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Games for synthesis
Crucial to make the critical programs correct

Instead of verifying an existing system...
Synthesise a correct-by-design one!

Winning strategy = Correct system



2-player zero-sum games on graphs

Finite directed graphs

Vertices of Player ◯


Vertices of Player □

Play: move a token along vertices

Infinite number of rounds 
Outcome: infinite path



Who is winning?
WinO ⊆ Vω set of good outcomes for Player 1

Win□ = Vω∖WinO (zero-sum game)

Examples of winning conditions: 

WinO = {π ∣ π visits Good} reachability

WinO = {π ∣ π visits Good infinitely often} Büchi



Strategies
Unfolding of the game graph:

Strategy for Player ◯: one choice in 
each node of Player ◯ in unfolding

σO : V*VO → E

Strategy is winning if all paths 
of the resulting tree are winning



Types of strategies
Strategy (infinite memory)

σO : V*VO → E
Memoryless/positional strategy
σO : VO → E

Finite memory strategy
σO : V*VO → E representable with a Moore machine

Player 1 -Finite Memory Strategies

Lemma. Finite memory strategies are sufficient for Player 1 to win in gEGs.

Proof. First, remember that (�k,≤) is well-quasi ordered.

Let λ1 be winning

... ...
... ... ...

...

L1

L2

On each branch

With L1≤L2

stop and play 
as from L1 !

Then λ’1 is winning
and finite memory

... ...
... ... ...

...
wqo+Koenig’s lemma
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Types of strategies
(Player 1) strategy:
λ1: V*. V1→edge.  
Σ1=set of strategies of Pl.1

Finite-memory strategy:
λ1,f: V*. V1→edge but regular (Moore machine)  
Σ1,f=set of finite memory strategies of Player I

 
 

Memoryless strategy:
λ1,m:V1→edge.  
Σ1,m=set of memoryless strategies of Player1

 
 
 
Randomized strategy:
λ1,m: V*. V1→Dist(edge).  
Σ1,m=set of randomized strategies of Player1

MPGs and EGs
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σO : V*VO → Distr(E)



Decision problem
Given a game graph G and a winning condition 

        decide if Player ◯ has a winning strategy.

WinO

What about Player ?□
Determinacy (true in a large class of objectives, e.g. all ω-regular objectives)

either Player ◯ has a winning strategy for


or Player  has a winning strategy for □
WinO

Win□ = Vω∖WinO



Example: finite trees
Branch = a play in the game tree

Winning for Player ◯ if ends in


Winning for Player  if ends in □



Example: finite trees

either Player ◯ has a strategy to force


or Player  has a strategy to force  □

Zermelo’s theorem

= determinacy

Proof by induction on the depth of the tree
Each node can be labelled bottom-up:  
• in green if Player ◯ can force     from there 

• in red if Player  can force     from there□



Example: reachability in graphs

Apply the same bottom-up rule… 


…to decide the winner and find winning strategies

WinO = {π ∣ π visits Good}

Win□ = {π ∣ π avoids Good}



Games for synthesis
Crucial to make the critical programs correct

Instead of verifying an existing system...
Synthesise a correct-by-design one!

Winning strategy = Correct system

Arena + Player □ Player ◯
Winning condition

What if several winning strategies for Player ◯? 

Need for a quality measure, to choose the best one…



Quantitative games on graphs
Weighted graph: weights=rewards

Be good in total: total-payoff
∞

∑
i=0

ri

Be good in average: mean-payoff lim inf
n→∞

1
n

n−1

∑
i=0

ri

may not exist… 

WinO = {π ∣ MP(π) ≥ c} not ω-regular…



Mean-payoff games
Be good in average: lim inf

n→∞

1
n

n−1

∑
i=0

ri



Mean-payoff games
Be good in average: lim inf

n→∞

1
n

n−1

∑
i=0

ri



Mean-payoff games

Theorem (Ehrenfeucht-Mycielski 1979, Zwick-Paterson 1997)

1. Mean-payoff games are determined: 

2. Both players have optimal memoryless strategies: 

                     


                     


3. The winner, with respect to a fixed threshold, can be decided in NP ∩ co-NP.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*O ∀v inf
σ□

MP(play(v, σ*O, σ□)) = Val(v)

∃σ*□ ∀v sup
σO

MP(play(v, σO, σ*□)) = Val(v)

Greatest mean-payoff that Player ◯ can guarantee: 

ValO(v) = inf
σ□

sup
σO

MP(play(v, σO, σ□))

Smallest mean-payoff that Player  can guarantee: □
Val□(v) = sup

σO

inf
σ□

MP(play(v, σO, σ□))



