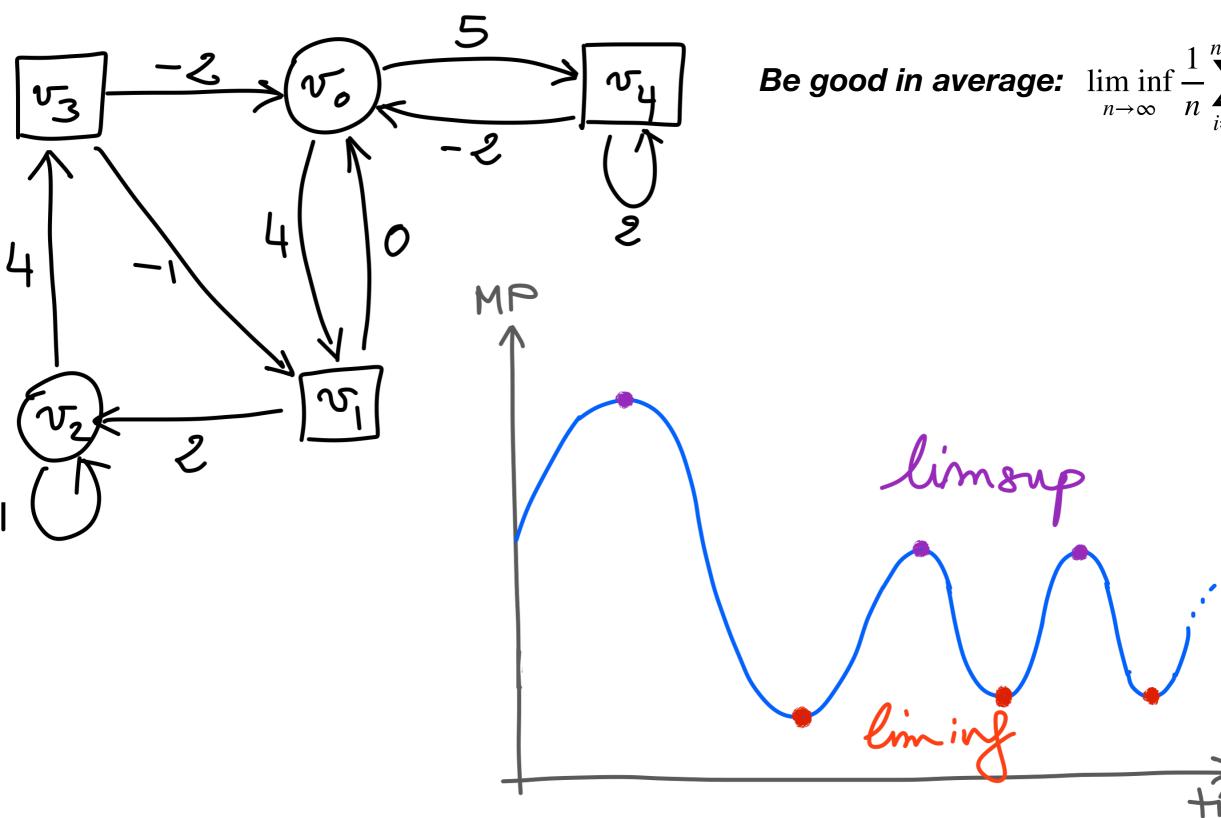
may not exist...



Win_O = { π | MP(π) ≥ c} not ω -regular...







Greatest mean-payoff that Player \bigcirc can guarantee:

$$\operatorname{Val}_{O}(v) = \inf_{\sigma_{\Box}} \sup_{\sigma_{O}} \operatorname{MP}(\operatorname{play}(v, \sigma_{O}, \sigma_{\Box}))$$

Smallest mean-payoff that Player \Box can guarantee:

$$\operatorname{Val}_{\Box}(v) = \sup_{\sigma_{O}} \inf_{\sigma_{\Box}} \operatorname{MP}(\operatorname{play}(v, \sigma_{O}, \sigma_{\Box}))$$

Theorem (Ehrenfeucht-Mycielski 1979, Zwick-Paterson 1997)

- **1.** Mean-payoff games are determined: $\forall v \quad \text{Val}_{O}(v) = \text{Val}_{\Box}(v) =: \text{Val}(v)$
- **2.** Both players have *optimal* memoryless strategies:

 σ_0

$$|\sigma_{O}^{*} \forall v \quad \inf_{\sigma_{\Box}} \operatorname{MP}(\operatorname{play}(v, \sigma_{O}^{*}, \sigma_{\Box})) = \operatorname{Val}(v)$$

$$\exists \sigma_{\Box}^* \forall v \quad \sup \operatorname{MP}(\operatorname{play}(v, \sigma_{O}, \sigma_{\Box}^*)) = \operatorname{Val}(v)$$

3. The winner, with respect to a fixed threshold, can be decided in NP \cap co-NP.

1. Mean-payoff games are determined

$\operatorname{Val}_{\Box}(v) = \sup_{\sigma_{O}} \inf_{\sigma_{\Box}} \operatorname{MP}(\operatorname{play}(v, \sigma_{O}, \sigma_{\Box})) \leq \inf_{\sigma_{\Box}} \sup_{\sigma_{O}} \operatorname{MP}(\operatorname{play}(v, \sigma_{O}, \sigma_{\Box})) = \operatorname{Val}_{O}(v)$

