To Reach or not to Reach? Efficient Algorithms for Total-Payoff Games

Thomas Brihaye (UMONS), Gilles Geeraerts (ULB), Axel Haddad (UMONS), and Benjamin Monmege (ULB – Aix-Marseille University)

Madrid meet 2015 — CONCUR

More and more complex systems: difficult to design

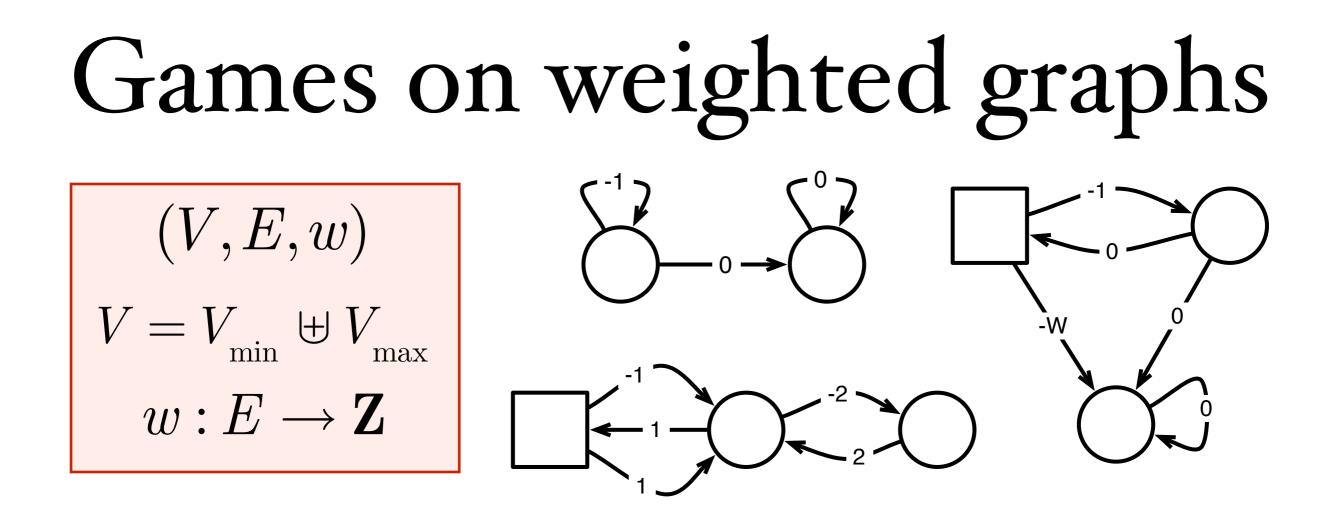
- More and more complex systems: difficult to design
- Rather than spending energy on verifying handmade code...
 Synthesise some code correct-by-construction!

- More and more complex systems: difficult to design
- Rather than spending energy on verifying handmade code...
 Synthesise some code correct-by-construction!
- Well-establish model for synthesis: games on graphs
 - 2 antagonistic players: controller and environment
 - objective: reachability, repeated reachability, LTL...

- More and more complex systems: difficult to design
- Rather than spending energy on verifying handmade code...
 Synthesise some code correct-by-construction!
- Well-establish model for synthesis: games on graphs
 - 2 antagonistic players: controller and environment
 - objective: reachability, repeated reachability, LTL...
- Interested with energy consumption, reliability, lifetime...
 Quantitative synthesis with games on weighted graphs

Games on weighted graphs (V, E, w) $V = V_{\min} \uplus V_{\max}$

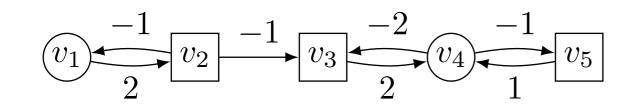
 $w: E \to \mathbf{Z}$

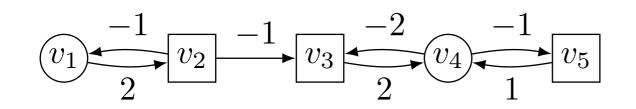


- Quantitative objective of the controller: maximising his payoff, accumulated along the computation of the system
 - Mean-payoff: good in average.

Abundantly studied, NPnco-NP, pseudo-polynomial time algorithm by Zwick & Paterson...

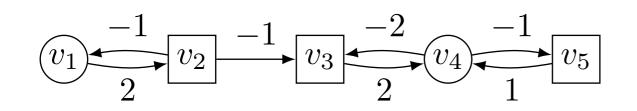
- Total-payoff: good in total. Refinement of mean-payoff
- Discounted-payoff...





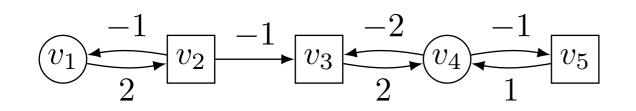
 $\pi = v_1 v_2 v_3 v_4 v_5 v_4 v_3 (v_4 v_5)^{\omega}$

• Play: $\pi = v_0 v_1 v_2 \cdots$



 $\pi = v_1 v_2 v_3 v_4 v_5 v_4 v_3 (v_4 v_5)^{\omega}$

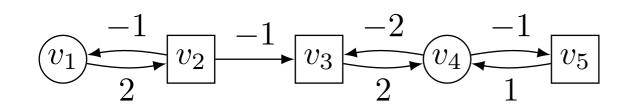
- Play: $\pi = v_0 v_1 v_2 \cdots$
- Prefix of length k: $\pi[k]$



 $\pi = v_1 v_2 v_3 v_4 v_5 v_4 v_3 (v_4 v_5)^{\omega}$

- Play: $\pi = v_0 v_1 v_2 \cdots$
- Prefix of length k: $\pi[k]$
- Accumulated cost:

$$\mathbf{TP}(\pi[k]) = \sum_{i=0}^{k-1} w(v_i, v_{i+1})$$

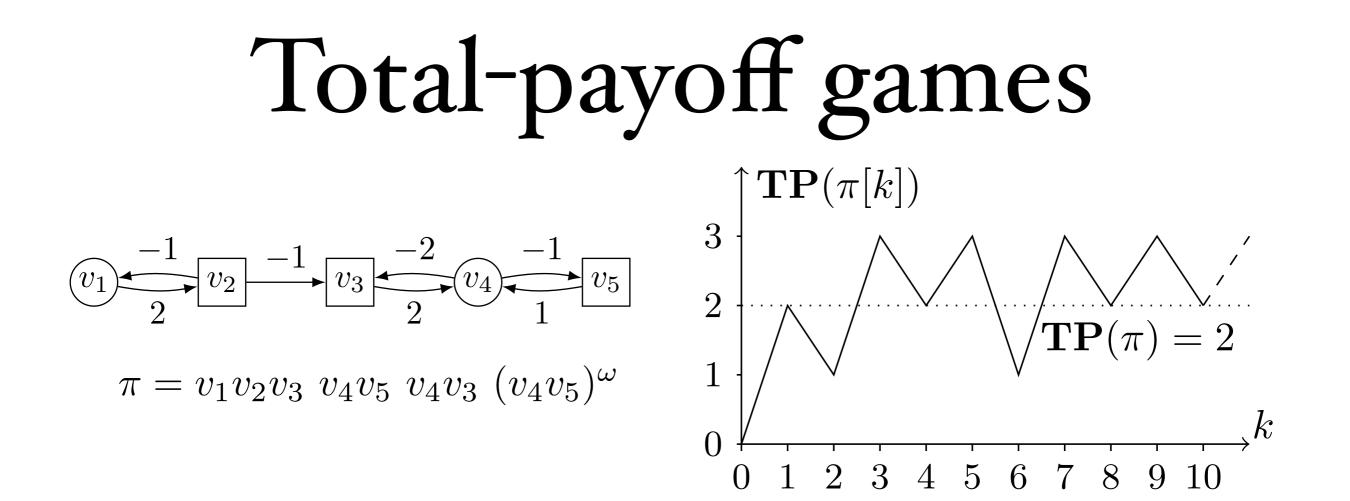


 $\pi = v_1 v_2 v_3 v_4 v_5 v_4 v_3 (v_4 v_5)^{\omega}$

- Play: $\pi = v_0 v_1 v_2 \cdots$
- Prefix of length k: $\pi[k]$
- Accumulated cost:

$$\mathbf{TP}(\pi[k]) = \sum_{i=0}^{k-1} w(v_i, v_{i+1})$$

• Total-payoff: $\mathbf{TP}(\pi) = \liminf_{k \to \infty} \mathbf{TP}(\pi[k])$



• Play: π

$$\pi = v_0 v_1 v_2 \cdots$$

- Prefix of length k: $\pi[k]$
 - Accumulated cost:

$$\mathbf{TP}(\pi[k]) = \sum_{i=0}^{k-1} w(v_i, v_{i+1})$$

• Total-payoff: $\mathbf{TP}(\pi) = \liminf_{k \to \infty} \mathbf{TP}(\pi[k])$

Known results:

 π

- Gimbert & Zielonka 2004: optimal memoryless strategies always exist for both players
- Gawlitza & Seidl 2009: UP∩co-UP, best known algorithm runs in exponential time (policy iteration)
- No value iteration scheme known to work...
 - Prefix of length k: $\pi[k]$
 - Accumulated cost:

$$\mathbf{TP}(\pi[k]) = \sum_{i=0}^{k-1} w(v_i, v_{i+1})$$

 $\mathbf{2}$

• Total-payoff: $\mathbf{TP}(\pi) = \liminf_{k \to \infty} \mathbf{TP}(\pi[k])$

Known results:

 π

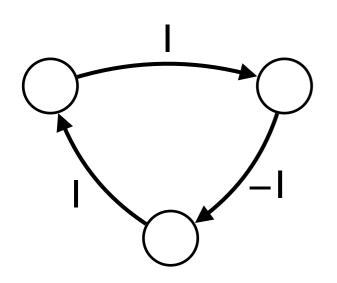
- Gimbert & Zielonka 2004: optimal memoryless strategies always exist for both players
- Gawlitza & Seidl 2009: UP∩co-UP, best known algorithm runs in exponential time (policy iteration)

2

• No value iteration scheme known to work...

Our contribution:

- First pseudo-polynomial time algorithm for totalpayoff games + heuristics
- Requires the study of a variant with reachability



Mean-payoff value = $1/3 > 0 \Rightarrow$ Total-payoff value = $+\infty$

Mean-payoff value = $1/3 > 0 \Rightarrow$ Total-payoff value = $+\infty$

Mean-payoff value = $-1/3 < 0 \Rightarrow$ Total-payoff value = $-\infty$

Mean-payoff value = $1/3 > 0 \Rightarrow$ Total-payoff value = $+\infty$

Mean-payoff value = $-1/3 < 0 \Rightarrow$ Total-payoff value = $-\infty$

Mean-payoff value = $0 \Rightarrow$ Total-payoff value finite

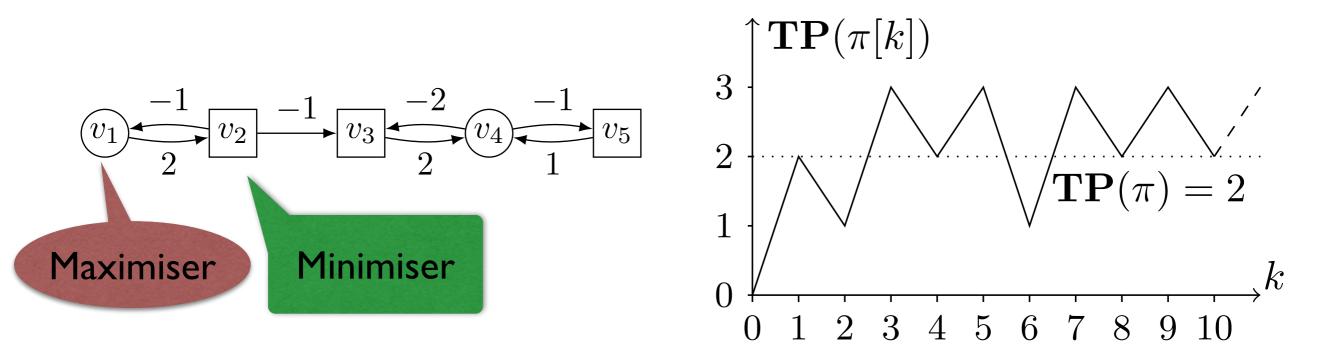
2

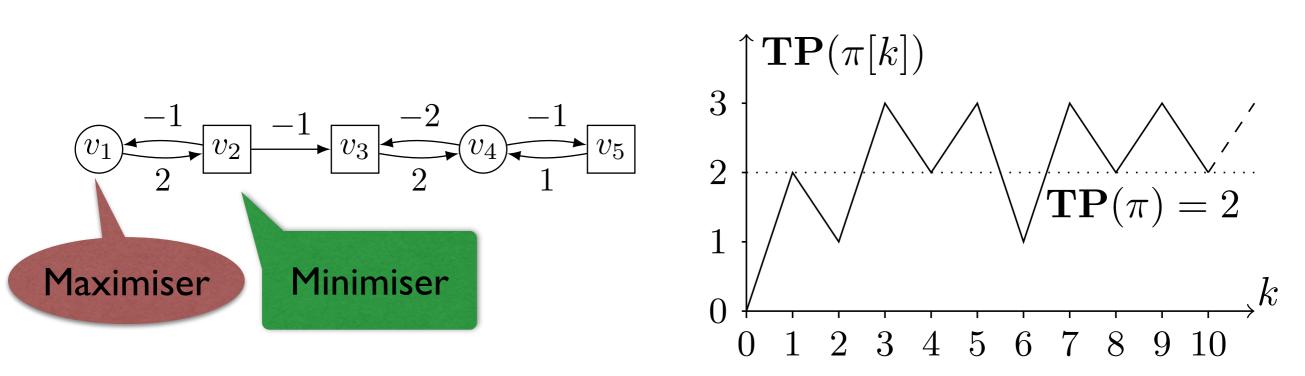
Mean-payoff value = $1/3 > 0 \Rightarrow$ Total-payoff value = $+\infty$