1. Mean-payoff games are determined

inf
σ□

sup
σO

MP(play(v, σO, σ□)) = ValO(v)Val□(v) = sup
σO

inf
σ□

MP(play(v, σO, σ□))≤

Determinacy (inequality ≥) can be restated as: 

either Player ◯ has a strategy to force a MP  


or Player  has a strategy to force a MP

≥ α
□ < α

∀α



First-cycle game

either Player ◯ has a memoryless strategy to force a MP  


or Player  has a memoryless strategy to force a MP

≥ 0
□ < 0

Unfold the weighted graph up to a first repetition of vertex:
- a leaf is winning for Player ◯ if the cycle has a sum 
- a leaf is winning for Player  if the cycle has a sum 

≥ 0
□ < 0

By Zermelo's theorem: 
either Player ◯ can force non-negative cycles  
or Player  can force negative cycles□

transfer of strategies



Mean-payoff games
Theorem (Ehrenfeucht-Mycielski 1979, Zwick-Paterson 1997)

1. Mean-payoff games are determined: 

2. Both players have optimal memoryless strategies: 

                     


                     


3. The winner, with respect to a fixed threshold, can be decided in NP ∩ co-NP.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*O ∀v inf
σ□

MP(play(v, σ*O, σ□)) = Val(v)

∃σ*□ ∀v sup
σO

MP(play(v, σO, σ*□)) = Val(v)



Discounted-payoff games
Be good soon enough: (1 − λ)

∞

∑
i=0

λiri
0 < λ < 1

When  only prefixes matter

When  DP looks a lot like MP

λ → 0
λ → 1
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Be good soon enough: (1 − λ)

∞

∑
i=0
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0 < λ < 1

When  only prefixes matter

When  DP looks a lot like MP

λ → 0
λ → 1

λ = 0.5
λ = 0.1

λ = 0.9 same strategy as for MP



Memoryless determinacy
Theorem (Zwick-Paterson 1997)

1. Discounted-payoff games are determined: 

2. Both players have optimal memoryless strategies: 

                     


                     


3. The winner, with respect to a fixed threshold, can be decided in NP ∩ co-NP.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*O ∀v inf
σ□

DPλ(play(v, σ*O, σ□)) = Val(v)

∃σ*□ ∀v sup
σO

DPλ(play(v, σO, σ*□)) = Val(v)



Proof: finite horizon
F(x)v = {

max(v,v′�)∈E[(1 − λ)r(v, v′�) + λxv′�] if v ∈ VO

min(v,v′�)∈E[(1 − λ)r(v, v′�) + λxv′�] if v ∈ V□

F : RV → RV contraction mapping

By Banach theorem, unique fixed point F(x*) = x*
x* = lim

n→∞
Fn(0)

ValO(v) ≤ x*v ≤ Val□(v)
following strategies dictated by  F(x*) = x*

Val□(v) ≤ ValO(v)
always true

x* = Val



Memoryless determinacy
Theorem (Zwick-Paterson 1997)

1. Discounted-payoff games are determined: 

2. Both players have optimal memoryless strategies: 

                     


                     


3. The winner, with respect to a fixed threshold, can be decided in NP ∩ co-NP.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*O ∀v inf
σ□

DPλ(play(v, σ*O, σ□)) = Val(v)

∃σ*□ ∀v sup
σO

DPλ(play(v, σO, σ*□)) = Val(v)

4.3 Discounted games 21

remains to show that this check can be done in polynomial time, in particular we
must show that the values x are short in terms of their binary representation. The
equality x = F(x) induces optimal decisions in each vertex, thus leading to a profile
of strategies for both players. We summarise this profile in:

• a square Boolean matrix Q 2 {0,1}V⇥V , whose entry Qv,v0 is 1 if (v,v0) is the
chosen edge in v by the profile, and 0 otherwise;

• a vector c 2 ZV , whose entry cv is the weight of the edge (v,v0) chosen in v by
the profile.

We can then write the fixed point equation as

x = (1�l )c+lQx .

Letting l = a/b the rational discount factor, the above equation rewrites into

Ax = (b�a)c (4.3)

with A = bI � aQ (I being the identity matrix). Therefore, A is a matrix that has
at most two non-zero elements in each row: each of these non-zero elements can
be written using at most N = max(log2 a, log2 b) bits (therefore polynomial in the
representation of the game), and are therefore bounded in absolute value by 2N .
By induction on the size of the matrix, we can then show that the determinant of
A is at most 4N|V |. Equation (4.3) then resolves, using Cramer’s formula, by xv =
det(Av)/det(A), with Av the matrix obtained from A by replacing the v-th column
with vector (b� a)c. Therefore, all components of x can be written with only a
polynomial of bits with respect to the size of the costs in the arena and N.