Determinacy (inequality \geq) can be restated as:

 $\forall \alpha$ either Player \bigcirc has a strategy to force a MP $\geq \alpha$ or Player \square has a strategy to force a MP < α

First-cycle game

'S

Unfold the weighted graph up to a first repetition of vertex: - a leaf is winning for Player \bigcirc if the cycle has a sum ≥ 0

- a leaf is winning for Player [] if the cycle has a sum < 0

By Zermelo's theorem: either Player () can force non-negative cycles

or Player C can force negative cycles

transfer of strategies

either Player \bigcirc has a <u>memoryless</u> strategy to force a MP ≥ 0

or Player \Box has a <u>memoryless</u> strategy to force a MP < 0

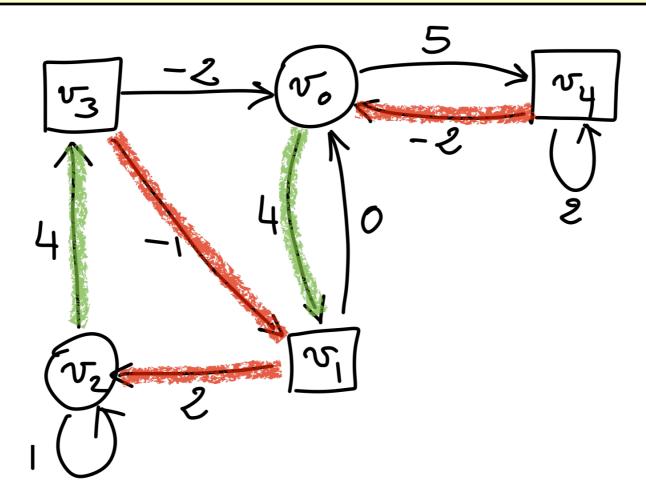
Theorem (Ehrenfeucht-Mycielski 1979, Zwick-Paterson 1997)

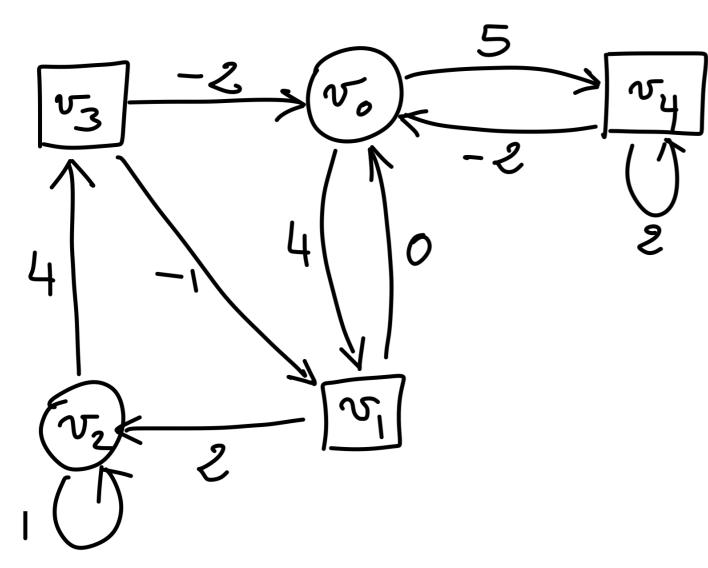
- **1.** Mean-payoff games are determined: $\forall v \quad Val_O(v) = Val_{\Box}(v) =: Val(v)$
- 2. Both players have optimal memoryless strategies:

$$\sigma_{O}^{*} \forall v \quad \inf_{\sigma_{\Box}} \operatorname{MP}(\operatorname{play}(v, \sigma_{O}^{*}, \sigma_{\Box})) = \operatorname{Val}(v)$$

$$\int \sigma_{\Box}^* \forall v \quad \sup_{\sigma_0} \operatorname{MP}(\operatorname{play}(v, \sigma_0, \sigma_{\Box}^*)) = \operatorname{Val}(v)$$

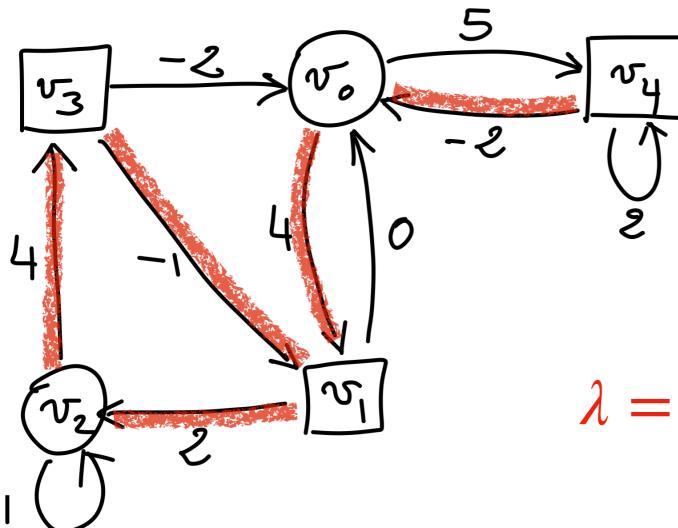
3. The winner, with respect to a fixed threshold, can be decided in NP \cap co-NP.





