Quantitative Games
on Graphs

Benjamin Monmege, Aix-Marseille Université

Séminaire ENS Rennes

Games for synthesis

Crucial to make the critical programs correct

A
| mammmm)
nennsnee

i
A
a
Instead of verifying an existing system...
I Synthesise a correct-by-design one!
* Q&mc/e‘; Va—
Ya S Winning strategy = Correct system

2-player zero-sum games on graphs

N N U Vertices of Player
Play: move a token along vertices
l

- D ar Finite directed graphs

V3 Y Vertices of Player O
Ny Y

k — i‘\S‘\ ‘

Infinite number of rounds
Outcome: infinite path

Who is winning?

Wino C | Ve set of good outcomes for Player 1

Win — Va)\Wan (zero-sum game)

Examples of winning conditions:

Wing = {z | & visits } reachability

Wing = {7 | & visits infinitely often } Bichi

Strategies

Unfolding of the game graph:

Strategy for Player (O: one choice in

each node of Player O in unfolding

UO: V*VO — E

Strategy is winning if all paths
of the resulting tree are winning

Types of strategies

Strategy (infinite memory) Memoryless/positional strategy
oo: V*Vyg— E oo: Vo— E

ot
O [O
2\ N\ %
O O:
Finite memory strategy Randomised strategy
0o: V*Vy = E representable with a Moore machine oo: V*Vgy — Distr(E)
1 Py
L -
e ®__=
Ne @
Y ur

Decision problem

Given a game graph G and a winning condition Win
decide if Player (O has a winning strategy.

What about Player
Determinacy

either Player O has a winning strategy for Wino

or Player

has a winning strategy for Win

Example: finite trees

Branch = a play in the game tree

Winning for Player O if ends in @

P

Winning for Player [] if ends in @

-

e OR
T e~Qv”
«—QY

Example: finite trees

Zermelo’s theorem

either Player O has a strategy to force @

or Player [] has a strategy to force @

= determinacy

O
\\
Dr

o

Proof by induction on the depth of the tree

Each node can be labelled bottom-up:
® in green if Player O can force @ from there

N\
@) @,

‘/ _\ L L/ \, l ® in red if Player [] can force @ from there
P

Example: reachability in graphs

\ v R Win— = {x | = avoids

Apply the same bottom-up rule...

...to decide the winner and find winning strategies

{ \ Wing = {7 | & visits |
~

J

Games for synthesis

Crucial to make the critical programs correct

O
Winning condition

rategy = Correct system

Quantitative games on graphs

2 5

— - -

V3 >‘@ B (U-'-) Weighted graph: weights=rewards
~-<Z

Be good in total: total-payoff

LM
3

;_a

1 n—
< Be good in average: mean-payoff liminf—) r,
| n—eo M i=0
Ly O S —<

Mean-payoff games

S5
2. D ar Be good in average: lim inf — E 7
B L, n—-oo N i—0)
N ~-<

N U
1 \q(0 - 2

o VY i\ FJ-.;,&avvojﬁc
e Y
|

+Hma_

Mean-payoff games

5
— o] . . 1 n—1
U:‘S < §‘$ > fU‘,_, Be good in average: 11;1}) glf - Z 7
— i=0

A N U
? \L‘(° o
A\]l N

Mean-payoff games

Greatest mean-payoff that Player () can guarantee:

Valy(v) = int sup MP(play(v, o, 6))

°0 o

Smallest mean-payoff that Player | | can guarantee:

Val—(v) = sup int MP(play(v, 6y, 6))

GO []

Theorem (Ehrenfeucht-Mycielski 1979, Zwick-Paterson 1997)
1. Mean-payoff games are determined: Vv Valg(v) = Val-(v) =: Val(v)

2. Both players have optimal memoryless strategies:
Ela;)X< Vv it MP(play(v, 6%, 67)) = Val(v)
o0
Elaé Vv sup MP(play(v, o, aé)) = Val(v)
00

3. The winner, with respect to a fixed threshold, can be decided in NP n co-NP.

1. Mean-payoff games are determined

Val—(v) = sup int MP(play(v, o, 6,

O'O []

) S inf sup MP(play(v, 65, 0

°0 o

Determinacy (inequality =) can be restated as:

Va either Player O has a strategy to force a MP > «

or Player [| has a strategy to force a MP < «

)) = Valp(v)

