Logical Characterization of Weighted Pebble Walking Automata

Benjamin Monmege

Université libre de Bruxelles, Belgium

Benedikt Bollig and Paul Gastin (LSV, ENS Cachan, France) Marc Zeitoun (LaBRI, Bordeaux University, France)

CSL-LICS 2014

Vienna - July 15, 2014

Equivalence between automata and logic

- Well-known and studied model of computation: NFA over words
- Existing extensions over trees, grids, graphs...
- Robustness of automata intrinsically linked to logical characterization

Equivalence between automata and logic

- Well-known and studied model of computation: NFA over words
- Existing extensions over trees, grids, graphs...
- Robustness of automata intrinsically linked to logical characterization
- Büchi-Elgot-Trakhtenbrot: NFA vs MSO
- Engelfriet-Hoogeboom: pebble walking automata vs FOposTC
- Droste-Gastin: weighted automata vs restricted weighted MSO

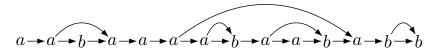
Equivalence between automata and logic

- Well-known and studied model of computation: NFA over words
- Existing extensions over trees, grids, graphs...
- Robustness of automata intrinsically linked to logical characterization
- Büchi-Elgot-Trakhtenbrot: NFA vs MSO
- Engelfriet-Hoogeboom: pebble walking automata vs FOposTC
- Droste-Gastin: weighted automata vs restricted weighted MSO
- Aim: extend Engelfriet-Hoogeboom result to the quantitative setting, relating weighted pebble walking automata with weighted FOposTC

Words: $D = \{ \rightarrow \}$ computations of sequential programs

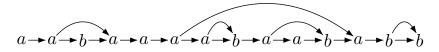
Words: $D = \{\rightarrow\}$ computations of sequential programs

Nested words: $D = \{ \rightarrow, \curvearrowright \}$ computations of recursive programs, XML documents

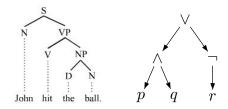


Words: $D = \{\rightarrow\}$ computations of sequential programs

Nested words: $D = \{ \rightarrow, \land \}$ computations of recursive programs, XML documents



Ranked trees: $D = \{\downarrow_1, \downarrow_2\}$ expressions, formulae, parse trees



Definition: directed graphs

- $G = (V, (E_d)_{d \in D}, \lambda, \iota)$ where
 - V is a nonempty and finite set of vertices;
 - For all edge label d ∈ D, E_d ⊆ V × V is an *irreflexive relation*, describing the d-edges of the graph, which is *deterministic and codeterministic*;
 - $\lambda \colon V \to A$ is a vertex-labeling function;
 - $\iota \in V$ is an initial vertex.

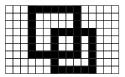
For all edge label d, we consider its reverse d^{-1} letting $E_{d^{-1}} = (E_d)^{-1}$

Definition: directed graphs

- $G = (V, (E_d)_{d \in D}, \lambda, \iota)$ where
 - V is a nonempty and finite set of vertices;
 - For all edge label d ∈ D, E_d ⊆ V × V is an *irreflexive relation*, describing the d-edges of the graph, which is *deterministic and codeterministic*;
 - $\lambda \colon V \to A$ is a vertex-labeling function;
 - $\iota \in V$ is an initial vertex.

For all edge label d, we consider its reverse d^{-1} letting $E_{d^{-1}} = (E_d)^{-1}$

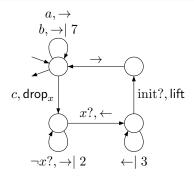
Grids: $D = \{\rightarrow, \uparrow\}$ *pictures*



Weighted pebble walking automata

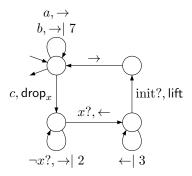
Definition:

- Finite number of states, initial and final states
- Ability to navigate in the graph (using the deterministic edge labels)
- Bounded supply of pebbles able to mark temporarily a position
- Pebbles are treated with a stack policy: first pebble to lift is the last dropped pebble
- Fransitions equipped with weights in a complete semiring $(S, +, \times, 0, 1)$