Mean-payoff value = $-1/3 < 0 \Rightarrow$ Total-payoff value = $-\infty$

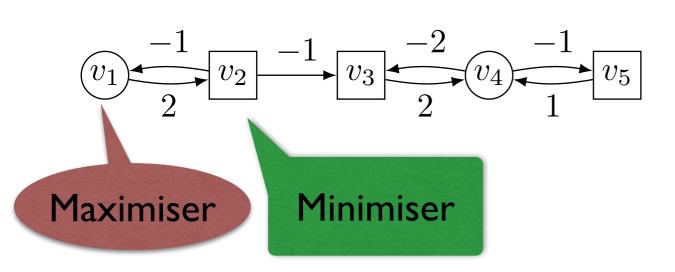
Mean-payoff value = $0 \Rightarrow$ Total-payoff value finite

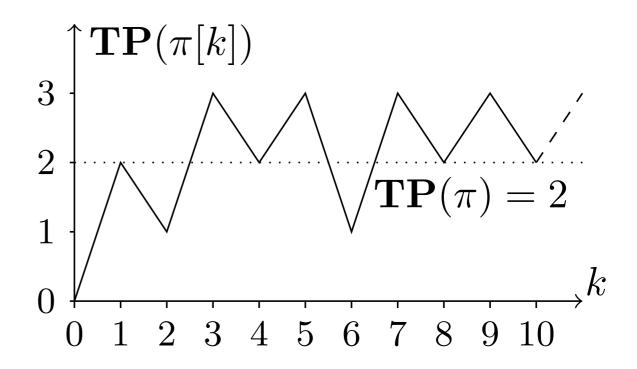
2



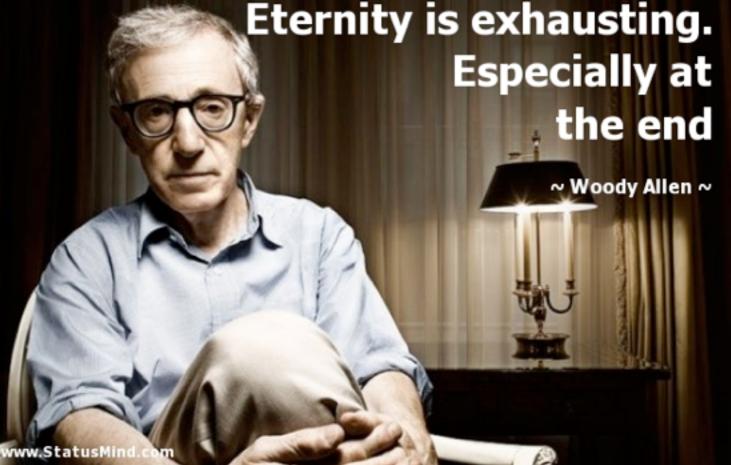


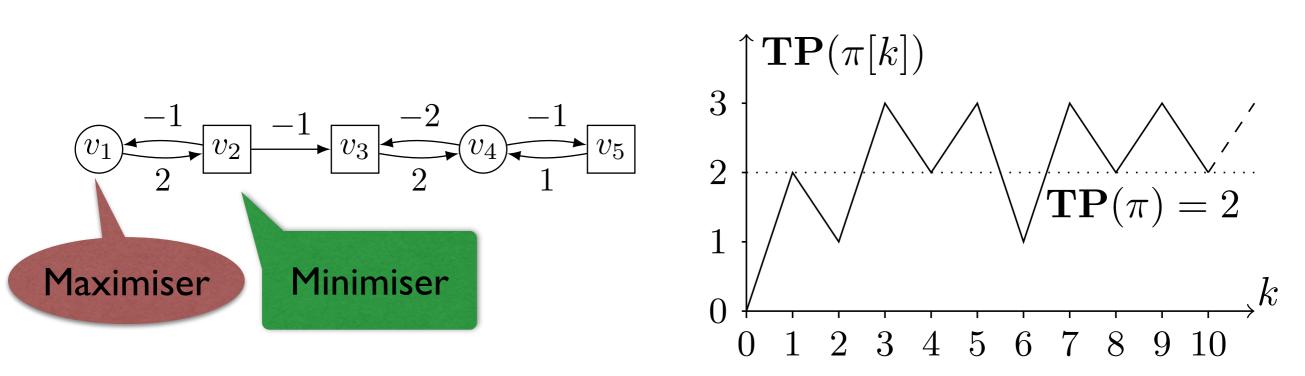
Total-payoff games are infinite by essence...



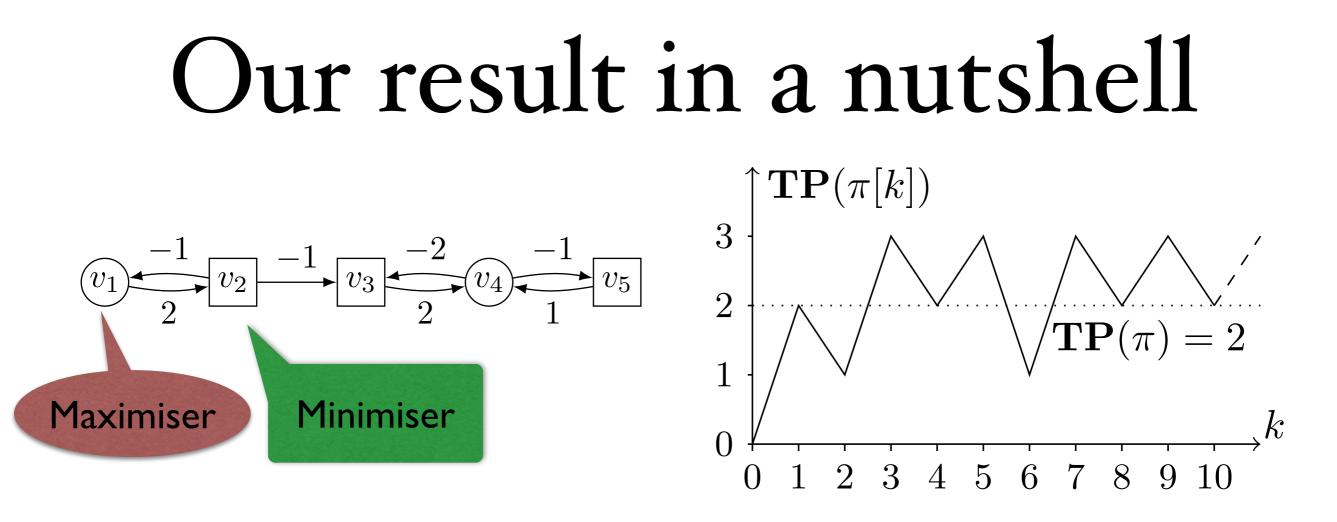


Total-payoff games are infinit

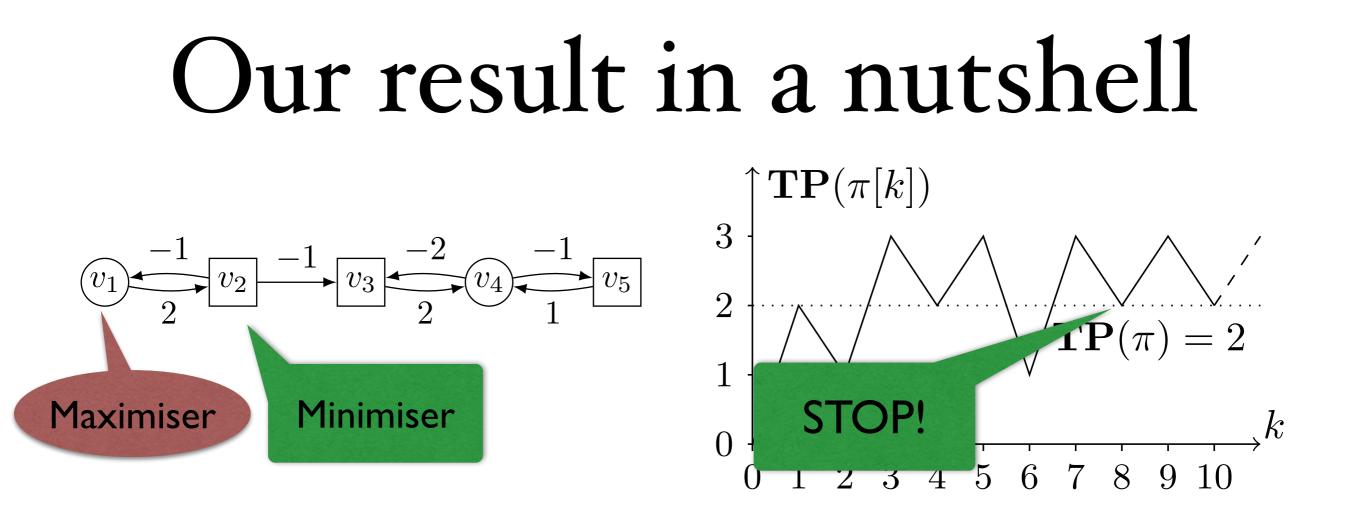




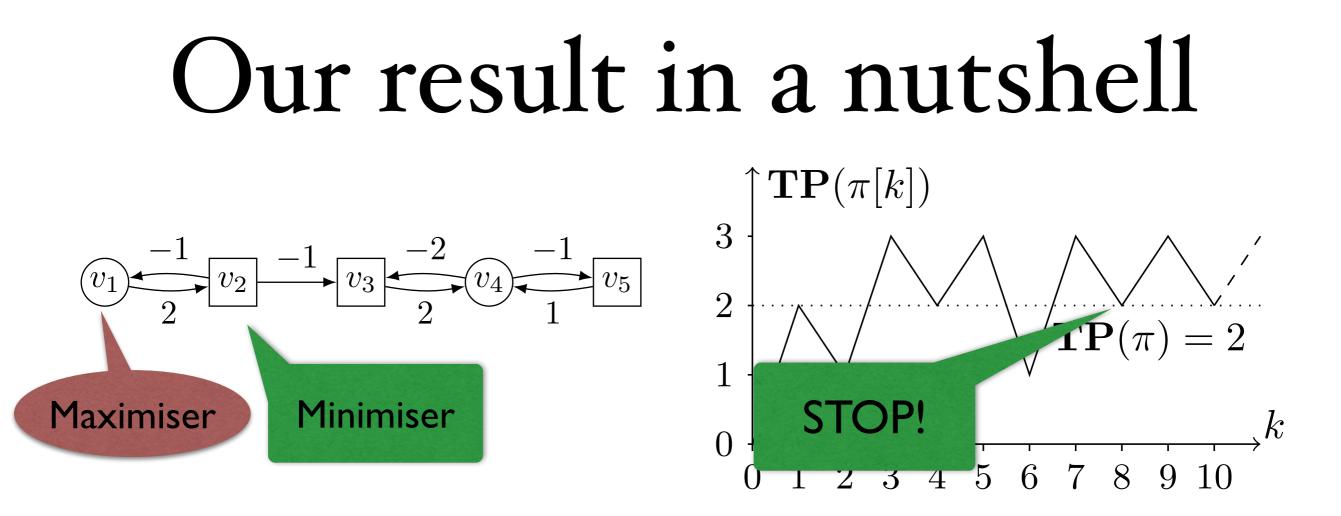
Total-payoff games are infinite by essence...