Be good soon enough: $(1 - \lambda) \sum_{i=0}^{\infty} \lambda^{i} r_{i}$ $0 < \lambda < 1$

When $\lambda \to 0$ only prefixes matter When $\lambda \to 1$ DP looks a lot like MP

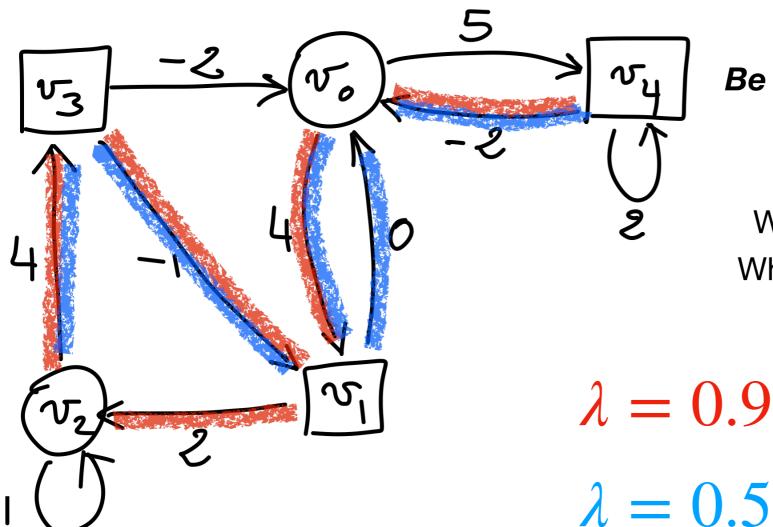


Be good soon enough: $(1 - \lambda) \sum_{i=0}^{\infty} \lambda^{i} r_{i}$ $0 < \lambda < 1$

When $\lambda \to 0$ only prefixes matter When $\lambda \to 1$ DP looks a lot like MP

 $\lambda = 0.9$

same strategy as for MP

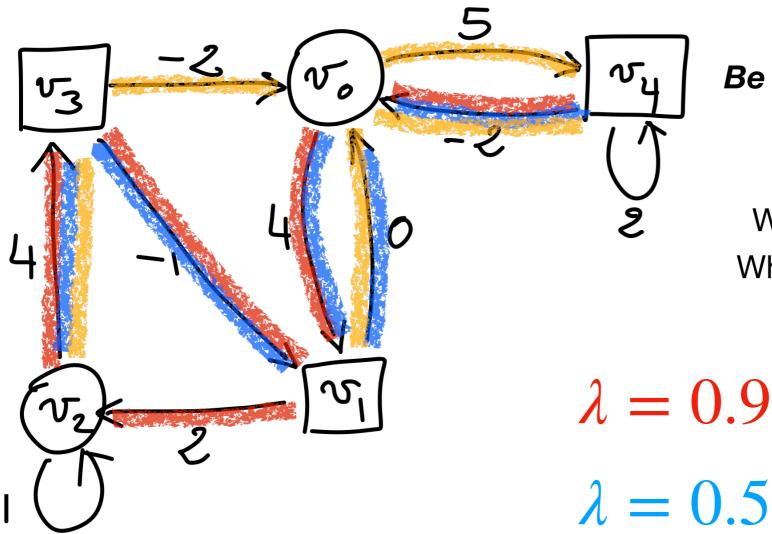


Be good soon enough: $(1 - \lambda) \sum \lambda^i r_i$ $0 < \lambda < 1$

When $\lambda \to 0$ only prefixes matter When $\lambda \rightarrow 1$ DP looks a lot like MP

 $\lambda = 0.9$

same strategy as for MP



Be good soon enough: $(1 - \lambda) \sum \lambda^i r_i$ $0 < \lambda < 1$

When $\lambda \to 0$ only prefixes matter When $\lambda \rightarrow 1$ DP looks a lot like MP

 $\lambda = 0.9$

 $\lambda = 0.1$

same strategy as for MP

Memoryless determinacy

Theorem (Zwick-Paterson 1997)

- **1.** Discounted-payoff games are determined: $\forall v \quad \text{Val}_{O}(v) = \text{Val}_{\Box}(v) =: \text{Val}(v)$
- **2.** Both players have *optimal* memoryless strategies:

$$\int \sigma_{O}^{*} \forall v \quad \inf_{\sigma_{\Box}} DP_{\lambda}(play(v, \sigma_{O}^{*}, \sigma_{\Box})) = Val(v)$$

$$\exists \sigma_{\Box}^* \forall v \quad \sup \mathsf{DP}_{\lambda}(\mathsf{play}(v, \sigma_{\mathsf{O}}, \sigma_{\Box}^*)) = \mathsf{Val}(v)$$