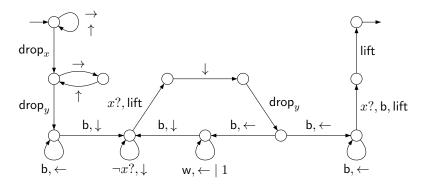
$$\begin{array}{l} \text{Examples of complete semirings:} \\ (\{0,1\},\vee,\wedge,0,1) \\ (\mathbb{R}^+ \cup \{+\infty\},+,\times,0,1) \\ (\mathbb{Z} \cup \{+\infty,-\infty\},\min,+,+\infty,0) \\ (\mathbb{Z} \cup \{+\infty,-\infty\},\max,+,-\infty,0) \\ ([0,1],\min,\max,1,0) \\ (2^{\Sigma^*},\cup,\cdot,\emptyset,\{\varepsilon\}) \end{array}$$

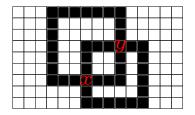
Weighted pebble walking automata



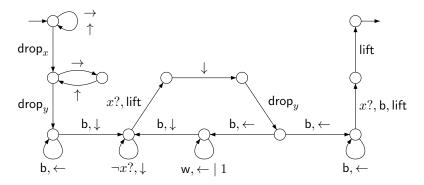
Definition: Semantics over $(S, +, \times, 0, 1)$

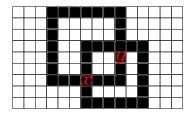
- Configurations over a graph G: (G, q, π, ν) with state q, stack π of pebble positions and current vertex ν
- Weight of a run: multiplication of the weights of transitions
- Semantics $\llbracket A \rrbracket (G)$: sum of weights of accepting runs over G



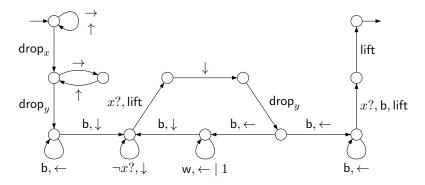


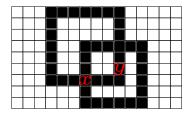
$$(\mathbb{N}\cup\{-\infty\},\mathsf{max},+,-\infty,\mathsf{0})$$



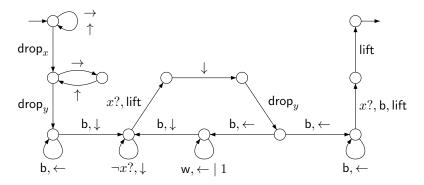


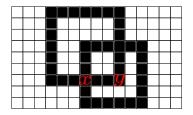
$$(\mathbb{N}\cup\{-\infty\},\mathsf{max},+,-\infty,\mathsf{0})$$





$$(\mathbb{N}\cup\{-\infty\},\mathsf{max},+,-\infty,\mathsf{0})$$





$$(\mathbb{N}\cup\{-\infty\},\mathsf{max},+,-\infty,\mathsf{0})$$

Logical characterization

Classical weighted automata are $\mathbf{one}\text{-}\mathbf{way}$ (sometimes branching) and $\mathbf{without}$ $\mathbf{pebbles}$

Logical characterization for them in terms of a restricted weighted MSO logic:

- over words [Droste and Gastin, 2009]
- over trees [Droste and Vogler, 2006]
- over grids [Fichtner, 2011]
- over nested words [Mathissen, 2010]...

Logical characterization

Classical weighted automata are $\mathbf{one}\text{-}\mathbf{way}$ (sometimes branching) and $\mathbf{without}$ $\mathbf{pebbles}$

Logical characterization for them in terms of a restricted weighted MSO logic:

- over words [Droste and Gastin, 2009]
- over trees [Droste and Vogler, 2006]
- over grids [Fichtner, 2011]
- over nested words [Mathissen, 2010]...

