To Reach or not to Reach?
Efficient Algorithms for
Total-Payoft Games

Thomas Brihaye (UMONYS), Gilles Geeraerts (ULB), Axel Haddad (UMONYS),
and Benjamin Monmege (ULB - Aix-Marseille University)

Madrid meet 2015 — CONCUR

(Game theory for synthesis

(Game theory for synthesis

* More and more complex systems: difficult to design

(Game theory for synthesis

* More and more complex systems: difficult to design

* Rather than spending energy on verifying handmade code...
Synthesise some code correct-by-construction!

(Game theory for synthesis

* More and more complex systems: difficult to design

* Rather than spending energy on verifying handmade code...
Synthesise some code correct-by-construction!

* Well-establish model for synthesis: games on graphs

» 2 antagonistic players: controller and environment
- objective: reachability, repeated reachability, LTL...

(Game theory for synthesis

* More and more complex systems: difficult to design

* Rather than spending energy on verifying handmade code...
Synthesise some code correct-by-construction!

* Well-establish model for synthesis: games on graphs

» 2 antagonistic players: controller and environment
- objective: reachability, repeated reachability, LTL...

* Interested with energy consumption, reliability, lifetime...
Quantitative synthesis with games on weighted graphs

(Games on weighted graphs

e | B8 CEp

V=V_wV '
min max \ / O

w:E — 1 j:_;Q;\\;Q Y

(Games on weighted graphs

e | B8 CEp

V=V_wV '
min max \ / O

w:E — 1 j:_;Q;\\;Q O

- Quantitative objective of the controller: maximising his payoff,
accumulated along the computation of the system

- Mean-payoff: good in average.

Abundantly studied, NPnco-NP, pseudo-polynomial time algorithm by Zwick & Paterson...

» Total-payoff: good in total. Refinement of mean-payoff
» Discounted-payoff...

Total-payoft games

1 —2 —1

»vgv5

2 1

@\,,"\ (%, » U3 Us

Total-payoft games

—1 1 —2 —1

2 1

T = V1U2V3 V4VUs V403 (V405)%

° Pla)': T = v0v1v2 Tt

Total-payoft games

—1 1 —2 —1

@?vz »v3v5

T = V1U2V3 V4VUs V403 (V405)%

° Pla)': T = v0v1v2 Tt

* Prefix of length k: 7 (k]

Total-payoft games

—1 _ —2 —1
@‘\2»’\?}2 1>713?J5

T = V1U2V3 V4VUs V403 (V405)%

- Play: T = U,0,0,"
* Prefix of length k: 7 (k]

* Accumulated cost: TP(x#lk]) =) w(v,v.)

Total-payoft games

—1 _ —2 —1
@‘\2»’\?}2 1>713?J5

T = V1U2V3 V4VUs V403 (V405)%

- Play: T = U0, "
* Prefix of length k: 7 (k]

* Accumulated cost: TP(x#lk]) =) w(v,v.)

1 1+1

» Total-payoff: TP(7) = lim inf;_, oo TP(7[k])

4

o=

—1

-

—2 —1
(v
U3 2 @ 1 U5

T = V1U2V3 V4VUs V403 (V405)%

- Play:

* Prefix of length k:

« Accumulated cost:

» Total-payoff:

3 -

2

1 -

Total-payoft games
TP (7]

k)

TP(ﬂ'[lﬁ]):' w(v,v)

1 1+1

TP(7) = liminfy .., TP(7|k|)

k

Total-payoft games

Known results:

D Gimbert & Zielonka 2004: optimal memoryless -
strategies always exist for both players

» Gawlitza & Seidl 2009: UPnco-UP, best known K
algorithm runs in exponential time (policy iteration) [

* No value iteration scheme known to work...

* Prefix of length k: 7 (k]

* Accumulated cost: TP(x#lk]) =) w(v,v.)