3. The winner, with respect to a fixed threshold, can be decided in NP \cap co-NP.

Proof: finite horizon

$$F(x)_{v} = \begin{cases} \max_{(v,v')\in E}[(1-\lambda)r(v,v')+\lambda x_{v'}] & \text{if } v \in V_{O} \\ \min_{(v,v')\in E}[(1-\lambda)r(v,v')+\lambda x_{v'}] & \text{if } v \in V_{\Box} \end{cases}$$

$$F\colon \mathbf{R}^V \to \mathbf{R}^V$$

contraction mapping

By Banach theorem, unique fixed point

$$F(x^*) = x^*$$

$$x^* = \lim_{n \to \infty} F^n(\mathbf{0})$$

following strategies dictated by $F(x^*) = x^*$

 $\operatorname{Val}_{O}(v) \le x_{v}^{*} \le \operatorname{Val}_{\Box}(v)$

always true

$$\operatorname{Val}_{\Box}(v) \leq \operatorname{Val}_{O}(v)$$

 $x^* = Val$

Memoryless determinacy

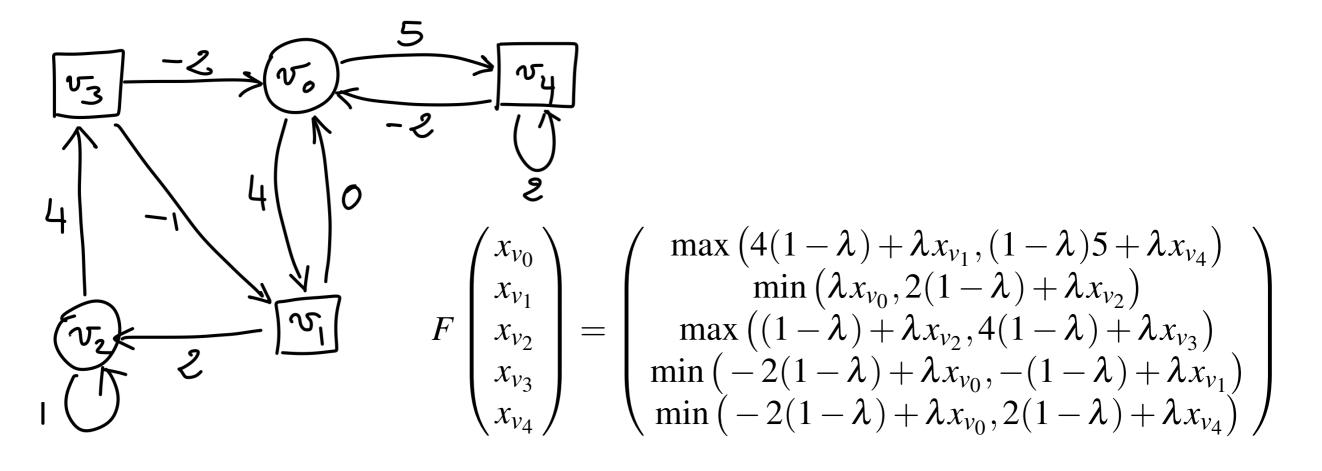
Theorem (Zwick-Paterson 1997)

- **1.** Discounted-payoff games are determined: $\forall v \quad Val_O(v) = Val_{\Box}(v) =: Val(v)$
- 2. Both players have *optimal* memoryless strategies:

$$\exists \sigma_{O}^{*} \forall v \quad \inf_{\sigma_{\Box}} DP_{\lambda}(play(v, \sigma_{O}^{*}, \sigma_{\Box})) = Val(v)$$

$$\exists \sigma_{\Box}^{*} \forall v \quad \sup_{\sigma_{O}} DP_{\lambda}(play(v, \sigma_{O}, \sigma_{\Box}^{*})) = Val(v)$$

3. The winner, with respect to a fixed threshold, can be decided in NP \cap co-NP.



How to compute optimal values?

$$F(x)_{v} = \begin{cases} \max_{(v,v')\in E}[(1-\lambda)r(v,v')+\lambda x_{v'}] & \text{if } v \in V_{O} \\ \min_{(v,v')\in E}[(1-\lambda)r(v,v')+\lambda x_{v'}] & \text{if } v \in V_{\Box} \end{cases}$$
$$r^{*} = \lim_{v \to \infty} E^{n}(\mathbf{0})$$

