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Priced Timed Games
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Timed Automaton
with partition of states

between 2 players
+ reachability objective

+ rates in locations
+ costs over transitions

Semantics in terms of
infinite game with weights

(`1, 0)
0.4,↘−−−−→(`4, 0.4)

0.6,→−−−−→(`5, 0)
1.5,←−−−−→(`4, 0)

1.1,→−−−−→(`5, 0)
2,↗−−−→(�, 2)

0.4 + 1 −3× 0.6 +1.5 −3× 1.1 +2× 2 + 2 = 3.8

(`1, 0)
0.2,↗−−−−→(`2, 0)

0.9,→−−−−→(`3, 0.9)
0.2,

	

−−−−→(`3, 0)
0.9,

	

−−−−→(`3, 0) · · ·
0.2 +0.9 −0.2 −0.9 · · · = +∞ (� not reached)

Cost of a play:

{
+∞ if � not reached

total payoff up to � otherwise
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Strategies and objectives
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Strategy for each player: mapping of finite runs to a delay and an action

Goal of player #: reach � and minimize the cost
Goal of player 2: avoid � or, if not possible, maximize the cost

Main object of interest:
Val(`, v) = inf

σ#∈Strat#
sup

σ2∈Strat2

Wt(Play((`, v), σ#, σ2)) ∈ R ∪ {−∞,+∞}
What player # can guarantee as a payoff? and design good strategies
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State of the art
F6K�: ∃ a strategy in the PTG (priced timed game) for player #
reaching � with a cost 6 K?

I One-player case (Priced timed automata): optimal reachability
problem is PSPACE-complete

I Algorithm based on regions [Bouyer, Brihaye, Bruyère, and Raskin,

2007];
I and hardness shown for timed automata with at least 2 clocks

[Fearnley and Jurdziński, 2013, Haase, Ouaknine, and Worrell, 2012]

I 2-player PTGs: undecidable [Brihaye, Bruyère, and Raskin, 2005, Bouyer,

Brihaye, and Markey, 2006a], even with only non-negative costs and 3
clocks

I PTGs with non-negative costs and strictly non-Zeno cost
cycles: exponential algorithm [Bouyer, Cassez, Fleury, and Larsen, 2004,

Alur, Bernadsky, and Madhusudan, 2004]

I One-clock PTGs with non-negative costs: exponential algorithm
[Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011, Hansen,

Ibsen-Jensen, and Miltersen, 2013]

This talk: PTGs with negative costs
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Undecidability results: less clocks...

I Known: F6K� undecidable for 3 or more clocks

Proof by reduction of 2-counter machines: x1 = 1
2c1

, x2 = 1
3c2

, x3 for work

Theorem:
F6K� undecidable for PTGs with 2 or more clocks
idem for F>K�, F>K�, F=K�, F<K�

New encoding: x1 = 1
5c1 7c2

, x2 for work

Simulation of “`k : decrement c1; goto `k+1” for Reach(= 1)

0

`k

−1

Check

0

Go

`k+1

1

Abort

0

T1x2 := 0 x2 = 0

x2 = 0

x2 > 1

−1

L

−5

M

2

N

0

T

x1 = 1

x1 := 0

x2 = 1

x2 := 0

x2 = 1

x2 := 0

x1 6 1

W
D

1
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Regain decidability
in the presence of negative prices?
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More complex when negative costs

I Value −∞: detection is as hard as mean-payoff. No hope for
complexity better than NP ∩ co-NP, or pseudo-polynomial

I Memory complexity

I Player # needs memory, even in the untimed setting

0 0

�

−1

−w

0

0

I Player 2 may require infinite memory

0 −1�

x := 0

x > 0
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Building over the corner-point abstraction

Only known decidable fragment with negative weights: 1-player case
(priced timed automata)

I Main tool: refinement of regions similar to corner point abstraction

1 `1[x 6 1]

1

`2

[x 6 2]

−1

`3

[x 6 2]

−1

`4

[x 6 2]

1

`5

[x 6 2]

� `6

x > 0
x := 0, 0

x 6 1, 1

x 6 2, 0

x < 1, x := 0, 0

x > 1, 1

x > 1
x := 0, 0

x > 1
x := 0, 0

x > 1, 2

regions: {0}, (0, 1), {1}, (1, 2), {2}, (2,+∞)
regions refined with corner information:
{0}, (0, η), (1− η, 1), {1}, (1, 1 + η), (2− η, 2), {2}, (2,+∞)
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regions: {0}, (0, 1), {1}, (1, 2), {2}, (2,+∞)
regions refined with corner information:
{0}, (0, η), (1− η, 1), {1}, (1, 1 + η), (2− η, 2), {2}, (2,+∞)
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One-clock Bi-Valued PTGs (1BPTGs)
Assumption: rates of locations {p−, p+} included in {0,+d ,−d}
(d ∈ N) (no assumption on costs of transitions)
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I Techniques of [Bouyer, Cassez, Fleury, and Larsen, 2004, Alur, Bernadsky, and