1 1+1

» Total-payoff: TP(7) = lim inf;_, oo TP(7[k])

4

Total-payoft games

Known results:

* Gimbert & Zielonka 2004: optimal memoryless
strategies always exist for both players

» Gawlitza & Seidl 2009: UPnco-UP best known
algorithm runs in exponential time (policy iteration)

* No value iteration scheme known to work...

Our contribution:

* First pseudo-polynomial time algorithm for total-
payoff games + heuristics

* Requires the study of a variant with reachability

4

Mean-payoft vs Total-payoft

b

Mean-payoff value = |/3 >0 = Total-payoff value = +00
| —|

Mean-payoft vs Total-payoft

Mean-payoff value = |/3 >0 = Total-payoff value = +00

Mean-payoff value = —1/3 <0 = Total-payoff value = —00

Mean-payoft vs Total-payoft

Mean-payoff value = |/3 >0 = Total-payoff value = +00

Mean-payoff value = —1/3 <0 = Total-payoff value = —00

Mean-payoff value =0 = Total-payoff value finite

Mean-payoft vs Total-payoft

Mean-payoff value = |/3 >0 = Total-payoff value = +00

Mean-payoff value = —1/3 <0 = Total-payoff value = —00

Mean-payoff value =0 = Total-payoff value finite

Our result in a nutshell

| TP (r[k])
3 i
2 .o NN TP(T‘-):Q
1 i
or--—

012345678910

Our result in a nutshell

| TP (r[k])
3 i
2 .o NN TP(T‘-):Q
1 i
or--—

012345678910

» Total-payoff games are infinite by essence...

Our result in a nutshell

| TP (m|k])
3 1 //
N VAN AV
TP(m) =2
1 -
0 k

012345678910

» Total-payoff games are infini i Eternity is exhausting.
\. Especially at

t,_the end

~ Woody Allen ~

e

—

Our result in a nutshell

| TP (r[k])
3 i
2 .o NN TP(T‘-):Q
1 i
or--—

012345678910

» Total-payoff games are infinite by essence...

Our result in a nutshell

| TP (m|k])
3 1 //
N VAN AV
TP(m) =2
1 -
0 k

0123456780910
» Total-payoff games are infinite by essence...

- Easier if finite-horizon? Add a stopping possibility for the Minimiser!

Our result in a nutshell

| TP (m|k])

||||||>k
5 6 7 8 910

» Total-payoff games are infinite by essence...

- Easier if finite-horizon? Add a stopping possibility for the Minimiser!

Our result in a nutshell

| TP (m|k])

k

™5 6 78 910
» Total-payoff games are infinite by essence...

- Easier if finite-horizon? Add a stopping possibility for the Minimiser!

* Too easy for him! Let the Maximiser have the right to veto, for a
limited number K of times... Here K=3 suffices.

Our result in a nutshell

| TP (m|k])

k

012345678910
» Total-payoff games are infinite by essence...

- Easier if finite-horizon? Add a stopping possibility for the Minimiser!

* Too easy for him! Let the Maximiser have the right to veto, for a
limited number K of times... Here K=3 suffices.

Our result in a nutshell

| TP (m|k])

0123456
» Total-payoff games are infinite by essence...

- Easier if finite-horizon? Add a stopping possibility for the Minimiser!

* Too easy for him! Let the Maximiser have the right to veto, for a
limited number K of times... Here K=3 suffices.

Our result in a nutshell

| TP (m|k])

0123456
» Total-payoff games are infinite by essence...

- Easier if finite-horizon? Add a stopping possibility for the Minimiser!

* Too easy for him! Let the Maximiser have the right to veto, for a
limited number K of times... Here K=3 suffices.

* Is there always a good value of K so that both games are equivalent?