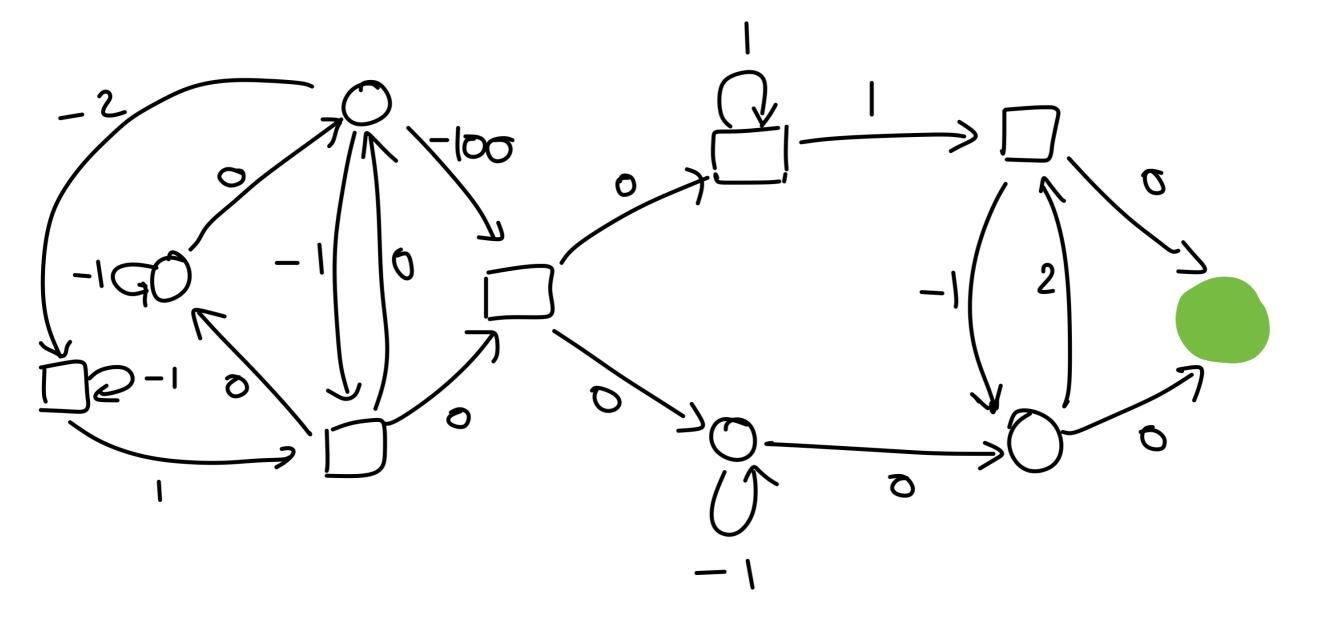
 $x^{-} = \lim_{n \to \infty} F^{-}(\mathbf{U})$

When to stop the computation, supposing every weight is rational?

- 1. If $\lambda = a/b$ is rational, then x_v^* is rational too, of denominator $D = b^{O(|V|^2)}$
- 2. If *K* is big enough (*polynomial* in |V|, *exponential* in λ), then $\|F^{K}(\mathbf{0}) \operatorname{Val}\|_{\infty} \leq 1/2D$
- 3. Use a rounding procedure to deduce Val from $F^{K}(\mathbf{0})$

Pseudo-polynomial algorithm

Shortest-path games



Player \Box wants to reach the target with the smallest weight Player \bigcirc wants to avoid the target, and if not possible, maximise the weight to the target

Non-negative case

Theorem (Khachiyan et al 2008)

 σ_0

- **1.** Shortest-path games are determined: $\forall v \quad \text{Val}_{O}(v) = \text{Val}_{\Box}(v) =: \text{Val}(v)$
- 2. Both players have optimal memoryless strategies:

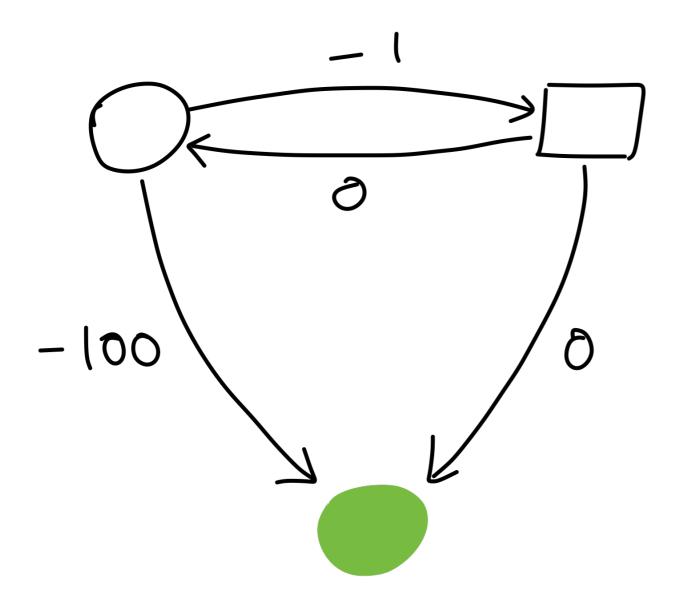
$$\exists \sigma_{\mathcal{O}}^* \forall v \quad \inf_{\sigma_{\square}} \mathsf{DP}_{\lambda}(\mathsf{play}(v, \sigma_{\mathcal{O}}^*, \sigma_{\square})) = \mathsf{Val}(v)$$

$$\exists \sigma_{\Box}^* \forall v \quad \sup \mathsf{DP}_{\lambda}(\mathsf{play}(v, \sigma_{O}, \sigma_{\Box}^*)) = \mathsf{Val}(v)$$

3. The winner, with respect to a fixed threshold, can be decided in polynomial time.

Adaptation of Dijkstra's shortest-path algorithm from graphs to games...