The coUP membership follows, as in Theorem 4.4, from a dual reasoning for
Adam, using the above determinacy result for discounted-payoff games. ⇤

For the discounted-payoff game of Figure 4.1, the contracting operator is:

F
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A careful analysis gives the fixed points for all values of l 2 (0,1), which in
turn allows us to find the associated memoryless optimal strategies s⇤ and t⇤ on the
various intervals of values for l , summarised in the following table:

l (0,l1] (l1,l2] (l2,l3] (l3,1)
s⇤(v0) v4 v4 v1 v1
t⇤(v1) v0 v0 v0 v2
s⇤(v2) v3 v3 v3 v3
t⇤(v3) v0 v1 v1 v1
t⇤(v4) v0 v0 v0 v0



How to compute optimal values?

F(x)v = {
max(v,v′�)∈E[(1 − λ)r(v, v′�) + λxv′�] if v ∈ VO

min(v,v′�)∈E[(1 − λ)r(v, v′�) + λxv′�] if v ∈ V□

x* = lim
n→∞

Fn(0)

When to stop the computation, supposing every weight is rational?

1. If  is rational, then  is rational too, of denominator 

2. If  is big enough (polynomial in , exponential in ), then 



3. Use a rounding procedure to deduce  from 

λ = a/b x*v D = bO(|V|2)

K |V | λ
∥FK(0) − Val∥∞ ≤ 1/2D

Val FK(0)

Pseudo-polynomial algorithm



Shortest-path games

Player  wants to reach the target with the smallest weight

Player ◯ wants to avoid the target, and if not possible, maximise the weight to the target 

□



Non-negative case
Theorem (Khachiyan et al 2008)

1. Shortest-path games are determined: 

2. Both players have optimal memoryless strategies: 

                     


                     


3. The winner, with respect to a fixed threshold, can be decided in polynomial time.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*O ∀v inf
σ□

DPλ(play(v, σ*O, σ□)) = Val(v)

∃σ*□ ∀v sup
σO

DPλ(play(v, σO, σ*□)) = Val(v)

Adaptation of Dijkstra’s shortest-path algorithm from graphs to games… 



Negative weights

Player  needs memory to play optimally!□



Non-negative case
Theorem (Brihaye, Geeraerts, Haddad, Monmege 2015)

1. Shortest-path games are determined: 

2. Both players have optimal memoryless strategies: 

                                  —>   memoryless


                                  —>   may require finite memory


3. The winner, with respect to a fixed threshold, can be decided in pseudo-
polynomial time.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*O ∀v inf
σ□

DPλ(play(v, σ*O, σ□)) = Val(v)

∃σ*□ ∀v sup
σO

DPλ(play(v, σO, σ*□)) = Val(v)



Computation of the optimal values

F(x)v =

0 if v ∈ Vtarget

max(v,v′�)∈E[r(v, v′�) + xv′�] if v ∈ VO

min(v,v′�)∈E[r(v, v′�) + xv′�] if v ∈ V□

+∞ +∞
+∞ 0
−1 0
−1 −1
−2 −1

… …

−100 −100
−100 −100

st
ra

te
gy

 o
f p

la
ye

r □



Non-negative case
Theorem (Brihaye, Geeraerts, Haddad, Monmege 2015)

1. Shortest-path games are determined: 

2. Both players have optimal memoryless strategies: 

                                  —>   memoryless


                                  —>   may require finite memory


3. The winner, with respect to a fixed threshold, can be decided in pseudo-
polynomial time.

∀v ValO(v) = Val□(v) =: Val(v)

∃σ*O ∀v inf
σ□

DPλ(play(v, σ*O, σ□)) = Val(v)

∃σ*□ ∀v sup
σO

DPλ(play(v, σO, σ*□)) = Val(v)

Polynomial wrt |V| 
Polynomial wrt weights encoded in unary



Interesting fragment?

only case where pseudo-polynomial complexity… 



Divergent weighted games
No cycles of weight = 0

Characterisation (Busatto-Gaston, Monmege, Reynier 2017)

All cycles in an SCC have the same sign.

Divergent weighted games analysis

divergence property

characterisation : All the simple cycles in a SCC have the same sign

p > 1

≠q 6 ≠1 ≠q 6 ≠1

–

—

p > 1
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In positive SCCs, value iteration algorithm converges in polynomial time.

In negative SCCs : 


1. outside the attractor of Player ◯    —>   value 


2. value iteration algorithm starting from  (instead of ) converges in 
polynomial time

−∞
−∞ +∞

Theorem (Busatto-Gaston, Monmege, Reynier 2017)

Optimal values/strategies in divergent weighted games are computable in 
polynomial time.