Restricted weighted MSO does not even contain full weighted FO a priori

Theorem: Our contribution

Weighted pebble walking automata over graphs (wPWA) = wFOTC

Definition:

Classical first-order logic

 $\varphi ::= \top \mid (x = y) \mid \mathsf{init}(x) \mid P_a(x) \mid R_d(x, y) \mid R_d^+(x, y) \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \varphi$

Definition:

Classical first-order logic

 $\varphi ::= \top \mid (x = y) \mid \mathsf{init}(x) \mid P_a(x) \mid R_d(x, y) \mid R_d^+(x, y) \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \varphi$

Weighted first-order logic over graphs with weights in a semiring $(\mathbf{S},+,\times,\mathbf{0},1)$

 $\Phi ::= s \mid \varphi ? \Phi : \Phi \mid \Phi \oplus \Phi \mid \Phi \otimes \Phi \mid \bigoplus_{x} \Phi \mid \bigotimes_{x} \Phi$

Definition:

Classical first-order logic

 $\varphi ::= \top \mid (x = y) \mid \mathsf{init}(x) \mid P_a(x) \mid R_d(x, y) \mid R_d^+(x, y) \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \varphi$

Weighted first-order logic over graphs with weights in a semiring $(S, +, \times, 0, 1)$

$$\Phi ::= s \mid \varphi ? \Phi : \Phi \mid \Phi \oplus \Phi \mid \Phi \otimes \Phi \mid \bigoplus_x \Phi \mid \bigotimes_x \Phi$$

Semantics over a graph G and a valuation σ of free variables

$$\llbracket \varphi ? \Phi_1 : \Phi_2 \rrbracket (G, \sigma) = \begin{cases} \llbracket \Phi_1 \rrbracket (G, \sigma) & \text{if } G, \sigma \models \varphi \\ \llbracket \Phi_2 \rrbracket (G, \sigma) & \text{otherwise} \end{cases}$$
$$\llbracket \Phi_1 \oplus \Phi_2 \rrbracket (G, \sigma) = \llbracket \Phi_1 \rrbracket (G, \sigma) + \llbracket \Phi_2 \rrbracket (G, \sigma) & \llbracket \bigoplus_x \Phi \rrbracket (G, \sigma) = \sum_{v \in V} \llbracket \Phi \rrbracket (G, \sigma[x \mapsto v])$$
$$\llbracket \Phi_1 \otimes \Phi_2 \rrbracket (G, \sigma) = \llbracket \Phi_1 \rrbracket (G, \sigma) \times \llbracket \Phi_2 \rrbracket G, \sigma) & \llbracket \bigotimes_x \Phi \rrbracket (G, \sigma) = \prod_{v \in V} \llbracket \Phi \rrbracket (G, \sigma[x \mapsto v])$$

Definition:

Classical first-order logic

 $\varphi ::= \top \mid (x = y) \mid \mathsf{init}(x) \mid P_a(x) \mid R_d(x, y) \mid R_d^+(x, y) \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \varphi$

Weighted first-order logic over graphs with weights in a semiring $(S, +, \times, 0, 1)$

$$\Phi ::= s \mid \varphi ? \Phi : \Phi \mid \Phi \oplus \Phi \mid \Phi \otimes \Phi \mid \bigoplus_x \Phi \mid \bigotimes_x \Phi$$

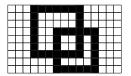
Semantics over a graph G and a valuation σ of free variables

$$\llbracket \varphi ? \Phi_1 : \Phi_2 \rrbracket (G, \sigma) = \begin{cases} \llbracket \Phi_1 \rrbracket (G, \sigma) & \text{if } G, \sigma \models \varphi \\ \llbracket \Phi_2 \rrbracket (G, \sigma) & \text{otherwise} \end{cases}$$
$$\llbracket \Phi_1 \oplus \Phi_2 \rrbracket (G, \sigma) = \llbracket \Phi_1 \rrbracket (G, \sigma) + \llbracket \Phi_2 \rrbracket (G, \sigma) & \llbracket \bigoplus_x \Phi \rrbracket (G, \sigma) = \sum_{v \in V} \llbracket \Phi \rrbracket (G, \sigma[x \mapsto v])$$
$$\llbracket \Phi_1 \otimes \Phi_2 \rrbracket (G, \sigma) = \llbracket \Phi_1 \rrbracket (G, \sigma) \times \llbracket \Phi_2 \rrbracket (G, \sigma) & \llbracket \bigotimes_x \Phi \rrbracket (G, \sigma) = \prod_{v \in V} \llbracket \Phi \rrbracket (G, \sigma[x \mapsto v])$$