Negative weights



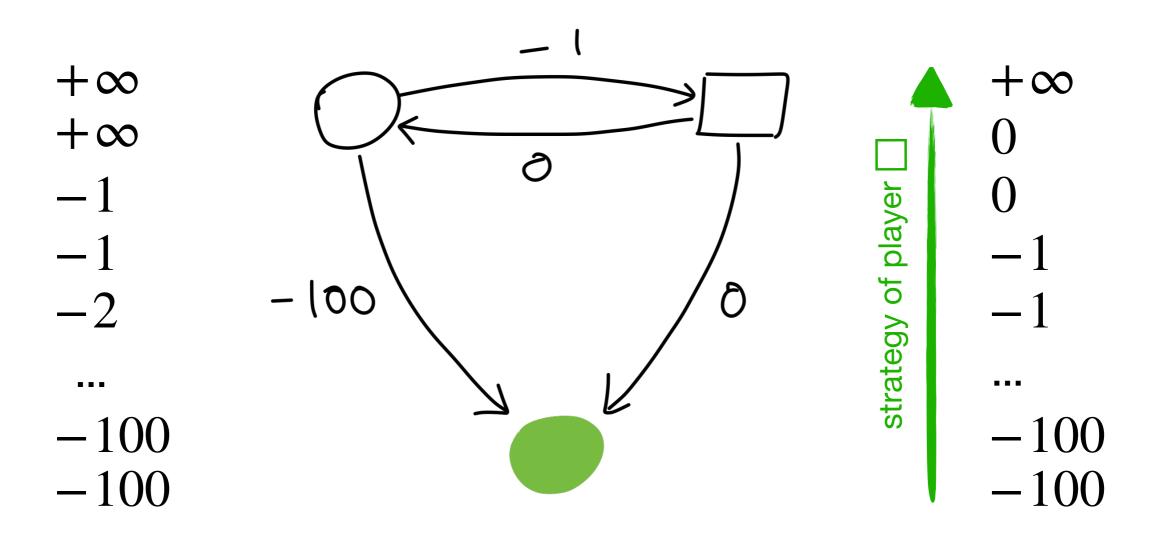
Player in needs memory to play optimally!

Non-negative case

Theorem (Brihaye, Geeraerts, Haddad, Monmege 2015) 1. Shortest-path games are determined: $\forall v \quad Val_O(v) = Val_{\Box}(v) =: Val(v)$ **2.** Both players have *optimal* memoryless strategies: $\exists \sigma_O^* \forall v \quad \inf_{\sigma_D} DP_\lambda(play(v, \sigma_O^*, \sigma_D)) = Val(v) \quad -> memoryless$ $\exists \sigma_O^* \forall v \quad \sup_{\sigma_O} DP_\lambda(play(v, \sigma_O, \sigma_D^*)) = Val(v) \quad -> may require finite memory$ **3.** The winner, with respect to a fixed threshold, can be decided in pseudo-polynomial time.

Computation of the optimal values

$$F(x)_{v} = \begin{cases} 0 & \text{if } v \in V_{\text{target}} \\ \max_{(v,v')\in E}[r(v,v')+x_{v'}] & \text{if } v \in V_{\text{O}} \\ \min_{(v,v')\in E}[r(v,v')+x_{v'}] & \text{if } v \in V_{\square} \end{cases}$$