6

Min-cost reachability games

T

Min-cost reachability games

0 @0
J

set of states

Min-cost reachability games

— U2 ’@3 0
0
W]

* Minimiser wants to reach:

- if target is not reached, payoff + 00,
- if target is reached, accumulated sum until first occurrence of a target state

set of states

Min-cost reachability games

i,

Y »@:3 0
0
—W JA

set of states

Minimiser wants to reach:

if target is not reached, payoff +00,
if target is reached, accumulated sum until first occurrence of a target state

* Value of the game:
int SUup T_MCR(U7 O-min7 O-max)

min O o min
max max

= supinf 7-MCR(v,0 o

1m1in max)

Min-cost reachability games

S L >@Q 0
0
W]

. set of states

* Minimiser wants to reach:

if target is not reached, payoff +00,
if target is reached, accumulated sum until first occurrence of a target state

* Value of the game:
infsup 7-MCR(v,o

Umin o
m

O O

min ’ maX) min ’ max)

= supinf 7-MCR(v,o

min
ax max

Example: value of v| and v, is =W... and Minimiser needs memory to ensure it!

v

Solving MCR games (1)

Solving MCR games (1)

+ Case : shortest path in a weighted graph...

= Polynomial time

Solving MCR games (1)

+ Case : shortest path in a weighted graph...

= Polynomial time

- Case : Dijsktra’s algorithm adapted by

Khachiyan et al 2008
= Polynomial time

Solving MCR games (1)

- Case one player: shortest path in a weighted graph...

= Polynomial time

- Case non-negative weights: Dijsktra’s algorithm adapted by

Khachiyan et al 2008
= Polynomial time

 General case? Not known...

= Qur contribution: pseudo-polynomial time and as hard
as solving mean-payoff games

Solving MCR games (2)

Solving MCR games (2)

* Detecting vertices with value +0o0

= Attractor computation: polynomial time

Solving MCR games (2)

* Detecting vertices with value +0o0

= Attractor computation: polynomial time

* Detecting vertices with value —o0

= Equivalent to checking if the value of a mean-payoff game is
negative: decidable in NPnco-NP, pseudo-polynomial time

Solving MCR games (2)

* Detecting vertices with value +0o0

= Attractor computation: polynomial time

* Detecting vertices with value —o0

= Equivalent to checking if the value of a mean-payoff game is
negative: decidable in NPnco-NP, pseudo-polynomial time

- Computing finite values

= Value iteration running in pseudo-polynomial time

Solving MCR games (2)

* Detecting vertices with value +0o0

= Attractor computation: polynomial time

* Detecting vertices with value —o0

= Equivalent to checking if the value of a mean-payoff game is
negative: decidable in NPnco-NP, pseudo-polynomial time

- Computing finite values

= Value iteration running in pseudo-polynomial time

- Computing optimal strategies when all values are finite

= May be done simultaneously, with same complexity

Solving MCR games (2)

Detecting vertices with value +00
= Attractor computation: polynomial time

Detecting vertices with value —00
= Equivalent to checking if the value of a mean-payoff game is
negative: decidable in NPnco-NP, pseudo-polynomial time

Computing finite values
= Value iteration running in pseudo-polynomial time

Computing optimal strategies when all values are finite
= May be done simultaneously, with same complexity
= Maximiser: memoryless optimal strategy

Solving MCR games (2)

Detecting vertices with value +00
= Attractor computation: polynomial time

Detecting vertices with value —00
= Equivalent to checking if the value of a mean-payoff game is
negative: decidable in NPnco-NP, pseudo-polynomial time

Computing finite values
= Value iteration running in pseudo-polynomial time

Computing optimal strategies when all values are finite
= May be done simultaneously, with same complexity
= Maximiser: memoryless optimal strategy
= Minimiser: finite memory suffices, and may be required

9

Value iteration on an example

0 @0
J

10

Value iteration on an example

>@30

10

Value iteration on an example

>@30

what may both players
achieve in | step +00 0 0

10

Value iteration on an example

>@30

what may both players
achieve in | step <

10

Value iteration on an example

0 @0
]

what may both players
achieve in | step <

I
o
o O O O

10

Value iteration on an example

0 @0
]

what may both players
achieve in | step <

I
o
o O O O O

10

Value iteration on an example

0 >@QO
J

what may both players < Too +00 0
achieve in | step +00 0 0
=l 0 0

— _ 0

—2 —1 0

-W -W 0

10

Value iteration on an example

0 >@QO
J

what may both players < T Too 0
achieve in | step +00 0 0

—| 0 0

—| —| 0

-2 —| 0

stabilisation is proved always to -W -W 0
e and the result s the value -W W 0

10

Value iteration on an example

0 >@QO
J

what may both players < T Too 0
achieve in | step +00 0 0
—| 0 0
—| —| 0

~2 - 0 Miimisor
stabilisation is proved always to -W -W 0
e and the result s the value -W W 0