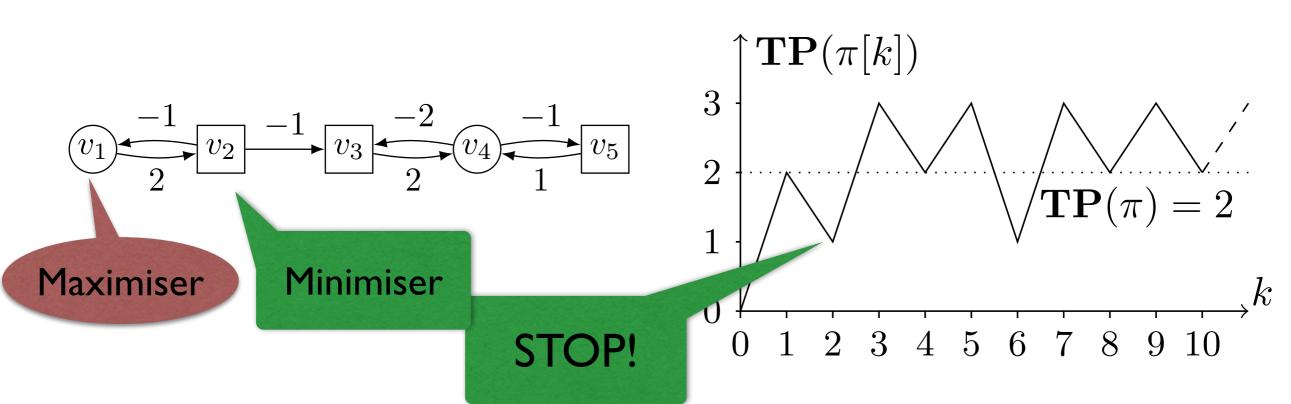
- Total-payoff games are infinite by essence...
- Easier if finite-horizon? Add a stopping possibility for the Minimiser!



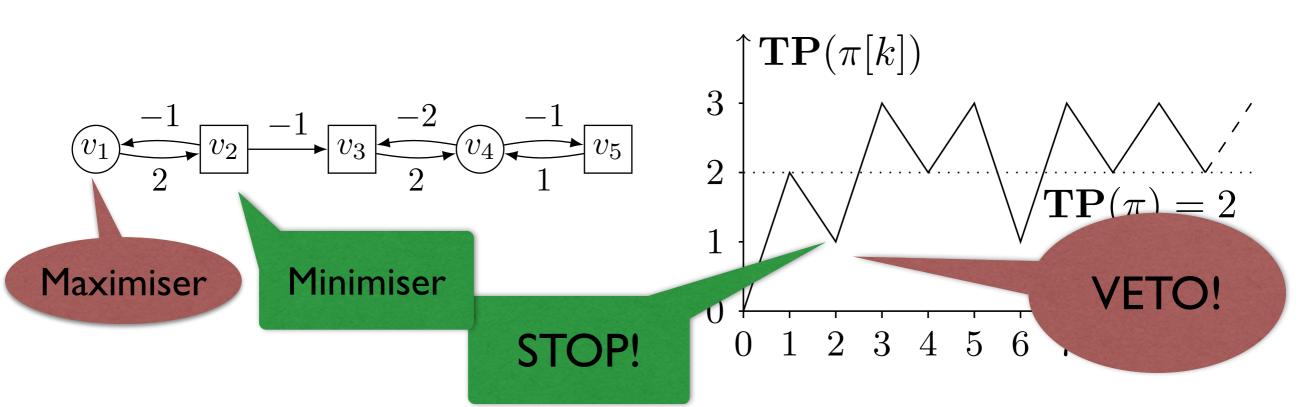
- Total-payoff games are infinite by essence...
- Easier if finite-horizon? Add a stopping possibility for the Minimiser!



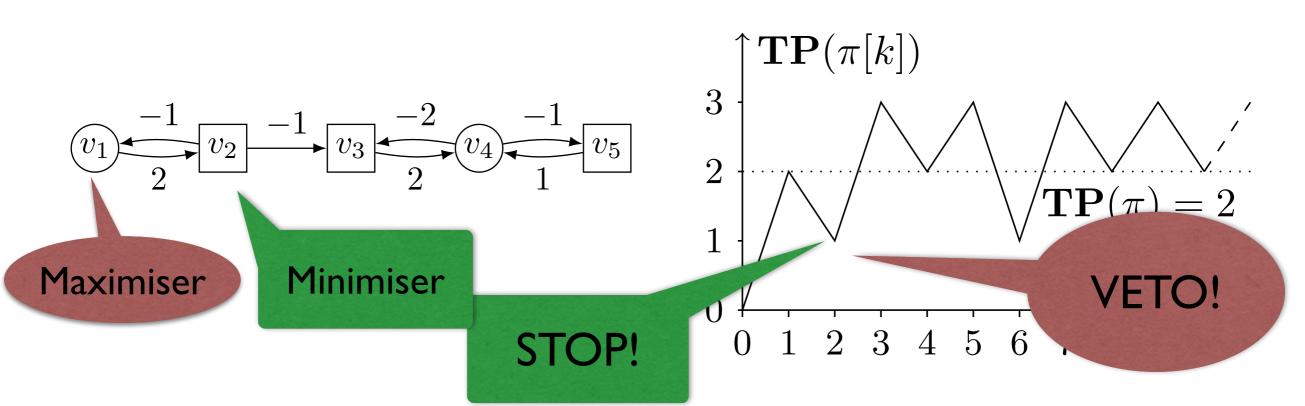
- Total-payoff games are infinite by essence...
- Easier if finite-horizon? Add a stopping possibility for the Minimiser!
- Too easy for him! Let the Maximiser have the right to veto, for a limited number K of times... Here K=3 suffices.



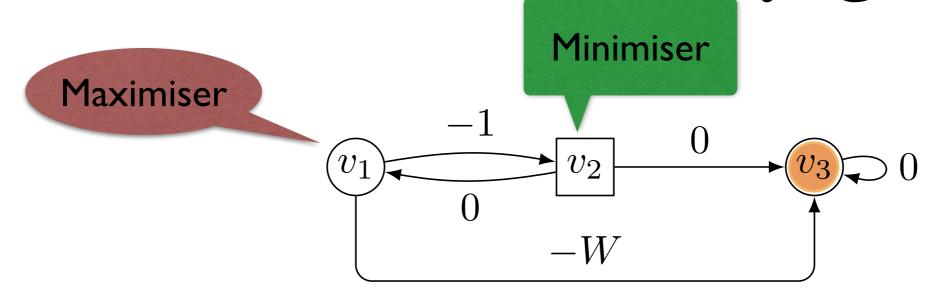
- Total-payoff games are infinite by essence...
- Easier if finite-horizon? Add a stopping possibility for the Minimiser!
- Too easy for him! Let the Maximiser have the right to veto, for a limited number K of times... Here K=3 suffices.

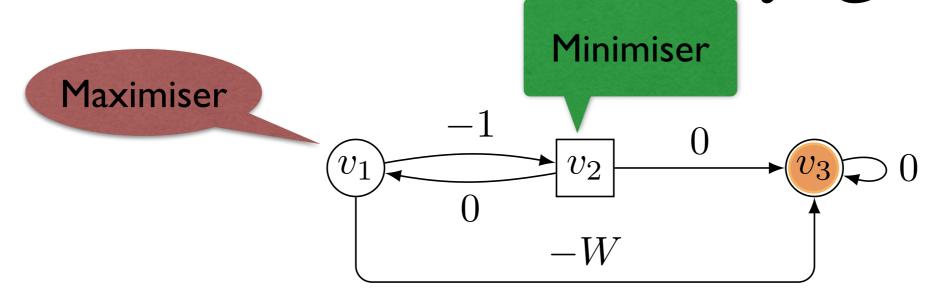


- Total-payoff games are infinite by essence...
- Easier if finite-horizon? Add a stopping possibility for the Minimiser!
- Too easy for him! Let the Maximiser have the right to veto, for a limited number K of times... Here K=3 suffices.

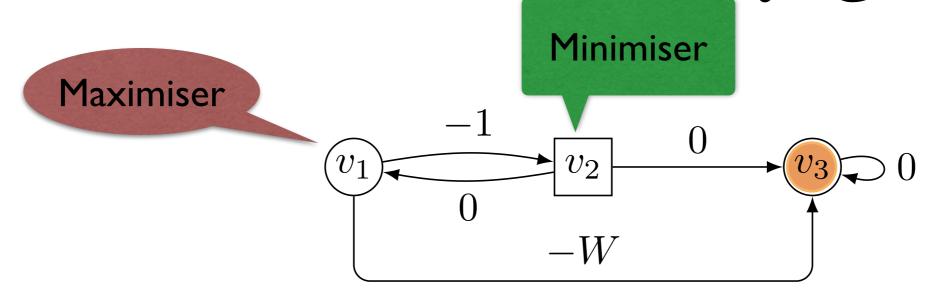


- Total-payoff games are infinite by essence...
- Easier if finite-horizon? Add a stopping possibility for the Minimiser!
- Too easy for him! Let the Maximiser have the right to veto, for a limited number K of times... Here K=3 suffices.
- Is there always a good value of K so that both games are equivalent?

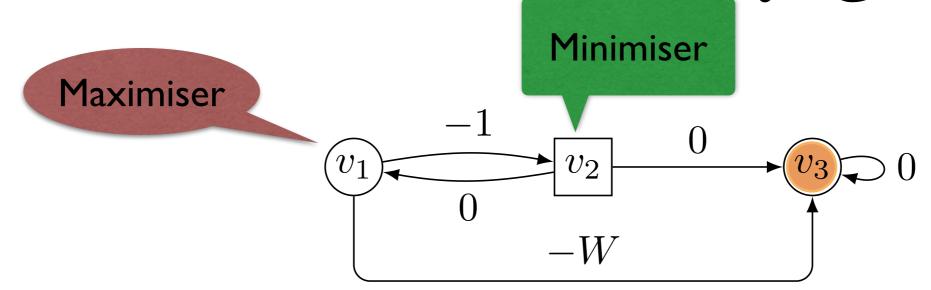




• Target set of states T

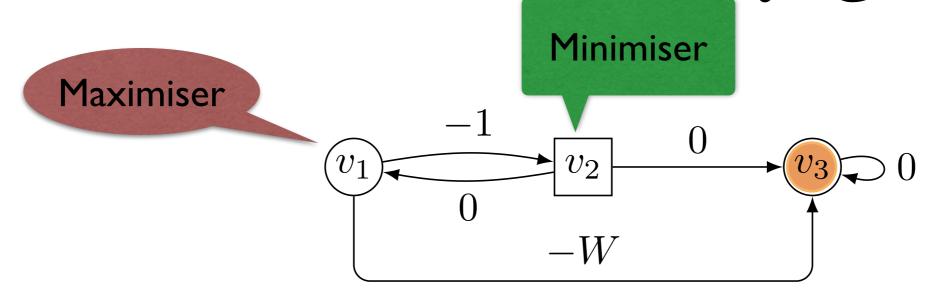


- Target set of states T
- Minimiser wants to reach:
 - if target is not reached, payoff $+\infty$,
 - if target is reached, accumulated sum until first occurrence of a target state



- Target set of states T
- Minimiser wants to reach:
 - if target is not reached, payoff $+\infty$,
 - if target is reached, accumulated sum until first occurrence of a target state
- Value of the game:

 $\inf_{\sigma_{\min} \sigma_{\max}} T-\operatorname{MCR}(v, \sigma_{\min}, \sigma_{\max}) = \sup_{\sigma_{\max} \sigma_{\min}} T-\operatorname{MCR}(v, \sigma_{\min}, \sigma_{\max})$



- Target set of states T
- Minimiser wants to reach:
 - if target is not reached, payoff $+\infty$,
 - if target is reached, accumulated sum until first occurrence of a target state
- Value of the game:

 $\inf_{\sigma_{\min} \sigma_{\max}} T-\operatorname{MCR}(v, \sigma_{\min}, \sigma_{\max}) = \sup_{\sigma_{\max} \sigma_{\min}} T-\operatorname{MCR}(v, \sigma_{\min}, \sigma_{\max})$

• Example: value of v_1 and v_2 is -W... and Minimiser needs memory to ensure it!