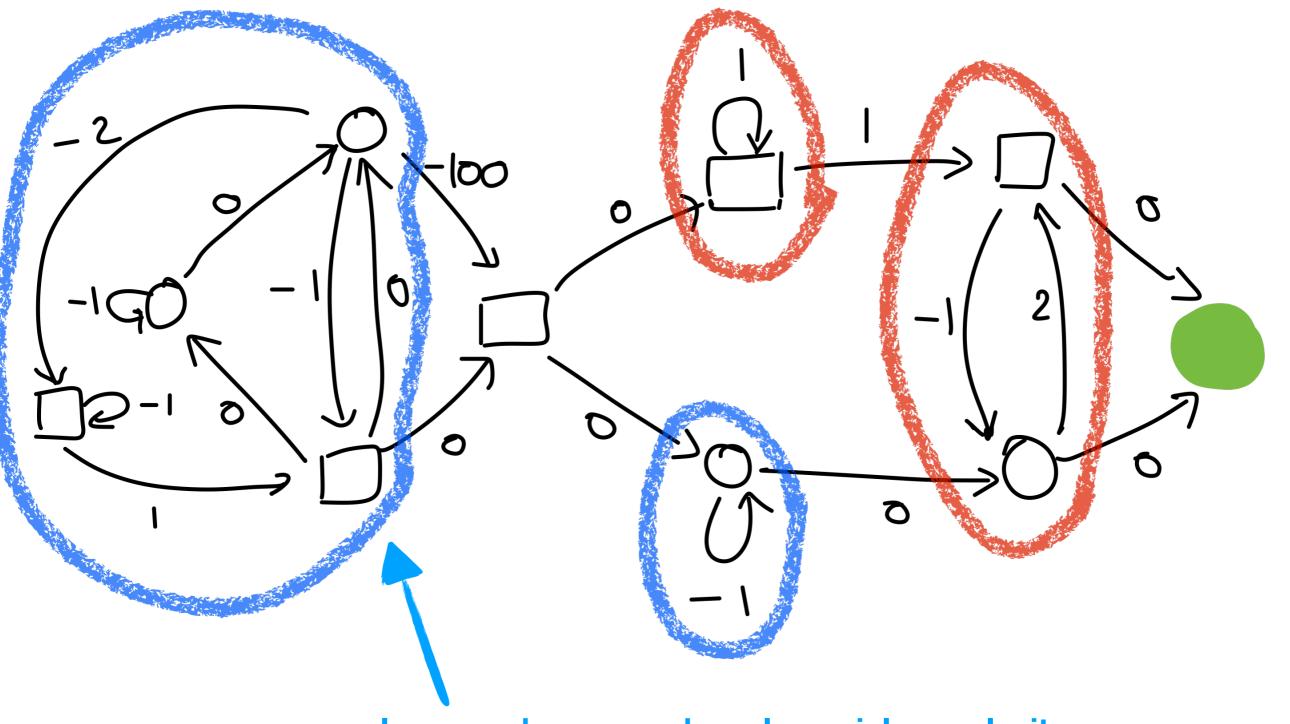


Non-negative case

Theorem (Brihaye, Geeraerts, Haddad, Monmege 2015) 1. Shortest-path games are determined: $\forall v \quad Val_O(v) = Val_{\Box}(v) =: Val(v)$ **2.** Both players have *optimal* memoryless strategies: $\exists \sigma_O^* \forall v \quad \inf_{\sigma_D} DP_{\lambda}(play(v, \sigma_O^*, \sigma_{\Box})) = Val(v) \quad -> memoryless$ $\exists \sigma_{\Box}^* \forall v \quad \sup_{\sigma_O} DP_{\lambda}(play(v, \sigma_O, \sigma_{\Box}^*)) = Val(v) \quad -> may require finite memory$ **3.** The winner, with respect to a fixed threshold, can be decided in pseudo-polynomial time.

> Polynomial wrt |V| Polynomial wrt weights encoded in unary

Interesting fragment?

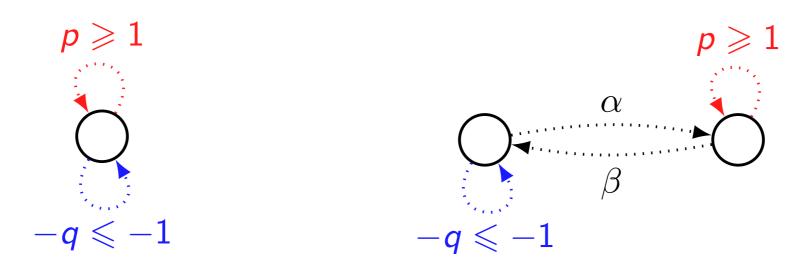


only case where pseudo-polynomial complexity...

Divergent weighted games

No cycles of weight = 0

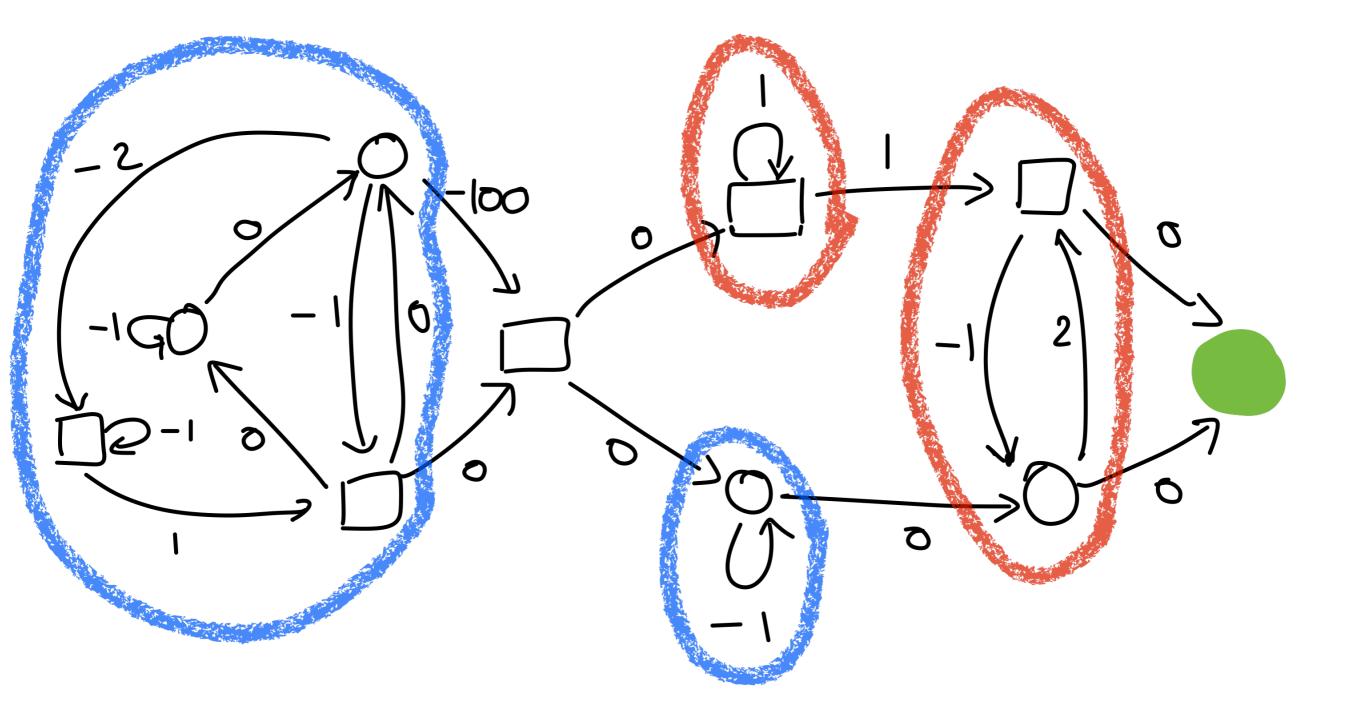
Characterisation (Busatto-Gaston, Monmege, Reynier 2017) All cycles in an SCC have the same sign.