10

From total-payoft to MCR games

-W

V2

0

»@;3()

* For all K, unfold K times the arena, allowing Minimiser to ask to go to target t

in, ’01,3

U1,3

’02,3

in, vy, 3

Y

U3,3

)

in, vs, 3

Y

\

eX,v1,3

ex, vg, 3

ex, vs, 3

in, vy, 2

ex, v, 2

’1)1,2

’02,2

_1/4

in, vg, 2

\

Y

’1)3,2

()

in, vs, 2

Y

ex, vg, 2

Y

ex, vs, 2

in, vy, 1

~ ex, vy, 1

vy, 1
1, ,02’1

_1/4 \
in, vo, 1

U3,1

)

~ ex, Vg, 1

in, vs, 1

~(ex, vs, 1

W

11

-«

From total-payoft to MCR games
-?CE/L“;V\O ’@3’ 0

* For all K, unfold K times the arena, allowing Minimiser to ask to go to target t

)

Proposition: For K = O(|V| W), if values of G are not + o0,
then they are equal to the values of the MCR game Gk.

D)

Key argument: the value of an MCR game is necessarily in interval [-(|V]-1) W+1, [V|W]

= Pseudo-polynomial time algorithm: build Gk and compute its values

— g —

11

H

How not to build Gx?...

in,v1,3 in, v, 2 in, vy, 1
' '
U1, 3 \ U1, 2 \ vy, 1 \
’02,3 U2,2 UQ,].
—1/‘ \ —1/‘ \ —1/‘ \
in, vs9, 3 ~(ex, V2, 3 in, vg, 2 ~(ex, vg, 2 in, vg, 1 ~(ex, Vo, 1
—-W —W —W
’U3,3 ’U3,2 ”03,1
in, vs, 3 ~(ex, U3, 3 in, vs, 2 ~(ex, vg, 2 in,vs, 1
- N
Y

12

How not to build Gx?...

* In the value iteration for MCR games, we may compute the value
from the last copy of the game to the first one (outer loop)

in,v1,3

’U1,3

’02,3

_1/4 \
in,v2,3

’U3,3

()

in, ?}3,3

~(ex, V1,3
U1,

in, vy, 2

5

U2,2

_1/4 \
il’l,?)g,z

’U3,2

()

in, V3, 2

~ ex, v, 2
U1,

in, vy, 1

N

UQ,].

_1/4 \
il’l,’l)g,l

~(ex,v1,1)

”03,1

()

il’l, VU3, 1

~(ex, V9, 1)

12

~(ex,v3, 1)

How not to build Gx?...

* In the value iteration for MCR games, we may compute the value
from the last copy of the game to the first one (outer loop)

 Each time, it is the same arena: only the exit values evolve...
Compute the values of a linear size MCR game (inner loop)

in, vy
’ max(0,Y (v2)) |

U1 V2

Sk 0 ’@
max (0,

W Y(v1))

(7 max (0, Y(v3))j

12

How not to build Gx?...

* In the value iteration for MCR games, we may compute the value
from the last copy of the game to the first one (outer loop)

 Each time, it is the same arena: only the exit values evolve...
Compute the values of a linear size MCR game (inner loop)

» Stop early inner and outer loops...