Solving MCR games (I)

Case one player: shortest path in a weighted graph...
 Polynomial time

- Case one player: shortest path in a weighted graph...
 Polynomial time
- Case non-negative weights: Dijsktra's algorithm adapted by Khachiyan et al 2008
 - Polynomial time

- Case one player: shortest path in a weighted graph...
 Polynomial time
- Case non-negative weights: Dijsktra's algorithm adapted by Khachiyan et al 2008
 - Polynomial time
- General case? Not known...
 - Our contribution: pseudo-polynomial time and as hard as solving mean-payoff games

- Detecting vertices with value $+\infty$
 - Attractor computation: polynomial time

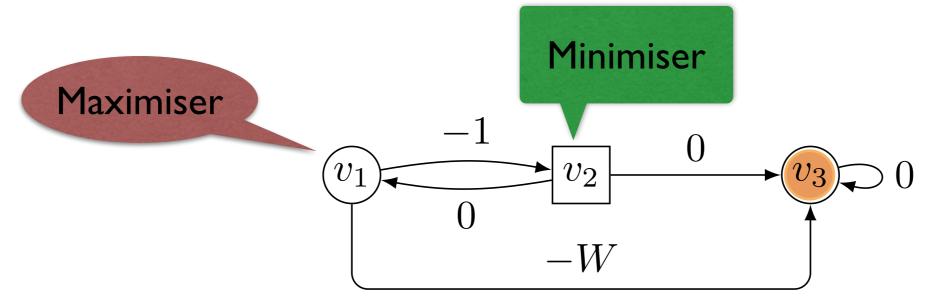
- Detecting vertices with value +∞
 - Attractor computation: polynomial time
- Detecting vertices with value $-\infty$
 - Equivalent to checking if the value of a mean-payoff game is negative: decidable in NPnco-NP, pseudo-polynomial time

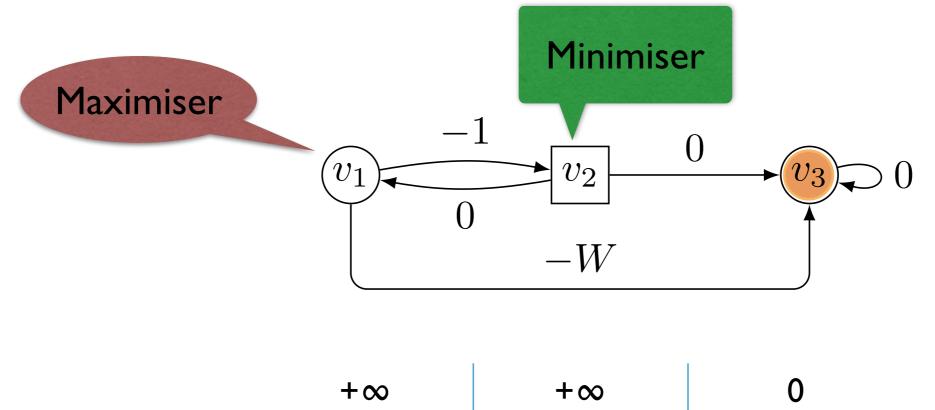
- Detecting vertices with value +∞
 - Attractor computation: polynomial time
- Detecting vertices with value $-\infty$
 - Equivalent to checking if the value of a mean-payoff game is negative: decidable in NP∩co-NP, pseudo-polynomial time
- Computing finite values
 - ➡ Value iteration running in pseudo-polynomial time

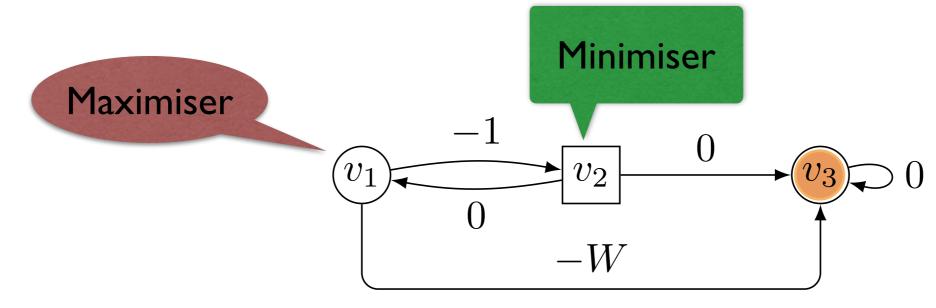
- Detecting vertices with value $+\infty$
 - Attractor computation: polynomial time
- Detecting vertices with value $-\infty$
 - Equivalent to checking if the value of a mean-payoff game is negative: decidable in NPnco-NP, pseudo-polynomial time
- Computing finite values
 - ➡ Value iteration running in pseudo-polynomial time
- Computing optimal strategies when all values are finite
 - ➡ May be done simultaneously, with same complexity

- Detecting vertices with value $+\infty$
 - Attractor computation: polynomial time
- Detecting vertices with value $-\infty$
 - Equivalent to checking if the value of a mean-payoff game is negative: decidable in NP∩co-NP, pseudo-polynomial time
- Computing finite values
 - ➡ Value iteration running in pseudo-polynomial time
- Computing optimal strategies when all values are finite
 - ➡ May be done simultaneously, with same complexity
 - Maximiser: memoryless optimal strategy

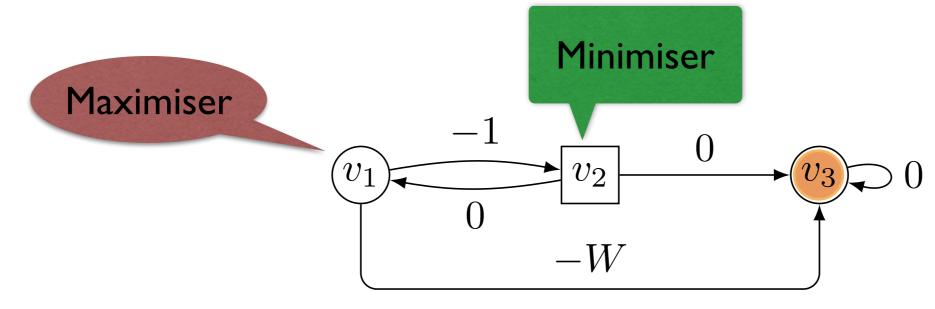
- Detecting vertices with value $+\infty$
 - Attractor computation: polynomial time
- Detecting vertices with value $-\infty$
 - Equivalent to checking if the value of a mean-payoff game is negative: decidable in NP∩co-NP, pseudo-polynomial time
- Computing finite values
 - ➡ Value iteration running in pseudo-polynomial time
- Computing optimal strategies when all values are finite
 - ➡ May be done simultaneously, with same complexity
 - Maximiser: memoryless optimal strategy
 - Minimiser: finite memory suffices, and may be required



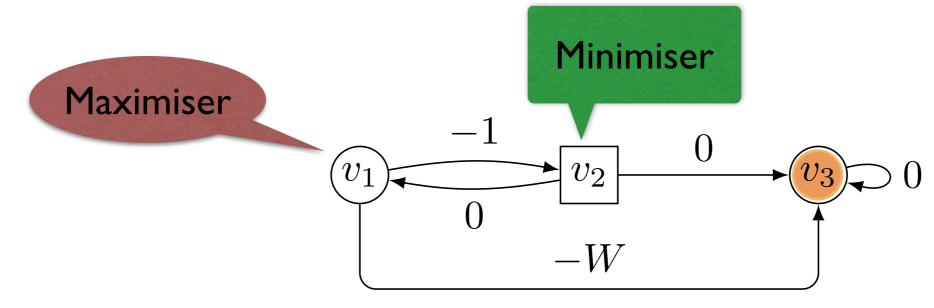




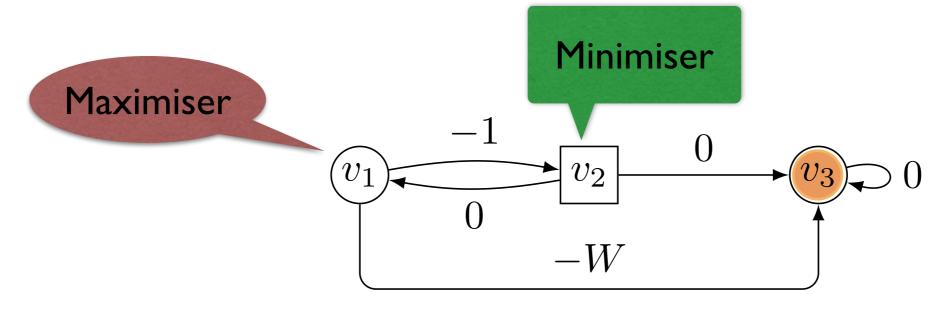
what may both players		$+\infty$	+∞	0
achieve in 1 step	\checkmark	+∞	0	0



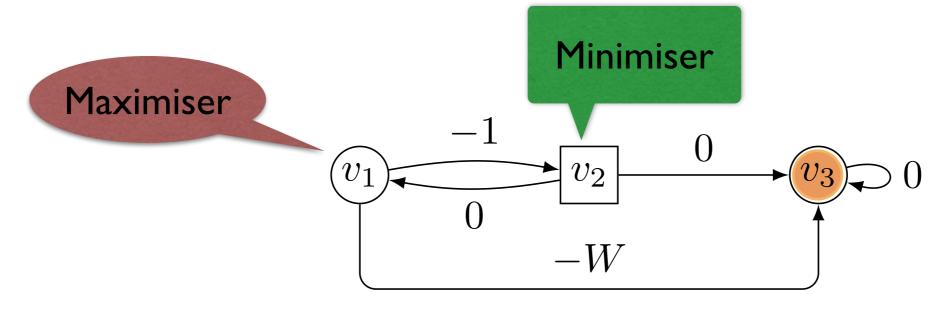
what may both players achieve in I step		$+\infty$	+∞	0
	\checkmark	$+\infty$	0	0
		— I	0	0



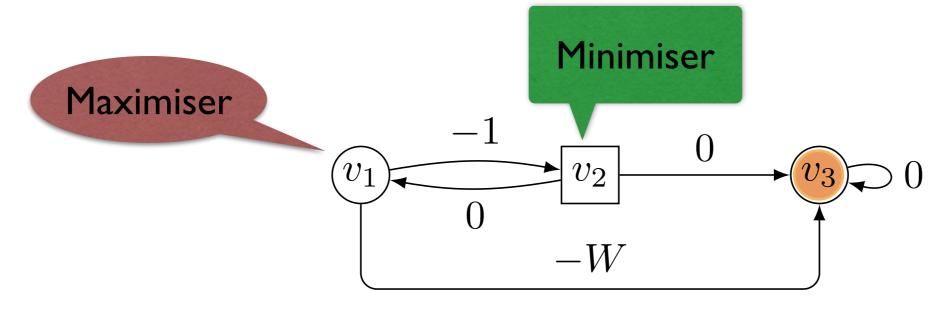
what may both players achieve in I step	$+\infty$	+∞	0
	$+\infty$	0	0
	— I	0	0
	—I	-1	0