First-cycle game

Unfold the weighted graph up to a first repetition of vertex:
- a leaf is winning for Player O if the cycle has a sum > 0

- a leaf is winning for Player [] if the cycle has a sum < O

By Zermelo's theorem:
either Player O can force non-negative cycles

or Player | | can force negative cycles

transfer of strategies

\4

either Player O has a memoryless strategy to force a MP > 0O

or Player [| has a memoryless strategy to force a MP < ()

Mean-payoff games

Theorem (Ehrenfeucht-Mycielski 1979, Zwick-Paterson 1997)
1. Mean-payoff games are determined: Vv Valg(v) = Val-(v) =: Val(v)

2. Both players have optimal memoryless strategies:
Ela;)X< Vv it MP(play(v, 6%, 67)) = Val(v)
o0
Elaé Vv sup MP(play(v, oy, aé)) = Val(v)
00

3. The winner, with respect to a fixed threshold, can be decided in NP n co-NP.

Discounted-payoff games

5 Q)
‘U3 -2, >‘; ? ’U',_’ Be good soon enough: (1 — /I)Z/Ii’"i
N\) 0<i<l1 =0

0 2 When A — 0 only prefixes matter
When A — 1 DP looks a lot like MP

Discounted-payoff games

Be good soon enough: (1 — 1) Z /Iirl-
0<i<1 i=0

When A — 0 only prefixes matter
When A — 1 DP looks a lot like MP

O . 9 same strategy as for MP

Discounted-payoff games

Be good soon enough: (1 — 1) Z /Iirl-
0<i<1 i=0

When A — 0 only prefixes matter
When A — 1 DP looks a lot like MP

O . 9 same strategy as for MP

0.5

Discounted-payoff games

Be good soon enough: (1 — 1) Z /Iirl-
0<i<1 i=0

When A — 0 only prefixes matter
When A — 1 DP looks a lot like MP

O . 9 same strategy as for MP

0.5

Memoryless determinacy

Theorem (Zwick-Paterson 1997)
1. Discounted-payoff games are determined: Vv Valy(v) = Val-(v) =: Val(v)

2. Both players have optimal memoryless strategies:
Ela;)X< Vv it DP,(play(v, 6%, 65)) = Val(v)
o0
Elaé Vv sup DP,(play(v, oy, aé)) = Val(v)
00

3. The winner, with respect to a fixed threshold, can be decided in NP n co-NP.

Proof: finite horizon

max, nepl(l = DHr(v,v) + Ax,] 1t v eV,
F(x), = . , ,
ming, ~epl(1 = DHr(v,v) + 4x,] 1tv eV,

F:RV - RY

By Banach theorem, unique fixed point

x* = lim F"(0)

n— Qoo

following strategies dictated by F(x*) = x*

Valy(v) < x* < Val

(v)

x* = Val

Val

contraction mapping

F(x*) = x*

always true

(v) < Valo(v)

Memoryless determinacy

Theorem (Zwick-Paterson 1997)
1. Discounted-payoff games are determined: Vv Valy(v) = Val-(v) =: Val(v)

2. Both players have optimal memoryless strategies:
Ela;)X< Vv it DP,(play(v, 6%, 65)) = Val(v)
o0
Elaé Vv sup DP,(play(v, oy, aé)) = Val(v)
00

3. The winner, with respect to a fixed threshold, can be decided in NP n co-NP.

-2 = —~
= ki
A N2
T N 2

‘ (xm\ / max (4(1 —A) + Ax,,, (1 = 1)5+Ax,,) \
Y Xy, min (Axy,,2(1 — 1)+ Ax,,)
,@ Flx,|= max ((1—24) +Ax,,,4(1 — 1)+ Ax,,)
X5 min (—2(1—=A4) 4+ Ax,,, —(1 —24) + Ax,,)
| \ %,/ \min(—=2(1—2)+2Ax,,2(1—A)+Ax,) /

How to compute optimal values?

- max ., neel(l = Dr(v,v) + Ax,] 1tv eV,
), = ming, ~epl(1 — DHr(v,v) + 4x,] 1tv eV,

x* = lim F"(0)

n—oo

When to stop the computation, supposing every weight is rational?

