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Smart Houses on a Grid (Jadevej Case)

Figure 10: Satellite photo of the group of houses
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3 The Jadevej case

3.1 General description

The third case study of Cassting, proposed by Energi Nord, is in some sense
an extension of the previous one to a group of houses. The group comprises
eight houses, built in 1987, equiped with eight individual solar panels, and
heated with electric heating (see Fig. 9 and 10). In this case, we would like
to develop individual systems whose aim is to optimize the energy consump-
tion both at the individual level and at the level of the group of houses, by
exchanging or storing the energy produced by the solar panels.

Figure 9: Photo of one house

3.2 Specific aspects

In this case, our aim is to develop strategies for optimizing energy consump-
tion, by sharing the energy production between the houses or storing the
energy. For this we have to model and reason about the interactions between
production and consumption at the individual level as well as at the group
level.

Shifting energy consumption. Each house has an average consumption
of approx. 8 800 kWh per year, of which 4 000 kWh for the sole heating.

13

Eight houses
Electric local grid

Each house:

I Solar panels

I Electric heating

I Storage of energy

Goal: for each house, optimize its behavior to
reduce its energy bill

How to compute the expenses of a house?

Solar panel ON Solar panel OFF Solar panel OFF
• Selling energy: +2e/t.u. • Selling energy: +2e/t.u. • Selling energy: +1e/t.u.
• Consumption: 0e/t.u. • Consumption: −2e/t.u. • Consumption: −1e/t.u.
• Storing energy: 0e/t.u.

+ fixed cost to start selling or buying energy

Our contribution: Synthesize optimal behaviors in each phase by
solving weighted timed games with a limited number of distinct rates
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Weighted Timed Games

1 `1[x 6 1]
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x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

Timed Automaton
with partition of states

between 2 players
+ reachability objective

+ rates in locations
+ costs over transitions

Semantics in terms of
infinite game with weights

(`1, 0)
0.4,↘−−−−→(`4, 0.4)

0.6,→−−−−→(`5, 0)
1.5,←−−−−→(`4, 0)

1.1,→−−−−→(`5, 0)
2,↗−−−→(�, 2)

0.4 + 1 −3× 0.6 +1.5 −3× 1.1 +2× 2 + 2 = 3.8

(`1, 0)
0.2,↗−−−−→(`2, 0)

0.9,→−−−−→(`3, 0.9)
0.2,

	

−−−−→(`3, 0)
0.9,

	

−−−−→(`3, 0) · · ·
0.2 +0.9 −0.2 −0.9 · · · = +∞ (� not reached)

Weight of a play:

{
+∞ if � not reached

total payoff otherwise
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Strategies and objectives
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Strategy for each player: mapping of finite runs to a delay and an action

Goal of player #: reach � and minimize the cost

Goal of player 2: avoid � or, if not possible, maximize the cost

Main object of interest:
Val(`, v) = inf

σ#∈Strat#
sup

σ2∈Strat2
Wt(Play((`, v), σ#, σ2)) ∈ R ∪ {−∞,+∞}

What player # can guarantee as a payoff? and design good strategies
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State of the art
Decision problem: does there exist a strategy for player # ensuring a weight
not greater than a given constant?

I One-player case (Weighted timed automata): optimal reachability
problem is PSPACE-complete

I Algorithm based on region abstraction [Bouyer, Brihaye, Bruyère, and

Raskin, 2007];
I and hardness shown for timed automata with at least 2 clocks [Fearnley

and Jurdziński, 2013, Haase, Ouaknine, and Worrell, 2012]

I Weighted timed (two-player) games are undecidable [Bouyer, Brihaye, and

Markey, 2006a], even with only non-negative weights and 3 clocks

I Weighted timed games with non-negative weights and strictly
non-Zeno weight cycles: exponential algorithm [Bouyer, Cassez, Fleury,

and Larsen, 2004, Alur, Bernadsky, and Madhusudan, 2004]

I One-clock weighted timed game with non-negative weights:
exponential algorithm [Bouyer, Larsen, Markey, and Rasmussen, 2006b,

Rutkowski, 2011, Hansen, Ibsen-Jensen, and Miltersen, 2013]

This talk: One-clock weighted timed games with negative weights
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and Jurdziński, 2013, Haase, Ouaknine, and Worrell, 2012]

I Weighted timed (two-player) games are undecidable [Bouyer, Brihaye, and

Markey, 2006a], even with only non-negative weights and 3 clocks

I Weighted timed games with non-negative weights and strictly
non-Zeno weight cycles: exponential algorithm [Bouyer, Cassez, Fleury,

and Larsen, 2004, Alur, Bernadsky, and Madhusudan, 2004]

I One-clock weighted timed game with non-negative weights:
exponential algorithm [Bouyer, Larsen, Markey, and Rasmussen, 2006b,

Rutkowski, 2011, Hansen, Ibsen-Jensen, and Miltersen, 2013]

This talk: One-clock weighted timed games with negative weights

5/16



State of the art
Decision problem: does there exist a strategy for player # ensuring a weight
not greater than a given constant?