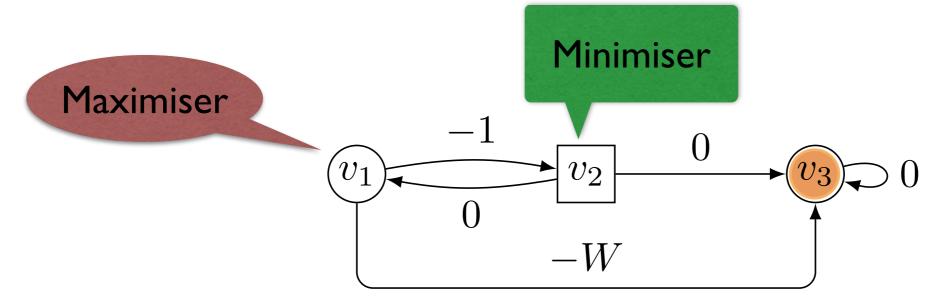
what may both players	$+\infty$	+∞	0
what may both players achieve in I step	$+\infty$	0	0
	— I	0	0
	— I	-1	0
	-2	— I	0



what may both players	+∞	+∞	0
what may both players achieve in I step	$+\infty$	0	0
	— I	0	0
	— I	—I	0
	-2	—I	0
	•••	•••	•••
	-W	–W	0



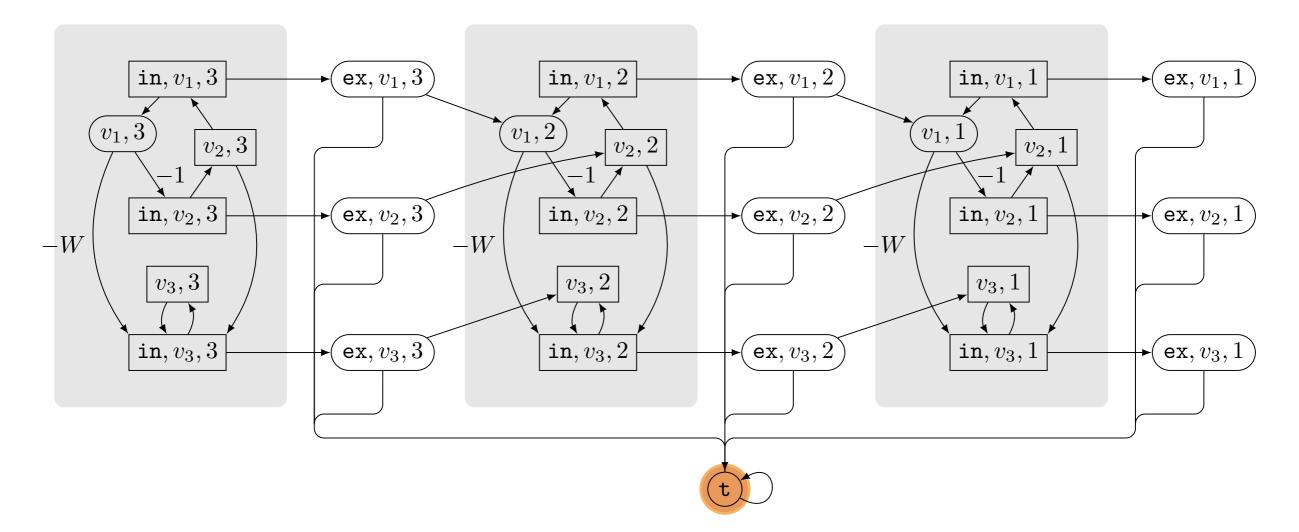
what may both players achieve in I step	+∞	+∞	0
	+∞	0	0
	— I	0	0
	-1	—I	0
	-2	—I	0
	•••	•••	•••
stabilisation is proved always to	–W	-W	0
happen in pseudo-polynomial time and the result is the value	–W	–W	0



what may both players	$+\infty$	+∞	0	
what may both players achieve in I step	$+\infty$	0	0	
	— I	0	0	
	— I	—I	0	
	-2	—I	0	Strategy of Minimiser
	•••	•••	•••	
stabilisation is proved always to	-W	-W	0	
happen in pseudo-polynomial time and the result is the value	-W	–W	0	

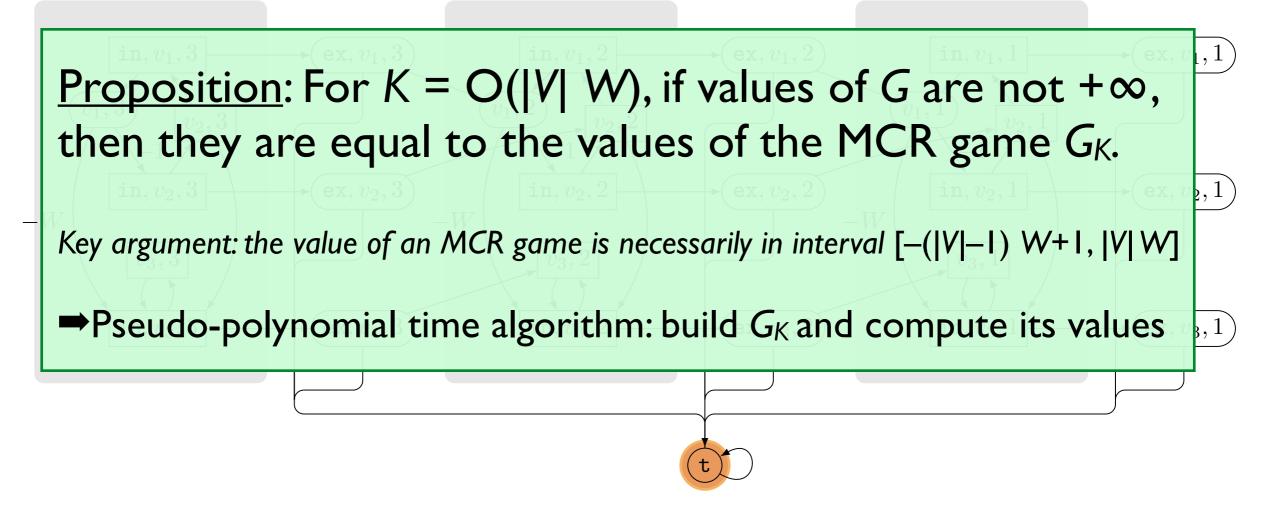
From total-payoff to MCR games Maximiser $v_1 \xrightarrow{-1} v_2 \xrightarrow{0} v_3 \xrightarrow{0} 0$ -W Minimiser

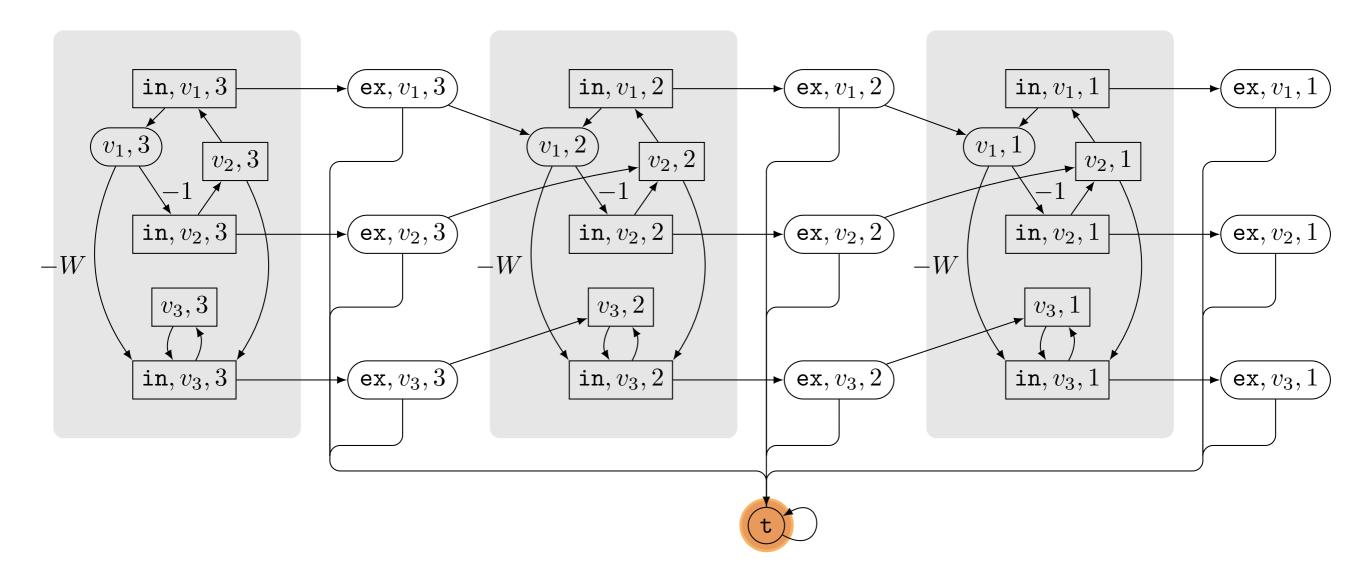
• For all K, unfold K times the arena, allowing Minimiser to ask to go to target t



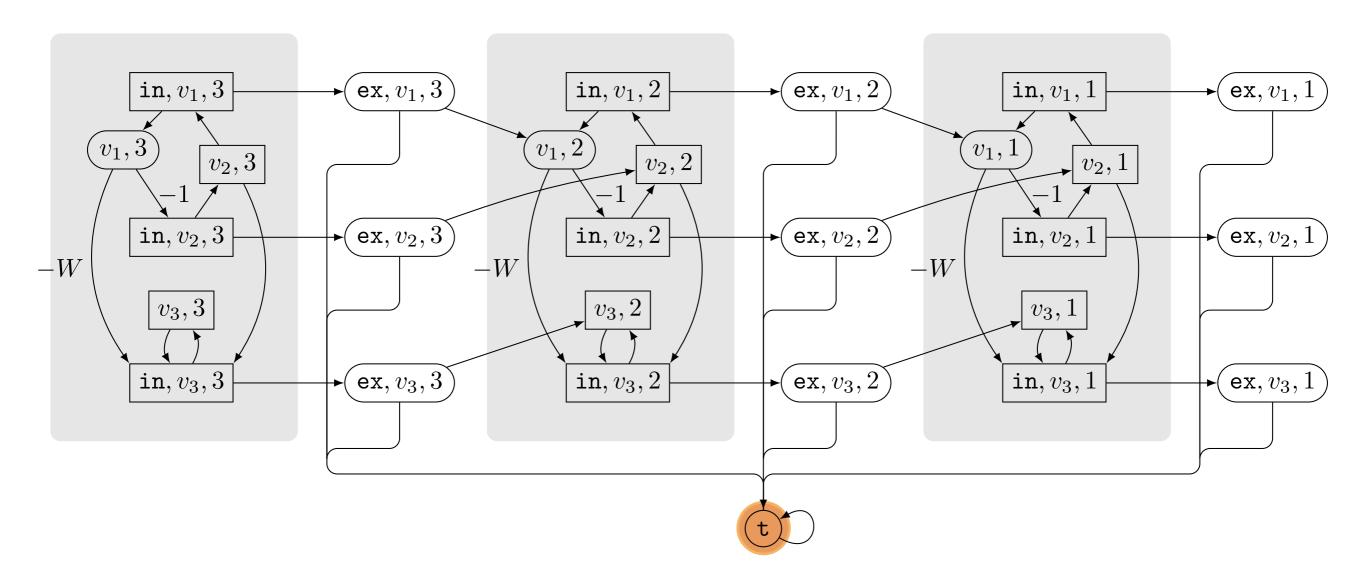
From total-payoff to MCR games Maximiser $v_1 \xrightarrow{-1} v_2 \xrightarrow{0} v_3 \xrightarrow{0} 0$ -W Minimiser

• For all K, unfold K times the arena, allowing Minimiser to ask to go to target t