Madhusudan, 2004] not applicable, e.g., because of Zeno costs cycles

I Exponential algorithms of [Bouyer, Larsen, Markey, and Rasmussen, 2006b,

Rutkowski, 2011, Hansen, Ibsen-Jensen, and Miltersen, 2013] not working
because of presence of negative costs
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Results

Theorem:

I Computation of the value Val(`, v) of states of a 1BPTG in
pseudo-polynomial time

I Synthesis of ε-optimal strategies for player # in pseudo-polynomial
time

Theorem: Non-negative case

In case of a 1BPTG with only non-negative costs, all complexities drop
down to polynomial.
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First idea: symmetrize the viewpoint

Value for player #: Val(`, v) = inf
σ#∈Strat#

sup
σ2∈Strat2

Wt(Play((`, v), σ#, σ2))

Value for player 2: Val(`, v) = sup
σ2∈Strat2

inf
σ#∈Strat#

Wt(Play((`, v), σ#, σ2))

How to compare them? Val(`, v) 6 Val(`, v)

Theorem: (continued)

I Minmax theorem: 1BPGs are determined, i.e., Val(`, v) = Val(`, v)

I Synthesis of ε-optimal strategies for player 2 in pseudo-polynomial
time (and polynomial in case of non-negative weights)
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Sketch of proof

1. Reduce the space of strategies in the 1BPTG
I restrict to uniform strategies w.r.t. timed behaviors

2. Build a finite priced game G
I based on a refinement of the region abstraction

3. Study G

4. Lift results of G to the original 1BPTG
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1. Reduce the space of strategies

Intuition: no need for both players to play far from borders of regions
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{0}, (0, 1), {1}, (1, 2), {2}, (2,+∞)

Player # wants to leave as soon as possible a state with rate p+, and
wants to stay as long as possible in a state with rate p−: so, he will
always play η-close to a border...

Lemma:
Both players can play arbitrarily close to borders w.l.o.g.: for every η

Valη(`, v) 6 Val(`, v) 6 Val(`, v) 6 Val
η

(`, v)
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2. Finite priced game abstraction
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2. Finite priced game abstraction
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3. Study G: values, optimal strategies of a min-cost reachability game

[Brihaye, Geeraerts, Haddad, and Monmege, 2014]
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Optimal value: ValG(`1, {0}) = +2 (for both players)
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4. Lift results to the original 1BPTG

Reconstruct strategies in the 1BPTG from optimal strategies of G

Lemma:
For all ε > 0, there exists η > 0 such that:
ValG(`, {0})− ε 6 Valη(`, 0) 6 Val(`, 0) 6 Val(`, 0) 6 Val

η
(`, 0) 6 ValG(`, {0}) + ε

I So Val(`, 0) = Val(`, 0), i.e., determination

I ε-optimal strategies for both players
I Finite memory for player # (finite memory in finite priced games)
I Infinite memory for player 2 (even though memoryless in finite priced

games), because it needs to ensure convergence of its differences
between the 1BPTG and G

I Overall complexity: pseudo-polynomial (polynomial if non-negative
costs) in the size of G, which is polynomial in the 1BPTG (because
1 clock)
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1BPTG: maximal fragment for corner-point abstraction

Players may need to play far from corners...

I With 3 weights in {−1, 0,+1}: value 1/2...
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I With 2 weights in {−1, 0,+1} but 2 clocks: value 1/2...
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Inspired by other previous techniques for 1-clock PTGs?
[Hansen, Ibsen-Jensen, and Miltersen, 2013]: strategy improvement algorithm

[Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011]: iterative elimination of locations

I precomputation: polynomial-time cascade of simplification of
1-clock PTGs into simple 1-clock PTGs (SPTGs)

I clock bounded by 1, no guards/invariants, no resets

I for SPTGs: compute value functions Val(`, x) = Val(`, x), ∀` loc.
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Figure 1: Example of an SPTG, showing value functions and an optimal strategy profile.

current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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Value functions: continuous, non-increasing, piecewise linear functions
with at most exponential number of event points

+ ε-optimal positional strategies
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Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
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this bound for an alternative algorithm, due to him.
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entire graphs of value functions are manipulated during an iteration).
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Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
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3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
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on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
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all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
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k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
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nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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I precomputation: polynomial-time cascade of simplification of
1-clock PTGs into simple 1-clock PTGs (SPTGs)

I clock bounded by 1, no guards/invariants, no resets

I for SPTGs: compute value functions Val(`, x) = Val(`, x), ∀` loc.
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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current state-of-the-art tools for solving PTGs or various special cases (e.g., such as those of UPPAAL,
http://uppaal.org or HyTech http://embedded.eecs.berkeley.edu/research/hytech/), which
all seem to be based on a value-iteration based algorithm independently devised by Bouyer, Cassez,
Fleury, and Larsen [7]; and Alur, Bernadsky, and Madhusudan [1]. We shall refer to that algorithm as
the BCFL-ABM algorithm.