I One-player case (Weighted timed automata): optimal reachability
problem is PSPACE-complete

I Algorithm based on region abstraction [Bouyer, Brihaye, Bruyère, and

Raskin, 2007];
I and hardness shown for timed automata with at least 2 clocks [Fearnley
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State of the art
Decision problem: does there exist a strategy for player # ensuring a weight
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Why things are complex with negative weights?
(even in weighted untimed finite games)

I Value −∞: detection is as hard as mean-payoff. No hope for complexity
better than NP ∩ co-NP, or pseudo-polynomial

I Memory complexity

I Player # needs memory

�

−1

−w

0

0

I Player 2 needs infinite memory in weighted timed games

0 −1�

x := 0

x > 0
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One-clock Binary Weighted Timed Games
(1BWTG)

Assumption: rates of locations {p−, p+} included in {0,+d,−d}
(d ∈ N) (no assumption on weights of transitions)

1 `1[x 6 1]

1

`2

[x 6 2]

−1

`3

[x 6 2]

−1

`4

[x 6 2]

1

`5

[x 6 2]

� `6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

I Techniques of [Bouyer, Cassez, Fleury, and Larsen, 2004, Alur, Bernadsky, and

Madhusudan, 2004] not applicable, e.g., because of Zeno weights cycles
I Exponential algorithms of [Bouyer, Larsen, Markey, and Rasmussen, 2006b,

Rutkowski, 2011, Hansen, Ibsen-Jensen, and Miltersen, 2013] not working
because of presence of negative weights
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Results

Theorem:

I Computation of the value Val(`, v) of states of a 1BWTG in
pseudo-polynomial time

I Synthesis of ε-optimal strategies for player # in pseudo-polynomial time

Theorem: Non-negative case

In case of a 1BWTG with only non-negative weights, all complexities drop
down to polynomial.
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First idea: symetrize the point of view

Value for player #: Val(`, v) = inf
σ#∈Strat#

sup
σ2∈Strat2

Wt(Play((`, v), σ#, σ2))

Value for player 2: Val(`, v) = sup
σ2∈Strat2

inf
σ#∈Strat#

Wt(Play((`, v), σ#, σ2))

How to compare them? Val(`, v) 6 Val(`, v)

Theorem: (continued)

I 1BWTGs are determined: Val(`, v) = Val(`, v)

I Synthesis of ε-optimal strategies for player 2 in pseudo-polynomial time
(and polynomial in case of non-negative weights)
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Sketch of proof

1. Reduce the space of strategies in the 1BWTG: restrict to
uniform strategies w.r.t. timed behaviors

2. Build a weighted finite games G based on a refinement of the region
abstraction

3. Study G

4. Lift results of G to the original 1BWTG
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1. Reduce the space of strategies
Intuition: no need for both players to play far from boundaries of regions

1 `1[x 6 1]

1

`2

[x 6 2]

−1

`3

[x 6 2]

−1

`4

[x 6 2]

1

`5

[x 6 2]

� `6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

Regions: {0}, (0, 1), {1}, (1, 2), {2}, (2,+∞)

Player # wants to leave as soon as possible a state with rate p+, and wants
to stay as long as possible in a state with rate p−: so, he will always play

η-close to a boundary...

Lemma:
Both players can play arbitrarily close to boundaries w.l.o.g., i.e., for every η

Valη(`, v) 6 Val(`, v) 6 Val(`, v) 6 Val
η
(`, v)
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2. Weighted finite game abstraction

1 `1[x 6 1]

1

`2

[x 6 2]

−1

`3

[x 6 2]

−1

`4

[x 6 2]

1

`5

[x 6 2]

� `6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

η-regions: {0}, (0, η), (1− η, 1), {1}, (1, 1 + η), (2− η, 2), {2}, (2,+∞)
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2. Weighted finite game abstraction

{0}

{0} [0, η] [1−η, 1) [1, 1+η] [2−η, 2]

{0} (0, η] [1−η, 1) {1} {0}

�

0

1 1
2

2

0
1

1
2

0
0

0

1 1 1

0

0

−1

−1

1

3
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3. Study G: values and optimal strategies

{0}

{0} [0, η] [1−η, 1) [1, 1+η] [2−η, 2]

{0} ]0, η] [1−η, 1) {1} {0}

�

0

1 1
2

2

0
1

1
2

0
0

0

1 1 1

0

0

−1

−1

1

3

Optimal value: ValG(`1, {0}) = +2 (for both players)
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4. Lift results of G to the original 1BWTG

Reconstruct strategies in the 1BWTG from optimal strategies of G

Lemma:
For all ε > 0, there exists η > 0 such that:

ValG(`, {0})−ε 6 Valη(`, 0)6 Val(`, 0) 6 Val(`, 0) 6Val
η
(`, 0) 6 ValG(`, {0})+ε

I So Val(`, 0) = Val(`, 0), i.e., determination

I ε-optimal strategies for both players
I Finite memory for player #, because finite memory in weighted finite

games
I Infinite memory for player 2 (even though memoryless in weighted finite

games), because it needs to ensure convergence of its differences between
the 1BWTG and G

I Overall complexity: pseudo-polynomial (polynomial if non-negative
weights) in the size of G, which is polynomial in the 1BWTG (because 1
clock)
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Summary and Future Work

Results

I 1BWTGs are determined: Val(`, v) = Val(`, v)

I Computation of the values in pseudo-polynomial time (and polynomial
in case of non-negative weights)

I Synthesis of ε-optimal strategies for both players in pseudo-polynomial
time (and polynomial in case of non-negative weights)

I Strategy complexity: finite memory for player #, infinite memory for
player 2

Other results obtained in this context: undecidability results due to the
presence of negative weights...

I Implementation and test of this algorithm for real instances

I Extensions to a richer model of priced timed games with negative
weights: careful since players may need to play far from boundaries in
case of 2 clocks, or 1 clock and 3 distinct rates...

I Consider other objectives, e.g., timed bounded restrictions, leading to
decidability in some cases
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