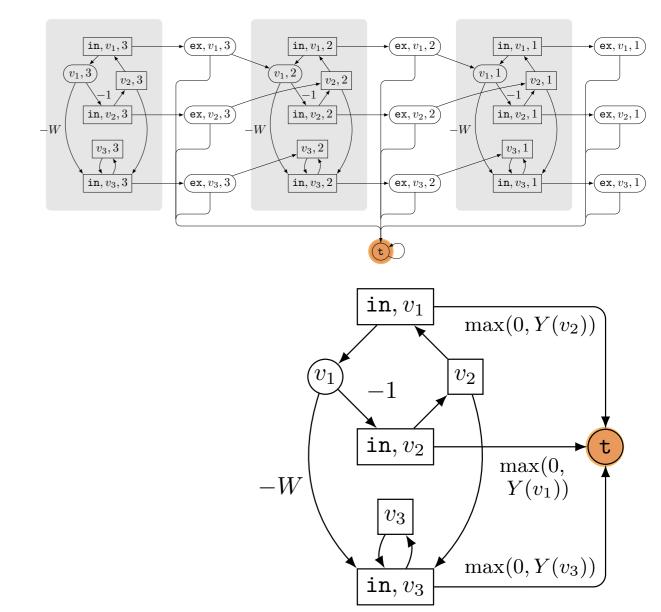




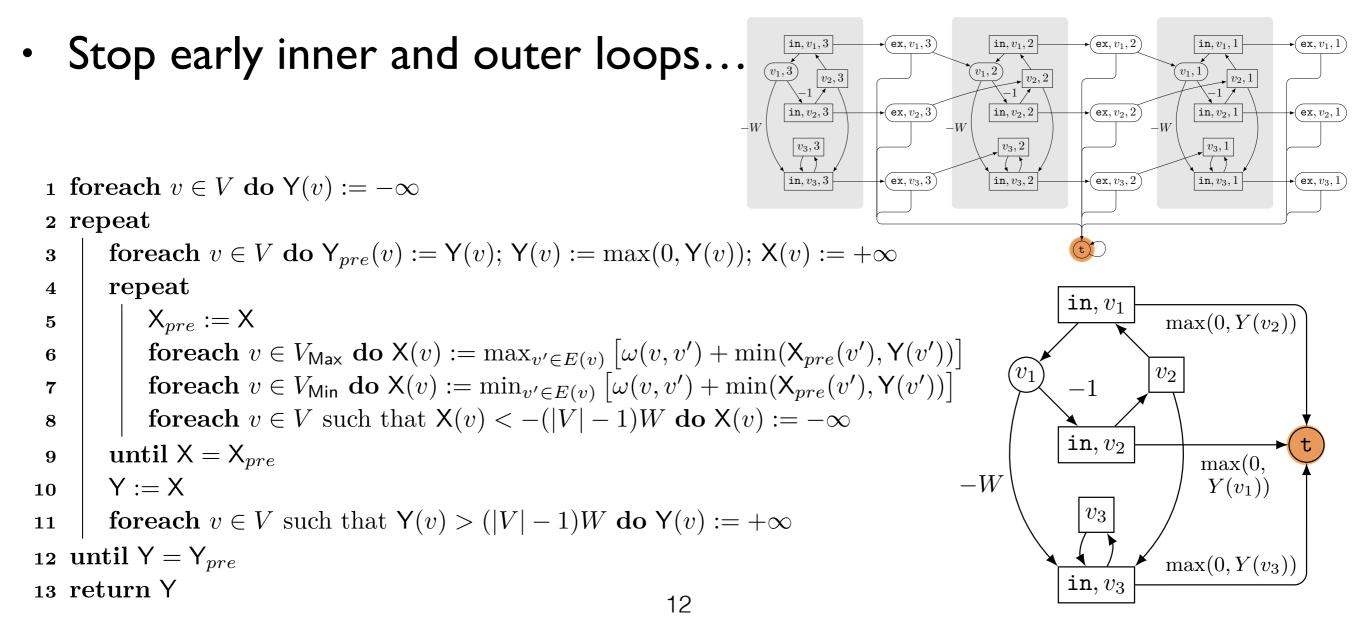
 In the value iteration for MCR games, we may compute the value from the last copy of the game to the first one (outer loop)



- In the value iteration for MCR games, we may compute the value from the last copy of the game to the first one (outer loop)
- Each time, it is the same arena: only the *exit* values evolve...
 Compute the values of a linear size MCR game (inner loop)

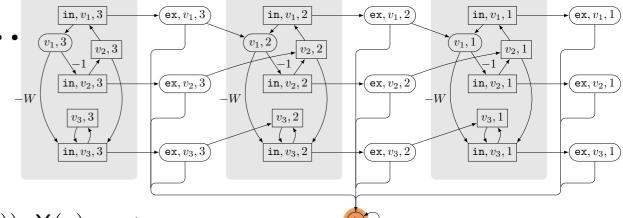


- In the value iteration for MCR games, we may compute the value from the last copy of the game to the first one (outer loop)
- Each time, it is the same arena: only the *exit* values evolve... Compute the values of a linear size MCR game (inner loop)

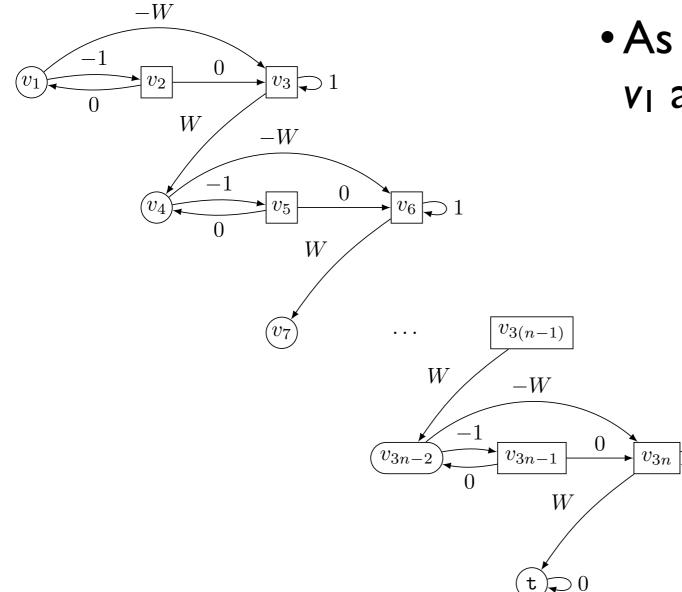


- In the value iteration for MCR games we may compute the value fr Requires very few memory (no need to construct G_K)
- Earrey Pseudo-polynomial time: $O(|V|^4 |E| W^2)$ Compute the values of a linear size interval same (inner 100p)

Stop early inner and outer loops...

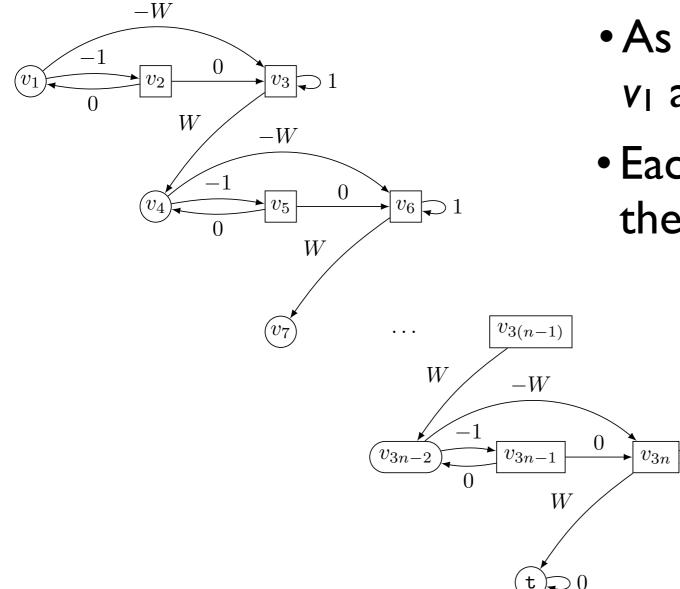


1 foreach
$$v \in V$$
 do $Y(v) := -\infty$
2 repeat
3 foreach $v \in V$ do $Y_{pre}(v) := Y(v)$; $Y(v) := \max(0, Y(v))$; $X(v) := +\infty$
4 repeat
5 k
6 k
7 k
6 k
7 k
9 until $X = X_{pre}$
10 $Y := X$
11 foreach $v \in V$ such that $X(v) < -(|V| - 1)W$ do $X(v) := -\infty$
9 until $X = X_{pre}$
10 $Y := X$
11 foreach $v \in V$ such that $Y(v) > (|V| - 1)W$ do $Y(v) := +\infty$
12 until $Y = Y_{pre}$
13 return Y
10 foreach $v \in V$ such that $Y(v) > (|V| - 1)W$ do $Y(v) := +\infty$
10 foreach $v \in V$ such that $Y(v) > (|V| - 1)W$ do $Y(v) := +\infty$



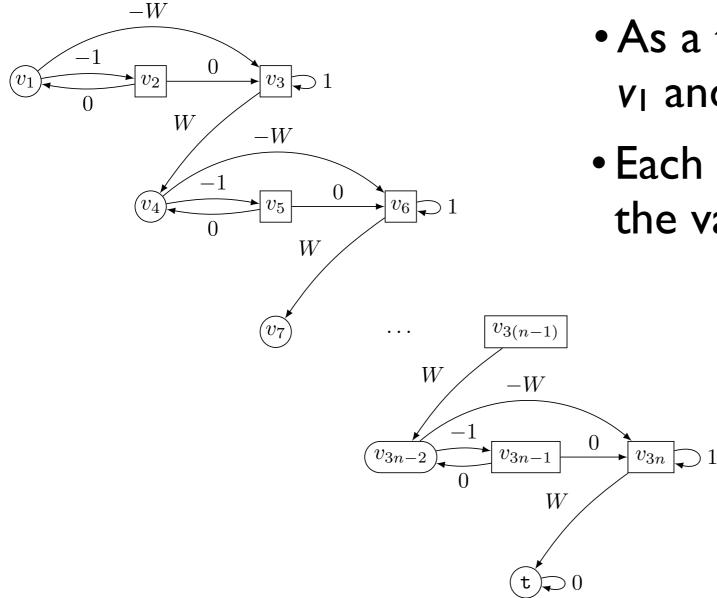
• As a total-payoff game, values of v₁ and v₂ are 0, value of v₃ is W...

 \frown 1

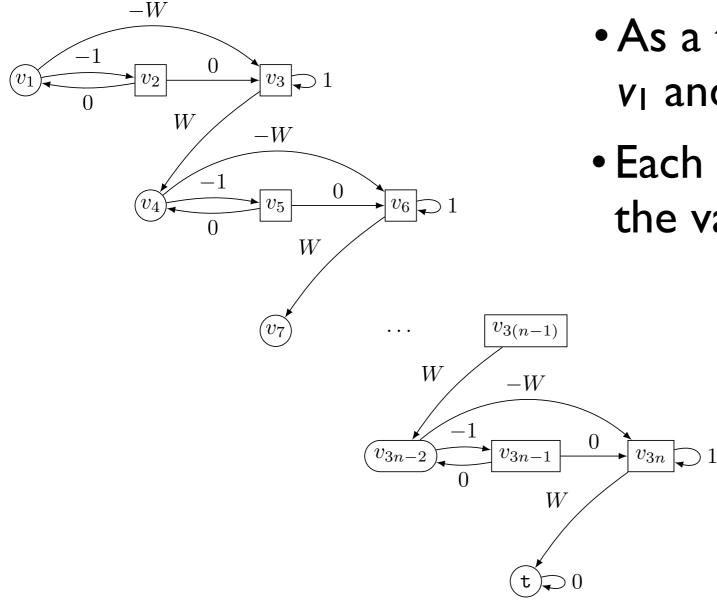


- As a total-payoff game, values of v1 and v2 are 0, value of v3 is W...
- Each inner loop computes all the values (needs O(nW) steps)

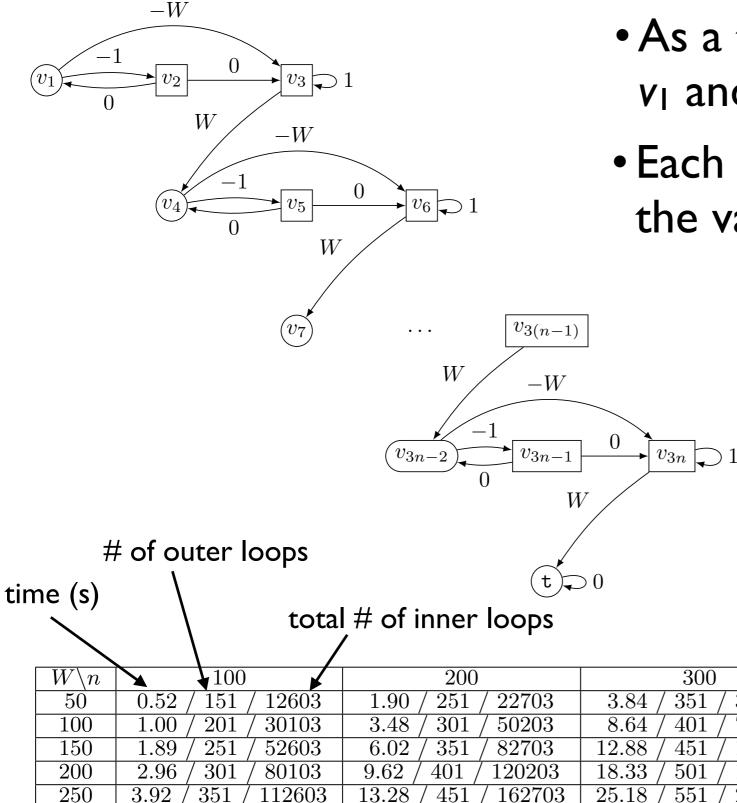
 $\frown 1$



- As a total-payoff game, values of v1 and v2 are 0, value of v3 is W...
- Each inner loop computes all the values (needs O(nW) steps)
 - After I outer loop, only the values of the last component are correct...