Examples in $(\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$ $\Phi_{\mathsf{b}} = \bigotimes_{x} P_{\mathsf{b}}(x) ? 1 : 0$ $\Phi_{\mathsf{w}} = \bigotimes_{x} P_{\mathsf{w}}(x) ? 1 : 0$ $\Phi_{\mathsf{b}} \oplus \Phi_{\mathsf{w}}$

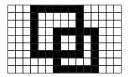
Benjamin Monmege, ULB, Belgium

Transitive closure in graphs



Binary predicate $R_{\uparrow}(x, y) = \exists z [R_{\rightarrow}(x, z) \land R_{\uparrow}(z, y)]$ Transitive Closure $\operatorname{TC}_{x,y} R_{\uparrow}(x, y)$ test if square (not doable in FO)

Transitive closure in graphs



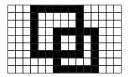
Binary predicate $R_{\uparrow}(x, y) = \exists z [R_{\rightarrow}(x, z) \land R_{\uparrow}(z, y)]$ Transitive Closure $\operatorname{TC}_{x,y} R_{\uparrow}(x, y)$ test if square (not doable in FO)

Weighted transitive closure: semiring ($\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0$)

 $\mathrm{TC}_{x,y}[R_{/\!\!}(x,y)?1:-\infty]$

verifies that it is a square and computes the length of its diagonal

Transitive closure in graphs

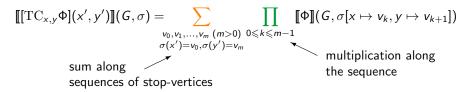


Binary predicate $R_{\uparrow}(x, y) = \exists z [R_{\rightarrow}(x, z) \land R_{\uparrow}(z, y)]$ Transitive Closure $\operatorname{TC}_{x,y} R_{\uparrow}(x, y)$ test if square (not doable in FO)

Weighted transitive closure: semiring $(\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$ $\mathrm{TC}_{x,y}[R_{\mathbb{Z}}(x, y) ? 1 : -\infty]$

verifies that it is a square and computes the length of its diagonal

Semantics given in a complete semiring $(\mathbf{S},+,\times,\mathbf{0},1)$



Bounding the Transitive Closure

- A necessary restriction to obtain a fragment of logic expressively equivalent to wPWA
- But not so restrictive in most of the cases!

$$\operatorname{TC}_{x,y}^{N}\Phi(x,y) = \operatorname{TC}_{x,y}[\operatorname{dist}(x,y) \leqslant N ? \Phi(x,y) : 0]$$

Bounding the Transitive Closure

- A necessary restriction to obtain a fragment of logic expressively equivalent to wPWA
- But not so restrictive in most of the cases!

$$\operatorname{TC}_{x,y}^{N} \Phi(x,y) = \operatorname{TC}_{x,y}[\operatorname{dist}(x,y) \leqslant N ? \Phi(x,y) : 0]$$

Previous example: $\operatorname{TC}_{x,y}[R_{\uparrow}(x,y)?1:-\infty] = \operatorname{TC}^2_{x,y}[R_{\uparrow}(x,y)?1:-\infty]$

Bounding the Transitive Closure

- A necessary restriction to obtain a fragment of logic expressively equivalent to wPWA
- But not so restrictive in most of the cases!

$$\operatorname{TC}_{x,y}^{N} \Phi(x,y) = \operatorname{TC}_{x,y}[\operatorname{dist}(x,y) \leqslant N ? \Phi(x,y) : 0]$$