In positive SCCs, value iteration algorithm converges in polynomial time. In negative SCCs :

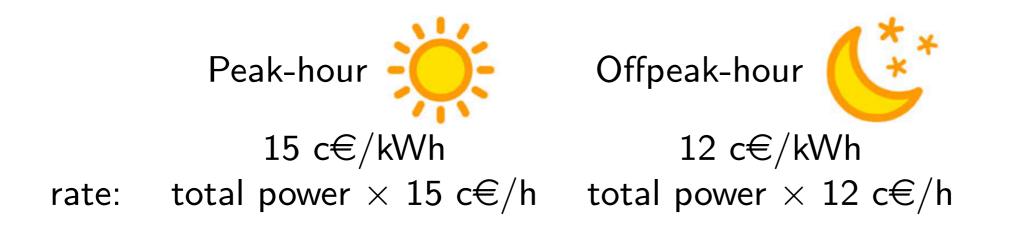
- 1. outside the attractor of Player \bigcirc -> value $-\infty$
- 2. value iteration algorithm starting from $-\infty$ (instead of $+\infty$) converges in polynomial time

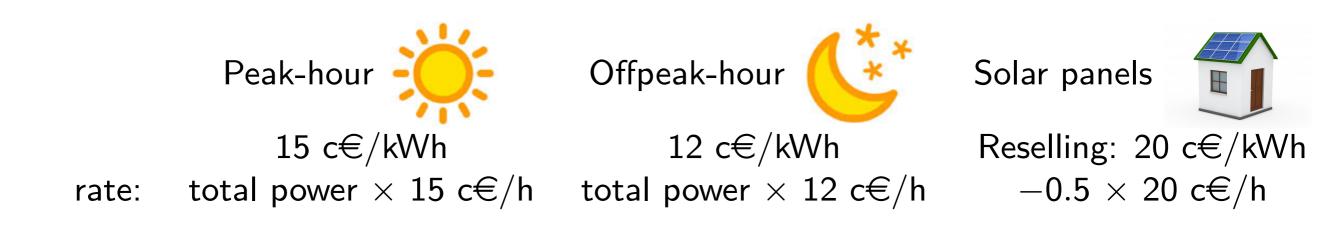
Theorem (Busatto-Gaston, Monmege, Reynier 2017) Optimal values/strategies in divergent weighted games are computable in polynomial time.



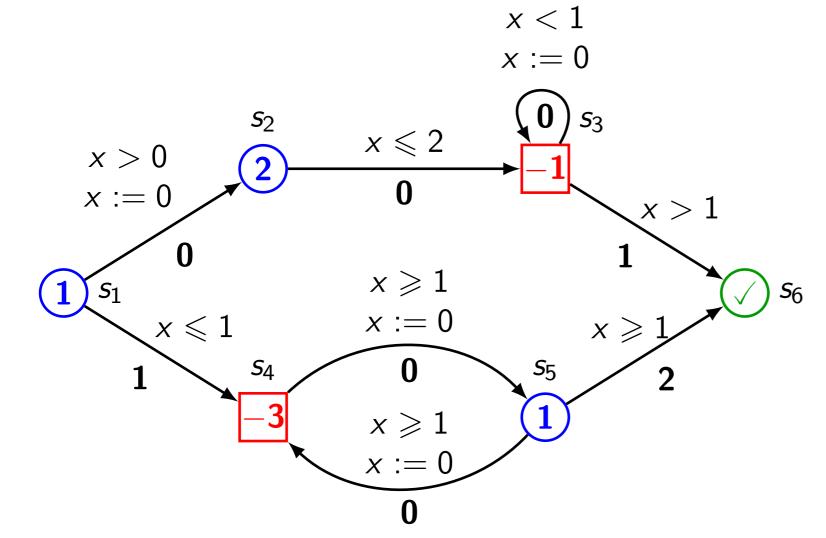
$\|$ Controller?? \models Spec

Two-player game





Weighted timed games



Timed automaton with state partition between 2 players + reachability objective + linear rates on states + discrete weights on transitions