- As a total-payoff game, values of v₁ and v₂ are 0, value of v₃ is W...
- Each inner loop computes all the values (needs O(nW) steps)
 - After I outer loop, only the values of the last component are correct...
 - Requires *n* outer loops to converge



- As a total-payoff game, values of v₁ and v₂ are 0, value of v₃ is W...
- Each inner loop computes all the values (needs O(nW) steps)

6.05

13.53

22.13

30.42

46.23

- After I outer loop, only the values of the last component are correct...
- Requires *n* outer loops to converge

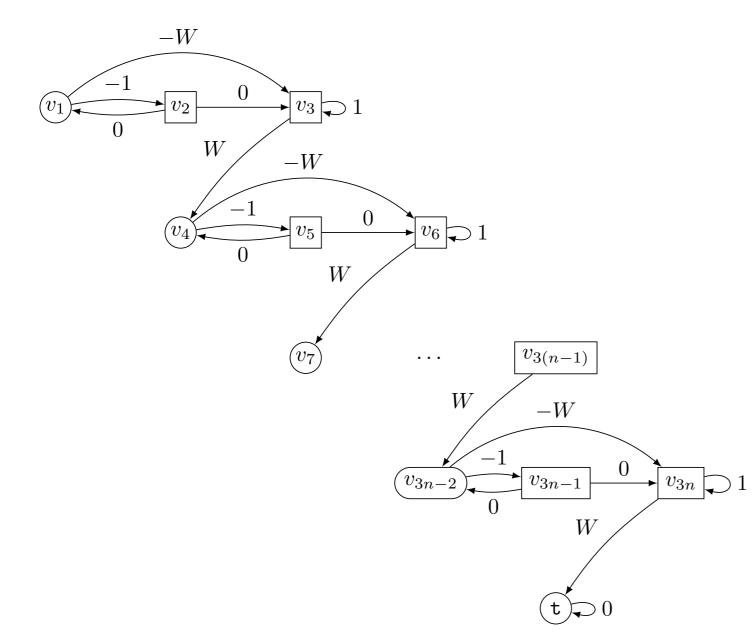
9.83

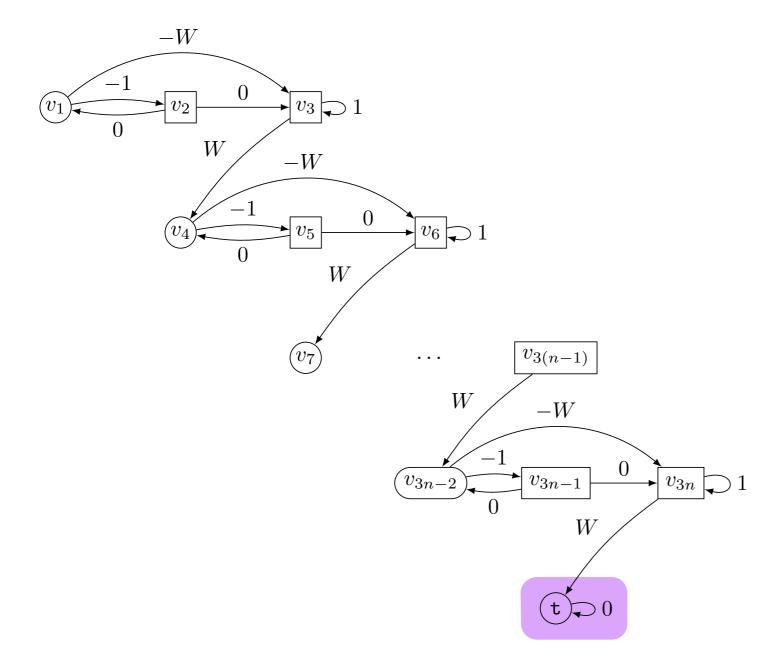
22.64

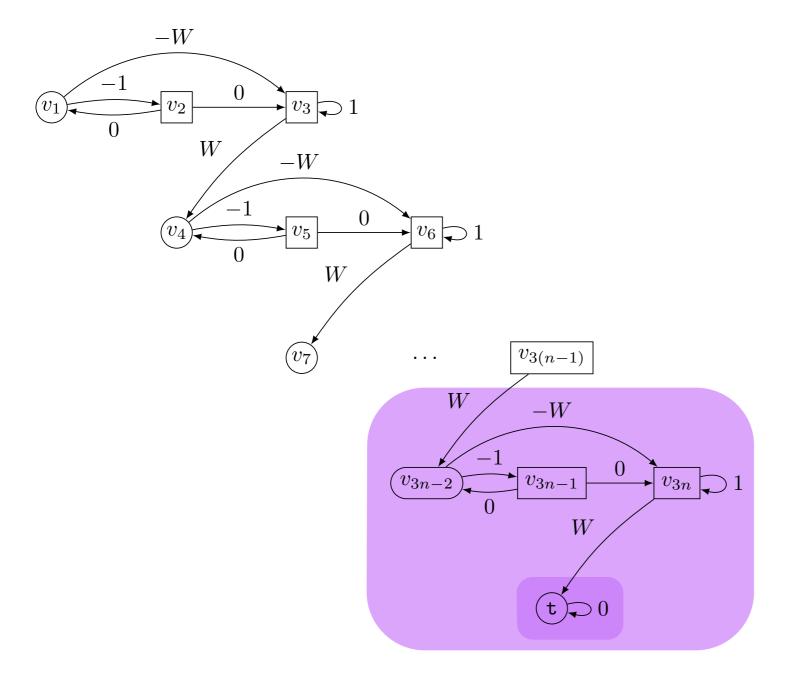
34.16

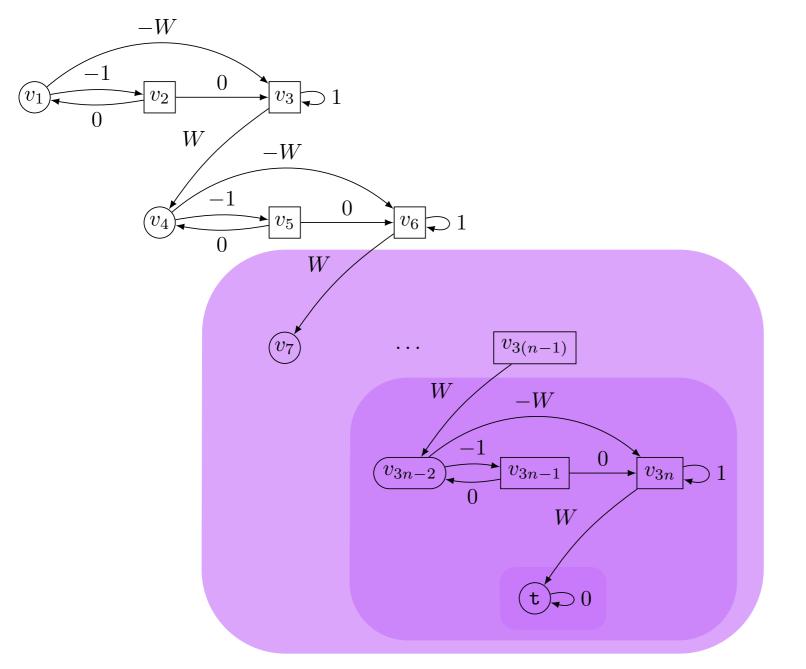
45.64

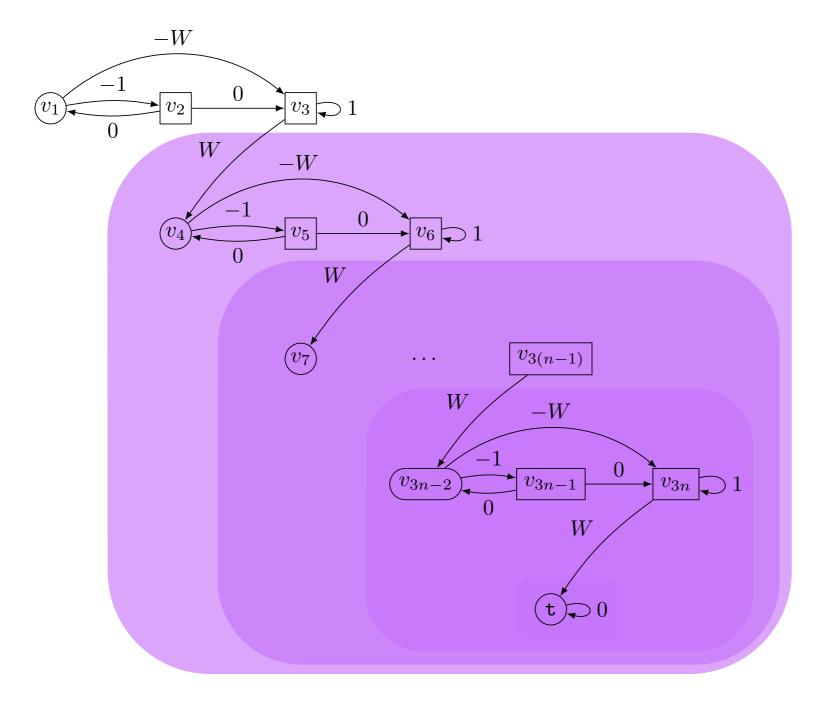
71.51

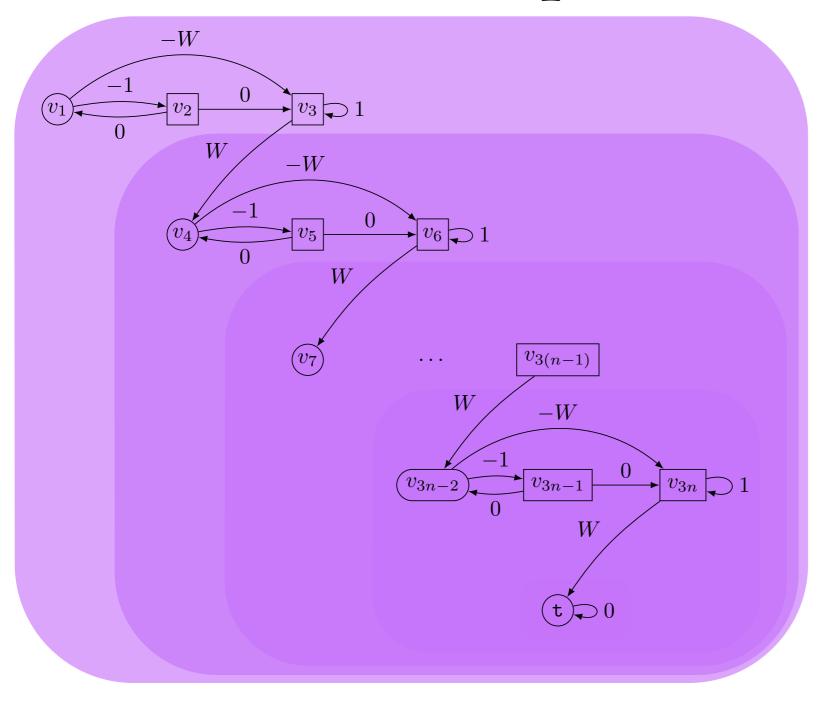


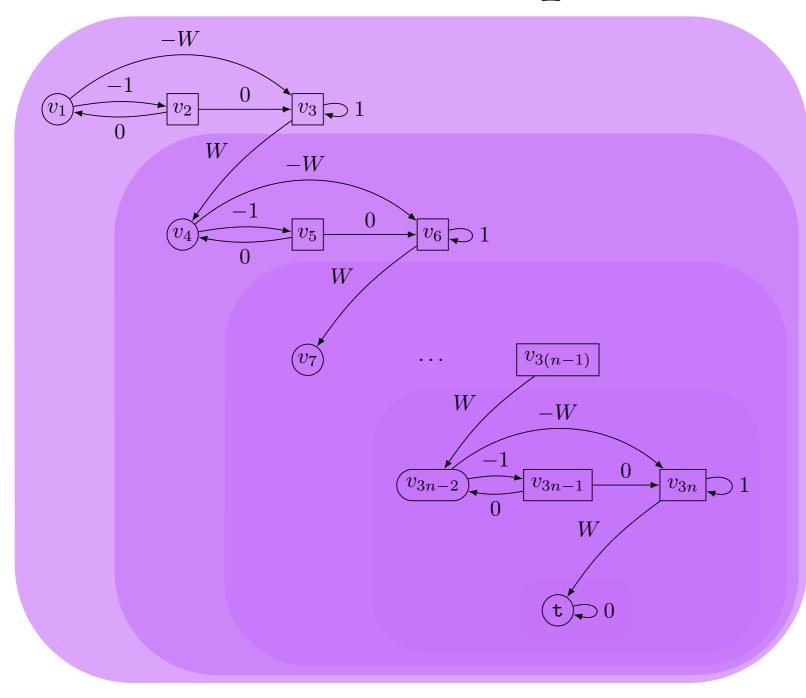






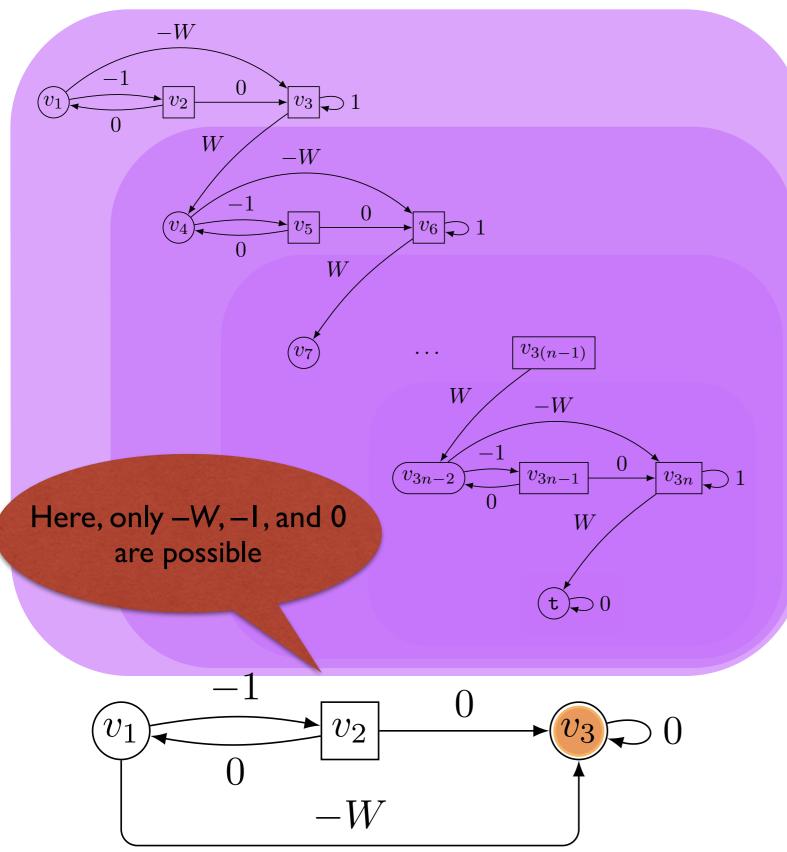






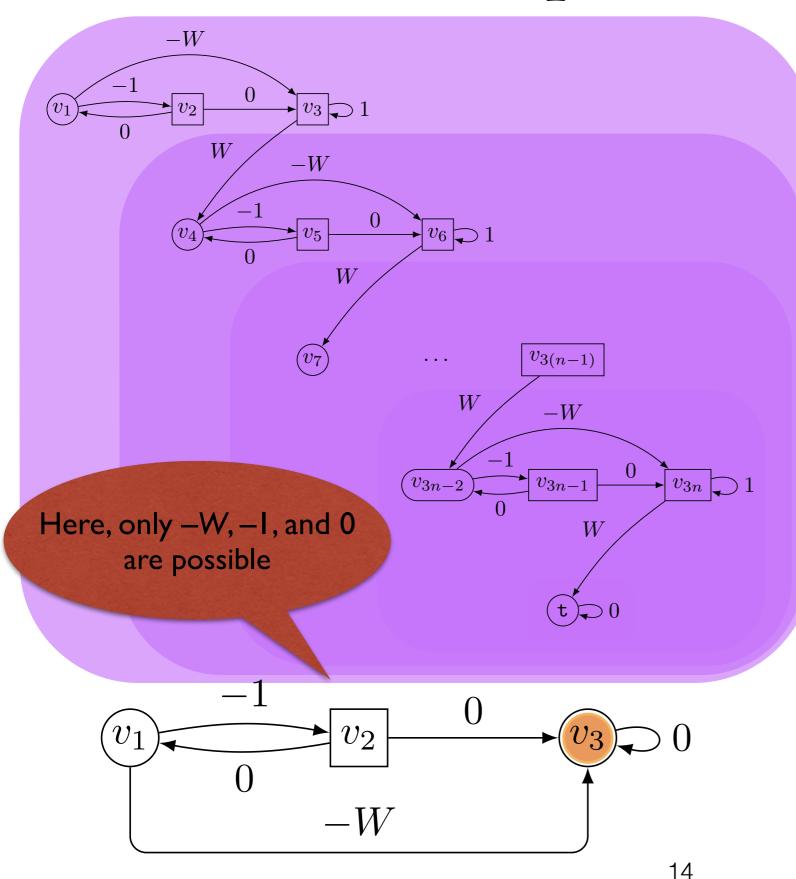
- In the outer loop, compute SCC by SCC
- For each inner loop, we solve an MCR game: optimal memoryless strategies, so value is weight of a simple path...

+∞	+∞	0
+∞	0	0
-1	0	0
-1	-1	0
-2	-1	0
-2	-2	0
-3	-2	0
-3	-3	0
•••	• • •	•••
-W	–W	0
-W	-W	0

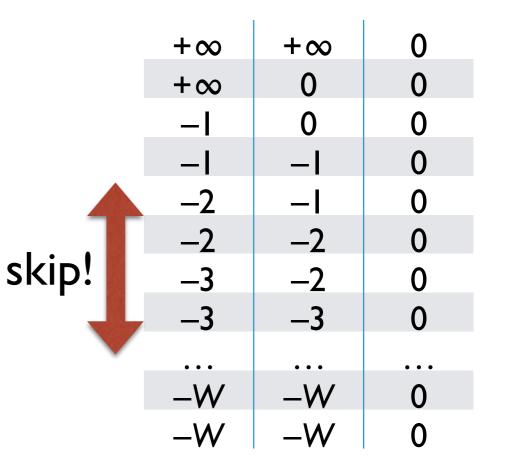


- In the outer loop, compute SCC by SCC
- For each inner loop, we solve an MCR game: optimal memoryless strategies, so value is weight of a simple path...

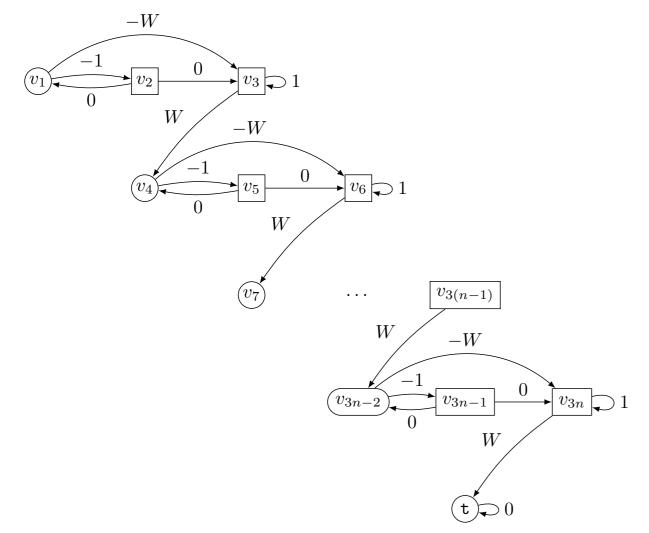
+∞	+∞	0
$+\infty$	0	0
-1	0	0
-1	-1	0
-2	-1	0
-2	-2	0
-3	-2	0
-3	-3	0
•••	•••	•••
-W	-W	0
-W	-W	0



- In the outer loop, compute SCC by SCC
- For each inner loop, we solve an MCR game: optimal memoryless strategies, so value is weight of a simple path...

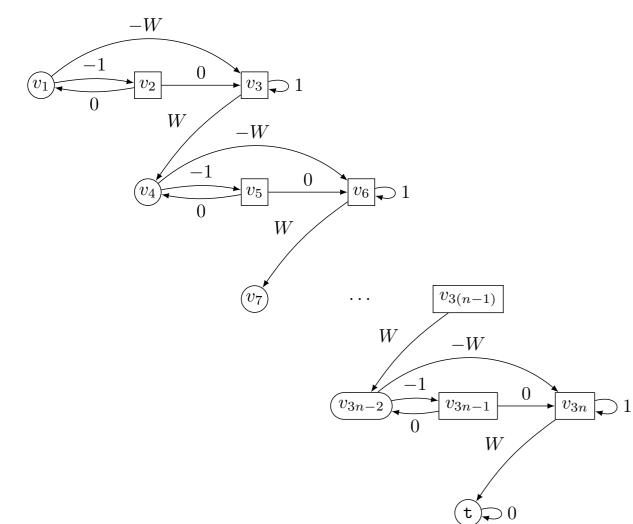


Some total-payoff games in polynomial time



- Combination of both heuristics
- If all SCC uses at most *L* distincts weights (that can be arbitrarily large in absolute values), algorithm with heuristics runs in polynomial time.