Previous example: $\operatorname{TC}_{x,y}[R_{f}(x,y)?1:-\infty] = \operatorname{TC}^{2}_{x,y}[R_{f}(x,y)?1:-\infty]$

Definition: Logic wFOTC

 $\Phi ::= s \mid \varphi ? \Phi : \Phi \mid \Phi \oplus \Phi \mid \Phi \otimes \Phi \mid \bigoplus_{x} \Phi \mid \bigotimes_{x} \Phi \mid \bigotimes_{x} \Phi \mid \operatorname{TC}_{x,y}^{\mathsf{N}} \Phi$

with $s \in \mathbf{S}$, $\varphi \in \mathsf{FO}$, $x, y \in \text{Var}$ and $N \in \mathbb{N} \setminus \{0\}$.

Comparison with restricted wMSO:

▶ unrestricted use of \bigoplus_x and \otimes , presence of $\mathrm{TC}_{x,y}$, absence of \bigoplus_X

Contribution

Theorem:

over searchable graphs: wFOTC \longrightarrow weighted pebble walking automata

over zonable graphs: weighted pebble walking automata \longrightarrow wFOTC

Contribution

Theorem:

over searchable graphs: wFOTC \longrightarrow weighted pebble walking automata

over zonable graphs: weighted pebble walking automata \longrightarrow wFOTC

 \Longrightarrow (un)decidability and complexity results over automata transfer to wFOTC

Definition: Hypothesis: searchable graphs

- ▶ linear order \leq on vertices with ι (initial vertex) as minimal element
- \blacktriangleright existence of a guide: walking automaton $\mathcal{A}_\mathcal{G}$ computing \leqslant

Definition: Hypothesis: searchable graphs

- ▶ linear order \leq on vertices with ι (initial vertex) as minimal element
- \blacktriangleright existence of a guide: walking automaton $\mathcal{A}_\mathcal{G}$ computing \leqslant

All previously classes of graphs are searchable

Inductive translation:

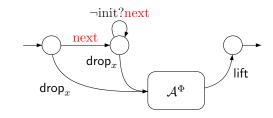
 $\Phi\oplus\Psi\qquad \text{disjoint union of automata}$

$$\Phi\otimes\Psi \longrightarrow \mathcal{A}_{\Phi} \xrightarrow{\text{reset to }\iota} \mathcal{A}_{\Psi} \longrightarrow$$

Definition: Hypothesis: searchable graphs

- ▶ linear order \leq on vertices with ι (initial vertex) as minimal element
- \blacktriangleright existence of a guide: walking automaton $\mathcal{A}_\mathcal{G}$ computing \leqslant

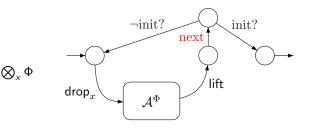
All previously classes of graphs are searchable



Φ, Φ

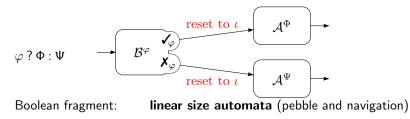
Definition: Hypothesis: searchable graphs

- ▶ linear order \leq on vertices with ι (initial vertex) as minimal element
- \blacktriangleright existence of a guide: walking automaton $\mathcal{A}_\mathcal{G}$ computing \leqslant



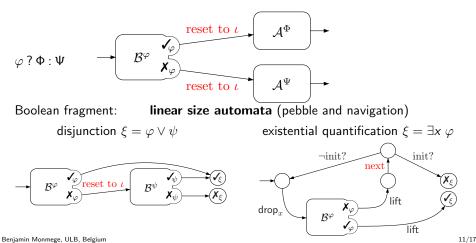
Definition: Hypothesis: searchable graphs

- ▶ linear order \leq on vertices with ι (initial vertex) as minimal element
- \blacktriangleright existence of a guide: walking automaton $\mathcal{A}_\mathcal{G}$ computing \leqslant



Definition: Hypothesis: searchable graphs

- ▶ linear order \leq on vertices with ι (initial vertex) as minimal element
- lacksim existence of a guide: walking automaton $\mathcal{A}_\mathcal{G}$ computing \leqslant