1. If A = a/b is rational, then x* is rational too, of denominator D = pOUVH)
2. If Kis big enough (oolynomial in | V|, exponential in), then

|[FX(0) — Val|| < 1/2D

3. Use a rounding procedure to deduce Val from F%(0)

Pseudo-polynomial algorithm

Shortest-path games

BN

GO _

&Dix‘j/ \->© >M

| (@]

—'\

Player | | wants to reach the target with the smallest weight
Player O wants to avoid the target, and if not possible, maximise the weight to the target

Non-negative case

Theorem (Khachiyan et al 2008)
1. Shortest-path games are determined: Vv Valy(v) = Valo(v) =: Val(v)

2. Both players have optimal memoryless strategies:
Elag)X< Vv nf DP,(play(v, 6%, 67)) = Val(v)
°0
Elaé Vv sup DP,(play(v, oy, aé)) = Val(v)
00

3. The winner, with respect to a fixed threshold, can be decided in polynomial time.

Adaptation of Dijkstra’s shortest-path algorithm from graphs to games...

Negative weights

Player | | needs memory to play optimally!

Non-negative case

Theorem (Brihaye, Geeraerts, Haddad, Monmege 2015)
1. Shortest-path games are determined: Vv Valy(v) = Valo(v) =: Val(v)

2. Both players have optimal memeoeryess strategies:
Elag Vv 1nf DP,(play(v, 6%, o)) = Val(v) —> memoryless
o
3‘% Vv sup DP,(play(v, oy, O'E)) = Val(v) —> may require finite memory
00
3. The winner, with respect to a fixed threshold, can be decided in pseudo-
polynomial time.

Computation of the optimal values
0 ifvey

target

F(x), = § maxg, »eplr(v,v) +x,] 1itveV,

ming, ~plr(v,v) +x,] 1tvey,

— |

Non-negative case

Theorem (Brihaye, Geeraerts, Haddad, Monmege 2015)
1. Shortest-path games are determined: Vv Valy(v) = Valo(v) =: Val(v)

2. Both players have optimal memenpess strategies:
Elcfg)X< Vv 1nf DP,(play(v, 6%, o)) = Val(v) —> memoryless
°0
EIGEI Vv sup DP,(play(v, oy, GE)) = Val(v) —> may require finite memory
00
3. The winner, with respect to a fixed threshold, can be decided in pseudo-
polynomial time.

Polynomial wrt |V|
Polynomial wrt weights encoded in unary

Interesting fragment?

only case where pseudo-polynomial complexity...

Divergent weighted games

No cycles of weight =0

Characterisation (Busatto-Gaston, Monmege, Reynier 2017)
All cycles in an SCC have the same sign.

p>1 -
Q Q< '''''''''''''''''''''''''''''''''''''' .»O
s g< 1

In positive SCCs, value iteration algorithm converges in polynomial time.
In negative SCCs :

1. outside the attractor of Player O —> value —o0

2. value iteration algorithm starting from — oo (instead of 4+ ©0) converges in
polynomial time

Theorem (Busatto-Gaston, Monmege, Reynier 2017)
Optimal values/strategies in divergent weighted games are computable in
polynomial time.

Environment

| | Controller??

Two-player game

Spec

Peak-hour Offpeak-hour

15 c€/kWh 12 c€/kWh
rate: total power X 15 c€/h total power x 12 c€/h

Peak-hour Offpeak-hour Solar panels

15 c€/kWh 12 c€/kWh Reselling: 20 c€/kWh
rate: total power x 15 c€/h total power x 12 c€/h —0.5 x 20 c€/h

Weighted timed games

x <1
x:=0
, @
X X .
> 1 Timed automaton
0 x>1 with state partition between
1 2 players
X 2_% (V) ss + reachability objective
gl x 2] + linear rates on states
0 > 2 + discrete weights on
x =1 1 transitions
x:=0
0
(s1,0) 22> (5, 0.4) 22 (65, 0) 22T (54, 0) 215 (55, 0) 255 (/, 2)
1x0.4+1 —3x0.6+40 +1x1.54+40 —3x1.140 +1x2+2 — 1.8
0.2 0.9 0.2 09,0,
(s1,0)22 (55,00 224 (55, 0.9) 22 (55, 0) 22 (55, 0)
1x0.24+0 +2x0.9+0 —1x0.240 —1x0.9+0 = 400

WTG
undec / undec
> 3 clocks / > 2 clocks

almost-divergent WTG

approx / approx
-exp. + symbolic algorithm

IWTG reset-acyclic

exp / exp
poly-hard

1BWTG
poly / pseudo-poly

() (-)

divergent WTG
2-exp / 2-exp
exp-hard

Thank you!