Some total-payoff games in polynomial time



- Combination of both heuristics
- If all SCC uses at most *L* distincts weights (that can be arbitrarily large in absolute values), algorithm with heuristics runs in polynomial time.
- Implementation as an add-on to PRISM games available at http://www.ulb.ac.be/di/verif/monmege/tool/TP- MCR/

		wit	hout he	uristics	with heuristics		
W	n	t	k_e	k_i	t	k_e	k_i
50	100	0.52s	151	12,603	0.01s	402	1,404
50	500	9.83s	551	53,003	0.42s	$2,\!002$	7,004
200	100	2.96s	301	80,103	0.02s	402	1,404
200	500	45.64s	701	240,503	0.47s	$2,\!002$	7,004
500	1,000	536s	1,501	$1,\!251,\!003$	2.37s	4,002	14,004

Conclusion and future works

- First pseudo-polynomial time algorithm to solve total-payoff games, by nested fixed point computation with value iteration
- By means of a reachability variant (MCR games), interesting on their own
- Large subclasses with polynomial time complexity
- Tool: add-on of PRISM games

Conclusion and future works

- First pseudo-polynomial time algorithm to solve total-payoff games, by nested fixed point computation with value iteration
- By means of a reachability variant (MCR games), interesting on their own
- Large subclasses with polynomial time complexity
- Tool: add-on of PRISM games
- **Perspectives:** test the tool over larger benchmarks, enable logic-like specification of the payoff function (like PRISM games)

Conclusion and future works

- First pseudo-polynomial time algorithm to solve total-payoff games, by nested fixed point computation with value iteration
- By means of a reachability variant (MCR games), interesting on their own
- Large subclasses with polynomial time complexity
- Tool: add-on of PRISM games
- Perspectives: test the tool over larger benchmarks, enable logic-like specification of the payoff function (like PRISM games)

Thank you for your attention!