Translation of wFOTC in wPWA

Case of a formula $[TC_{x,y}^N \Phi(x,y)](\underline{x',y'})$ with \mathcal{A} a wPWA for Φ : construction of

a ${\rm wPW\!A}~{\cal A}'$ with two more layers of pebbles that does the following

Translation of wFOTC in wPWA

Case of a formula $[TC_{x,y}^{N}\Phi(x,y)](\underline{x',y'})$ with \mathcal{A} a wPWA for Φ : construction of

a ${\rm wPW\!A}~{\cal A}'$ with two more layers of pebbles that does the following

- 1. search free variable x', and drop pebble x
- 2. guess a sequence of moves of length $\leq N$, follow it, and drop pebble y (then flush the sequence to save memory)
- 3. reset to ι and simulate \mathcal{A}
- 4. search pebble y
- 5. guess sequence π of moves of length $\leq N$, follow it, check that it holds x
- 6. lift pebbles y and x (hence returning to the vertex of x)
- 7. follow π^R to reach back the vertex that held y, and drop pebble x
- 8. if y' is held by the current vertex, enter a final state
- 9. in every case, go back to step 2

Translation of wFOTC in wPWA

Case of a formula $[TC_{x,y}^N \Phi(x,y)](\underline{x',y'})$ with \mathcal{A} a wPWA for Φ : construction of

fresh free variables

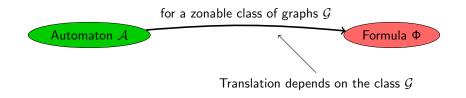
a $\operatorname{wPWA}\,\mathcal{A}'$ with two more layers of pebbles that does the following

- 1. search free variable x', and drop pebble x
- 2. guess a sequence π of moves of length $\leq N$, follow it, and drop pebble y (then flush the sequence to save memory)
 - test that π is minimal amongst all sequences going from x to y
- 3. reset to ι and simulate \mathcal{A}
- 4. search pebble y
- 5. guess sequence π of moves of length $\leq N$, follow it, check that it holds x
 - test that π is minimal amongst all sequences going q from y to x
- 6. lift pebbles y and x (hence returning to the vertex of x)
- 7. follow π^R to reach back the vertex that held y, and drop pebble x
- 8. if y' is held by the current vertex, enter a final state
- 9. in every case, go back to step 2

Translation of wPWA in wFOTC

Theorem:

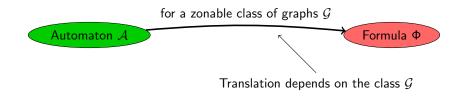
Let \mathcal{G} be a **zonable** class of graphs. Then, for every wPWA \mathcal{A} , we can construct a formula Φ of wFOTC such that for every graph $\mathcal{G} \in \mathcal{G}$, and valuation σ of free variables, $\llbracket \mathcal{A} \rrbracket (\mathcal{G}, \sigma) = \llbracket \Phi \rrbracket (\mathcal{G}, \sigma)$.



Translation of wPWA in wFOTC

Theorem:

Let \mathcal{G} be a **zonable** class of graphs. Then, for every wPWA \mathcal{A} , we can construct a formula Φ of wFOTC such that for every graph $\mathcal{G} \in \mathcal{G}$, and valuation σ of free variables, $\llbracket \mathcal{A} \rrbracket (\mathcal{G}, \sigma) = \llbracket \Phi \rrbracket (\mathcal{G}, \sigma)$.