1 foreach v € V do Y(v) := —¢

2 repeat

3 foreach v € V do Y,.(v) := Y (v); Y(v) := max(0,Y(v)); X(v) :

4 repeat

5 Xpre := X max(0, Y (v2)) |
6 foreach v € Viax do X(v) := max, /¢ gy (w(v,v") + min(Xpre (v'), Y ()]

7 foreach v € Viyin do X(v) := min, ¢ p(y) [w(v, v") + min(Xpq.(v'), Y(v'))] W o2

8 foreach v € V such that X(v) < —(|V]| = 1)W do X(v) := —c¢ . /

o | until X = X, 1, b2 max(0, ’@
10 | Y:=X -W Y (1))
11 foreach v € V such that Y(v) > (|[V| —1)W do Y(v) := +o00 Y3
12 until Y =Y, (7 max (0, Y (vs))
13 return Y in, v3 g

12

» Stop early inner and outer loops...

1 foreach v € V do Y(v) := —¢
2 repeat

3

© 0w N o s

10
11

In
fr

E:

H()W not to build Gx?...

Requires very few memory (no need to construct Gg)

= Pseudo-polynomial time: O(|V|* |E| W?)

C

alue

&= 1 NIWI_TWW_

foreach v € V do Y,.(v) := Y (v); Y(v) := max(0,Y(v)); X(v) :
repeat

Xpre 1= X
foreach v € Viax do X(v) := max, /¢ gy (w(v,v") + min(Xpre (v'), Y ()]
foreach v € Viyin do X(v) := min, ¢ p(y) [w(v, v") + min(Xpq.(v'), Y(v'))]
foreach v € V such that X(v) < —(|V]| = 1)W do X(v) := —c¢

until X = X,

Y: =X -W
foreach v € V such that Y(v) > (|JV| = 1)W do Y(v) := +c¢

12 untilY =Y,

13 return Y

12

U1

max(0, Y (v2))

V2

~

max (0, Y(v3)))

max|(0, @

Y(v1))

On an example

* As a total-payoff game, values of

» U3

Us

vi and v7 are 0, value of vz is W...

> U6 [1

U3(n—1)

W —W
—1

o
0

|74
oo

> U3n,

1

13

On an example

1

* As a total-payoff game, values of
vi and vz are O, value of vz is W...

* Each inner loop computes all
the values (needs O(n W) steps)

13

On an example

* As a total-payoff game, values of

phil vi and v7 are 0, value of vz is W...

* Each inner loop computes all

U=t N e the values (needs O(n W) steps)
/ * After | outer loop, only the

values of the last

component are correct...

1

13

On an example

* As a total-payoff game, values of

phil vi and v7 are 0, value of vz is W...

* Each inner loop computes all

U=t N e the values (needs O(n W) steps)
/ * After | outer loop, only the

values of the last

component are correct...

1
* Requires n outer loops to

converge

13

On an example

—W
~ \ * As a total-payoff game, values of
— et vi and v; are 0, value of vz is W...
14
—W
— O * Each inner loop computes all
Gt N e the values (needs O(n W) steps)
* After | outer loop, only the
U3(n—1)
- values of the last
-Ww
— component are correct...
(V32 U3 1 |——{van [1
oW * Requires n outer loops to
of outer loops converge

time (s) O=1

\ total # of inner loops
N /

W\n S 4100 4 200 300 400 500
50 | 0.52 / 151 / 12603 | 1.0 / 251 / 22703 | 3.84 / 351 / 32803 | 6.05 / 451 / 42003 | 9.83 / 551 / 53003
100 | 1.00 /201 /30103 | 3.48 /301 /50203 | 8.64 /401 /70303 | 13.53 /501 /90403 | 22.64 / 601 / 110503
150 | 1.80 / 251 /52603 | 6.02 / 351 / 82703 | 12.88 / 451 / 112803 | 22.13 / 551 / 142003 | 34.16 / 651 / 173003
200 | 2.06 / 301 /80103 | 9.62 / 401 / 120203 18 33 / 501 / 160303 | 30.42 / 601 / 200403 | 45.64 / 701 / 240503
250 | 3.02 / 351 / 112603 | 13.28 / 451 / 162703 | 25.18 / 551 / 212803 | 46.23 / 651 / 262903 | 71.51 / 751 / 313003

13

Heuristics: compute as little as possible!