3. A worst case analysis of our algorithm as well as an improved worst case analysis of the BCFL-
ABM algorithm. Interestingly, the analysis of the algorithms is quite indirect: We analyze a different
algorithm for a subproblem (priced games, see section 2), namely the strategy iteration algorithm, also
used to solve Markov decision processes and various other classes of two-player zero-sum games played
on graphs, and relate the analysis of this algorithm to our algorithm. To summarize the result of the
analysis, it is convenient to introduce the parameter L = L(G) of an SPTG to be the total number of
distinct time coordinates of left endpoints of the linear segments of all value functions of G. Note that
the parameter L is very natural, as L is a lower bound on the size of the explicit description of these
value functions, i.e., the output of the algorithms under consideration. We show:

(a) For an SPTG G, we have that L(G) ≤ min{12n,
∏

k∈S(|Ak|+1)}, where S is the set of states and

Ak the set of actions in state k. The best previous bound on L(G) was 2O(n2), due to Rutkowski
[15].

(b) The worst case time complexity of our new algorithm is O((m + n log n)L). In particular, the
algorithm combined with the reduction solves general PTGs in time m12nnO(1). The best previous
worst case bound for any algorithm solving PTGs was 2O(n2+m), due to Rutkowski [15], who gave
this bound for an alternative algorithm, due to him.

(c) The worst case number of iterations of the BCFL-ABM algorithm is min{12n,
∏

k∈S(|Ak|+1)}m ·
nO(1) for general PTGs, significantly improving an analysis of Rutkowsi. (An ”iteration” is a
natural unit of time, specific to the algorithm – each iteration may take considerable time, as
entire graphs of value functions are manipulated during an iteration).

(d) For the special case of PTGs with all rates being 1 (i.e., all states are equally expensive to wait
in) and all transition costs being 0 (i.e., Player 1 wants to minimize the time used), our algorithm
combined with the reduction runs in time O(nm(min(m, n2) + n log n)). This special case is also
known as timed reachability games, and it was studied by Jurdzinski and Trivedi [12] who gave
an exponential algorithm. Trivedi [18] also observed that the region abstraction algorithm of
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ε-optimal positional strategies do not always exist
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Summary and Future Work

Results
I Refined undecidability results due to the presence of negative costs

I Decidable fragment of 1BPTGs in pseudo-polynomial time, with
finite memory for #, infinite memory for 2. Obtained by lifting of
corner point abstraction to game setting

I Extension of iterative elimination for reset-acyclic 1-clock PTGs

I Ongoing work: final extension of the result for all 1-clock PTGs
I How to deal with resets in presence of negative prices?
I With which complexity?

I Implementation and test of different algorithms on real instances

Thank you for your attention

21/23



Summary and Future Work

Results
I Refined undecidability results due to the presence of negative costs

I Decidable fragment of 1BPTGs in pseudo-polynomial time, with
finite memory for #, infinite memory for 2. Obtained by lifting of
corner point abstraction to game setting

I Extension of iterative elimination for reset-acyclic 1-clock PTGs

I Ongoing work: final extension of the result for all 1-clock PTGs
I How to deal with resets in presence of negative prices?
I With which complexity?

I Implementation and test of different algorithms on real instances

Thank you for your attention

21/23



Summary and Future Work

Results
I Refined undecidability results due to the presence of negative costs

I Decidable fragment of 1BPTGs in pseudo-polynomial time, with
finite memory for #, infinite memory for 2. Obtained by lifting of
corner point abstraction to game setting

I Extension of iterative elimination for reset-acyclic 1-clock PTGs

I Ongoing work: final extension of the result for all 1-clock PTGs
I How to deal with resets in presence of negative prices?
I With which complexity?

I Implementation and test of different algorithms on real instances

Thank you for your attention

21/23



References I

Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal reachability for
weighted timed games. In Proceedings of the 31st International Colloquium on
Automata, Languages and Programming (ICALP’04), volume 3142 of Lecture
Notes in Computer Science, pages 122–133. Springer, 2004.

Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal
strategies in priced timed game automata. In Proceedings of the 24th Conference
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’04), volume 3328 of Lecture Notes in Computer Science, pages 148–160.
Springer, 2004.

Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved undecidability results
on weighted timed automata. Information Processing Letters, 98(5):188–194,
2006a.

Patricia Bouyer, Kim G. Larsen, Nicolas Markey, and Jacob Illum Rasmussen. Almost
optimal strategies in one-clock priced timed games. In Proceedings of the 26th
Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’06), volume 4337 of Lecture Notes in Computer Science, pages
345–356. Springer, 2006b.
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