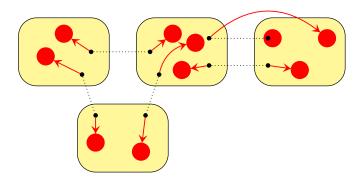
Proof in two steps:

- For the considered class of graphs, prove the zonability;
- Generic translation of automata into formulae for zonable class of graphs

Zonable classes of graphs

A zoning of a graph G with parameter N:

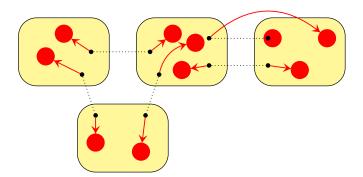
- ► an equivalence relation ~, decomposing a graph into zones of diameter bounded by a constant M;
- ▶ set *W* of wires = (directed) edges relating different zones;
- ▶ an injective encoding function $enc: W \times \{0, ..., N-1\} \rightarrow V$



Zonable classes of graphs

A zoning of a graph G with parameter N:

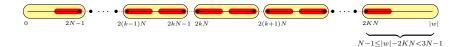
- ► an equivalence relation ~, decomposing a graph into zones of diameter bounded by a constant M;
- ▶ set *W* of wires = (directed) edges relating different zones;
- ▶ an injective encoding function $enc: W \times \{0, \dots, N-1\} \rightarrow V$



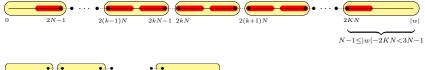
and \sim and *enc* must be expressible by some formulae zone(z, z') and $enc_n(z, z', x)$ (for $n \in \{0, ..., N - 1\}$) in wFOTC

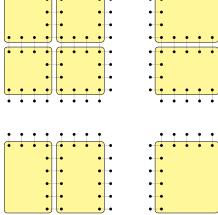
Benjamin Monmege, ULB, Belgium

Examples

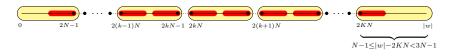


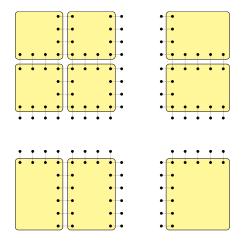
Examples





Examples

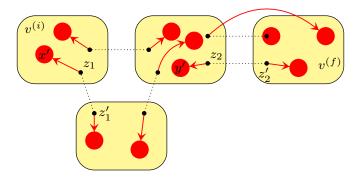




but also trees, nested words, Mazurkiewicz traces, rings...

Translation in a zonable class of graphs

- External (bounded) transitive closure jumping from zone to zone: state at the wires encoded using *enc*;
- Internal (bounded) transitive closures to compute the weights of the infinite set of runs restricted to a zone: computation by McNaughton-Yamada algorithm, state directly encoded in the formulae.

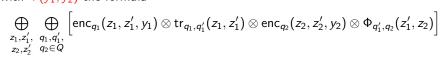


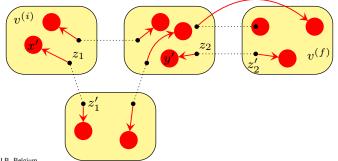
Translation in a zonable class of graphs

Weight of the runs from z_i in state q_i to z_f in state q_f :

$$\bigoplus_{\mathbf{x}',\mathbf{y}'} \left[\bigoplus_{z_1,z_1'} \bigoplus_{q_1 \in Q} \mathsf{enc}_{q_1}(z_1, z_1', \mathbf{x}') \otimes \Phi_{q_i,q_1}(z_i, z_1) \right] \otimes \left[\mathrm{TC}_{y_1,y_2}^{3M} \Psi \right](\mathbf{x}', \mathbf{y}') \\ \otimes \bigoplus_{z_2,z_2'} \bigoplus_{q_2,q_2' \in Q} \left[\mathsf{enc}_{q_2}(z_2, z_2', \mathbf{y}') \otimes \mathsf{tr}_{q_2,q_2'}(z_2, z_2') \otimes \Phi_{q_2',q_f}(z_2', z_f) \right]$$

with $\Psi(y_1, y_2)$ the formula





Benjamin Monmege, ULB, Belgium

Translation in a zonable class of graphs

Weight of the runs from z_i in state q_i to z_f in state q_f :