* In the outer loop,
compute SCC by SCC

=7}3n31

14

Heuristics: compute as little as possible!

* In the outer loop,
compute SCC by SCC

=7}3n31

14

Heuristics: compute as little as possible!

* In the outer loop,
compute SCC by SCC

=U3n31

14

Heuristics: compute as little as possible!

- *In the outer loop,
e compute SCC by SCC

14

Heuristics: compute as little as possible!

w *|n the outer loop,

——] Yalo compute SCC by SCC

14

Heuristics: compute as little as possible!

*In the outer loop,
compute SCC by SCC

14

Heuristics: compute as little as possible!

*In the outer loop,
compute SCC by SCC

* For each inner loop, we
solve an MCR game:
optimal memoryless
strategies, so value is
weight of a simple path...

+ 00 + 00 0

+00 0 0

—| 0 0

—| —| 0

—2 —| 0

—2 —2 0

-3 —2 0

-3 -3 0

-W -W 0

14 -W -W 0

Heuristics: compute as little as possible!

* In the outer loop,
compute SCC by SCC

* For each inner loop, we
solve an MCR game:
optimal memoryless
strategies, so value is
weight of a simple path...

+ 00 + 00 0
+00 0 0
—| 0 0
—| —| 0
—2 —| 0
—2 —2 0
-3 —2 0
-3 -3 0
-W -W 0
-W -W 0

Heuristics: compute as little as possible!

* In the outer loop,
compute SCC by SCC

* For each inner loop, we
solve an MCR game:
optimal memoryless
strategies, so value is
weight of a simple path...

+ 00 + 00 0
+00 0 0
—| 0 0
—| —| 0
—2 —| 0
—2 —2 0
-3 —2 0
-3 -3 0

S
| .
E:

Some total-payoft games in polynomial time

=vn:>1

« Combination of both heuristics

« |f all SCC uses at most L distincts

15

weights (that can be arbitrarily large
in absolute values), algorithm with
heuristics runs in polynomial time.

Some total-payoft games in polynomial time

« Combination of both heuristics

- [f all SCC uses at most L distincts
weights (that can be arbitrarily large
in absolute values), algorithm with
heuristics runs in polynomial time.

* Implementation as an add-on to PRISM

o1 games available at

http://www.ulb.ac.beldilveriffmonmege/tool/TP- MCR/

(£)o0
without heuristics with heuristics

%% n t ke ki t ke ki
50 100 0.52s 151 12,603 0.01s | 402 1,404
50 500 9.83s 551 53,003 0.42s | 2,002 | 7,004
200 | 100 2.96s 301 80,103 0.02s | 402 1,404
200 | 500 45.64s | 701 240,503 0.47s | 2,002 | 7,004
500 | 1,000 536s | 1,501 | 1,251,003 || 2.37s | 4,002 | 14,004

15

Conclusion and future works

* First pseudo-polynomial time algorithm to solve total-payoff
games, by nested fixed point computation with value iteration

* By means of a reachability variant (MCR games), interesting
on their own

- Large subclasses with polynomial time complexity

* Tool:add-on of PRISM games

16

Conclusion and future works

* First pseudo-polynomial time algorithm to solve total-payoff
games, by nested fixed point computation with value iteration

* By means of a reachability variant (MCR games), interesting
on their own

- Large subclasses with polynomial time complexity

* Tool:add-on of PRISM games

- Perspectives: test the tool over larger benchmarks, enable
logic-like specification of the payoff function (like PRISM games)

16

Conclusion and future works

* First pseudo-polynomial time algorithm to solve total-payoff
games, by nested fixed point computation with value iteration

* By means of a reachability variant (MCR games), interesting
on their own

- Large subclasses with polynomial time complexity

* Tool:add-on of PRISM games

- Perspectives: test the tool over larger benchmarks, enable
logic-like specification of the payoff function (like PRISM games)

Thank you for your attention!

16