Motivation: quantitative aspects of real-time synthesis

Environment Î Controller?? |= Spec

Two-player game

Real-time requirements/environment =∆ real-time controller

Two-player timed game

Among all valid controllers, choose a cheap/e�cient one

Two-player weighted timed game

Additional di�culty: negative weights
=∆ to model production/consumption of resources

2/33



Modelling via weighted timed games

Peak-hour O�peak-hour

Solar panels

15 ce/kWh 12 ce/kWh

Reselling: 20 ce/kWh

rate: total power ◊ 15 ce/h total power ◊ 12 ce/h

≠0.5 ◊ 20 ce/h

states to record which device is on/o�: computation of the total power

Power consumption:

I 100W (1.5 ce/h in peak-hour, 1.2 ce/h in o�peak-hour)

I 2500W (37.5 ce/h in peak-hour, 30 ce/h in o�peak-hour)

I 2000W (24 ce/h in o�peak-hour)

Environment: user profile, weather profile /

Controller: chooses contract (discrete cost for the monthly subscription)

and exact consumption (what, when...)

Goal: optimise the energy consumption based on the cost

Solution 1 : discretisation of time, resolution via a weighted game
Solution 2 : thin time behaviours, resolution via a weighted timed game

3/33
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Weighted timed gamesWeighted timed games

1 s1

2
s2

≠1
s3

≠3
s4

1
s5

� s6

x > 0

x := 0

0

x 6 1

1

x 6 2

0

x < 1

x := 0

0

x > 1

1x > 1

x := 0

0
x > 1

x := 0

0

x > 1

2

Timed automaton

with state partition between

2 players

+ reachability objective

+ linear rates on states

+ discrete weights on

transitions

(s1, 0) 0.4,√≠≠≠≠æ(s4, 0.4) 0.6,æ≠≠≠≠æ(s5, 0) 1.5,Ω≠≠≠≠æ(s4, 0) 1.1,æ≠≠≠≠æ(s5, 0) 2,¬≠≠≠æ(�, 2)
1◊0.4+1 ≠3◊0.6+0 +1◊1.5+0 ≠3◊1.1+0 +1◊2+2 = 1.8

(s1, 0) 0.2,¬≠≠≠≠æ(s2, 0) 0.9,æ≠≠≠≠æ(s3, 0.9) 0.2,

 

≠≠≠≠æ(s3, 0) 0.9,

 

≠≠≠≠æ(s3, 0) · · ·
1◊0.2+0 +2◊0.9+0 ≠1◊0.2+0 ≠1◊0.9+0 · · · = +Œ

Weight of an execution :

I
+Œ if � not reached

total weight until � otherwise

Benjamin Monmege (Aix-Marseille Université) Min = #, Max = 2 5/33

Weighted timed games

1 s1

2
s2

≠1
s3

≠3
s4

1
s5

� s6

x > 0

x := 0

0

x 6 1

1

x 6 2

0

x < 1

x := 0

0

x > 1

1x > 1

x := 0

0
x > 1

x := 0

0

x > 1

2

Timed automaton

with state partition between

2 players

+ reachability objective

+ linear rates on states

+ discrete weights on

transitions

(s1, 0) 0.4,√≠≠≠≠æ(s4, 0.4) 0.6,æ≠≠≠≠æ(s5, 0) 1.5,Ω≠≠≠≠æ(s4, 0) 1.1,æ≠≠≠≠æ(s5, 0) 2,¬≠≠≠æ(�, 2)
1◊0.4+1 ≠3◊0.6+0 +1◊1.5+0 ≠3◊1.1+0 +1◊2+2 = 1.8

(s1, 0) 0.2,¬≠≠≠≠æ(s2, 0) 0.9,æ≠≠≠≠æ(s3, 0.9) 0.2,

 

≠≠≠≠æ(s3, 0) 0.9,

 

≠≠≠≠æ(s3, 0) · · ·
1◊0.2+0 +2◊0.9+0 ≠1◊0.2+0 ≠1◊0.9+0 · · · = +Œ

Weight of an execution :

I
+Œ if � not reached

total weight until � otherwise

Benjamin Monmege (Aix-Marseille Université) Min = #, Max = 2 5/33



Conclusion

1WTG?

1WTG reset-acyclic

exp / exp

poly-hard

divergent WTG

2-exp / 2-exp

exp-hard

almost-divergent WTG

approx / approx

2-exp. + symbolic algorithm

1BWTG

poly / pseudo-poly

(+) (-)

WTG

undec / undec

> 3 clocks / > 2 clocks

tool?

2 clocks?

gap?

Thank you!

Benjamin Monmege (Aix-Marseille Université) Min = #, Max = 2 33/33

Thank you!