$$\bigoplus_{x',y'} \left[\bigoplus_{z_1,z_1'} \bigoplus_{q_1 \in Q} \operatorname{enc}_{q_1}(z_1, z_1', x') \otimes \Phi_{q_i,q_1}(z_i, z_1) \right] \otimes [\operatorname{TC}_{y_1,y_2}^{3M} \Psi](x',y') \\ \otimes \bigoplus_{z_2,z_2'} \bigoplus_{q_2,q_2' \in Q} \left[\operatorname{enc}_{q_2}(z_2, z_2', y') \otimes \operatorname{tr}_{q_2,q_2'}(z_2, z_2') \otimes \Phi_{q_2',q_f}(z_2', z_f) \right]$$

with $\Psi(y_1, y_2)$ the formula

$$\bigoplus_{\substack{z_1,z_1', \\ z_2,z_2'}} \bigoplus_{\substack{q_1,q_1', \\ q_2 \in Q}} \left[\mathsf{enc}_{q_1}(z_1, z_1', y_1) \otimes \mathsf{tr}_{q_1,q_1'}(z_1, z_1') \otimes \mathsf{enc}_{q_2}(z_2, z_2', y_2) \otimes \Phi_{q_1',q_2}(z_1', z_2) \right]$$

 $\Phi_{q,q'}(x,x')$ formula computing the weight of the runs from x in q to x' in q', staying in the zone containing both x and x'

built by McNaughton-Yamada algorithm, with cascade of bounded transitive closures (since zones have bounded diameter)

Conclusion and Perspectives

- Expressive equivalence between weighted pebble walking automata and weighted first-order logic with bounded transitive closure, over arbitrary complete semirings
- Additional reasonable requirements on the classes of graphs (searchable and zonable), met by usual examples of graphs (words, nested words, trees, grids, Mazurkiewicz traces, rings...)
- Interesting special case: a logic for graph-to-word transducers (non-commutative semiring of languages over an alphabet Σ)

Conclusion and Perspectives

- Expressive equivalence between weighted pebble walking automata and weighted first-order logic with bounded transitive closure, over arbitrary complete semirings
- Additional reasonable requirements on the classes of graphs (searchable and zonable), met by usual examples of graphs (words, nested words, trees, grids, Mazurkiewicz traces, rings...)
- Interesting special case: a logic for graph-to-word transducers (non-commutative semiring of languages over an alphabet Σ)
- Translation from automata to logic with less transitive closures? as in [Bollig, Gastin, Monmege, and Zeitoun, 2010] for words and the non-looping semantics
- Case of strong pebbles to deal with unbounded transitive closure?
- Extension to infinite structures?

Conclusion and Perspectives

- Expressive equivalence between weighted pebble walking automata and weighted first-order logic with bounded transitive closure, over arbitrary complete semirings
- Additional reasonable requirements on the classes of graphs (searchable and zonable), met by usual examples of graphs (words, nested words, trees, grids, Mazurkiewicz traces, rings...)
- Interesting special case: a logic for graph-to-word transducers (non-commutative semiring of languages over an alphabet Σ)
- Translation from automata to logic with less transitive closures? as in [Bollig, Gastin, Monmege, and Zeitoun, 2010] for words and the non-looping semantics
- Case of strong pebbles to deal with unbounded transitive closure?
- Extension to infinite structures?

Thank you!

References

- Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun. Pebble weighted automata and transitive closure logics. In *Proceedings of ICALP'10*, volume 6199 of *LNCS*, pages 587–598. Springer, 2010.
- Manfred Droste and Paul Gastin. Weighted automata and weighted logics. EATCS Monographs in TCS, chapter 5, pages 175–211. Springer, 2009.
- Manfred Droste and Heiko Vogler. Weighted tree automata and weighted logics. *Theoretical Computer Science*, 366(3):228–247, 2006.
- Ina Fichtner. Weighted picture automata and weighted logics. *Theory of Computing Systems*, 48(1):48–78, 2011.
- Christian Mathissen. Weighted logics for nested words and algebraic formal power series. Logical Methods in Computer Science, 6(1), 2010.
- Benjamin Monmege. Specification and Verification of Quantitative Properties: Expressions, Logics, and Automata. Phd thesis, ENS de Cachan, 2013.