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Game theory for synthesis
• More and more complex systems: difficult to design

• Rather than spending energy on verifying handmade code… 
Synthesise some code correct-by-construction!

• Well-establish model for synthesis: games on graphs
• 2 antagonistic players: controller and environment
• objective: reachability, repeated reachability, LTL…

• Interested with energy consumption, reliability, lifetime… 
Quantitative synthesis with games on weighted graphs
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• Quantitative objective of the controller: maximising his payoff, 
accumulated along the computation of the system

• Mean-payoff: good in average. 
Abundantly studied, NP∩co-NP, pseudo-polynomial time algorithm by Zwick & Paterson…

• Total-payoff: good in total. Refinement of mean-payoff
• Discounted-payoff…
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Figure 1 (a) A total-payo� game, and (b) the evolution of the partial sums in fi.

of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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in NP fl co-NP. Mean-payo� games have arguably been best studied from the algorithmic
point of view. A landmark is Zwick and Paterson’s pseudo-polynomial time (i.e., polynomial
in the weighted graph when weights are encoded in unary) algorithm [17], using the value
iteration paradigm that consists in computing a sequence of vectors of values that converges
towards the optimal values of the vertices. After a fixed, pseudo-polynomial, number of steps,
the computed values are precise enough to deduce the actual values of all vertices. Better
pseudo-polynomial time algorithms have later been proposed, e.g., in [1, 4, 6], also achieving
sub-exponential expected running time by means of randomisation.

In this paper, we focus on total-payo� games. Given an infinite play fi, we denote
by fi[k] the prefix of fi of length k, and by TP(fi[k]) the (finite) sum of all edge weights
along this prefix. The total-payo� of fi, TP(fi), is the inferior limit of all those sums, i.e.,
TP(fi) = lim infkæŒ TP(fi[k]). Compared to mean-payo� (and discounted-payo�) games,
the literature on total-payo� games is less extensive. Gimbert and Zielonka have shown [10]
that optimal memoryless strategies always exist for both players and the best algorithm
to compute the values runs in exponential time [9], and consists in iteratively improving
strategies. Other related works include energy games where one player tries to optimise its
energy consumption (computed again as a sum), keeping the energy level always above 0
(which makes di�cult to apply techniques solving those games in the case of total-payo�);
and a probabilistic variant of total-payo� games, where the weights are restricted to be
non-negative [5]. Yet, we argue that the total-payo� objective is interesting as a refinement
of the mean-payo�. Indeed, recall first that the total-payo� is finite if and only if the
mean-payo� is null. Then, the computation of the total-payo� enables a finer, two-stage
analysis of a game G: (i) compute the mean payo� MP(G); (ii) subtract MP(G) from all
edge weights, and scale the resulting weights if necessary to obtain integers. At that point,
one has obtained a new game GÕ with null mean-payo�; (iii) compute TP(GÕ) to quantify
the amount of fluctuation around the mean-payo� of the original game. Unfortunately, so
far, no e�cient (i.e., pseudo-polynomial time) algorithms for total-payo� games have been
proposed, and straightforward adaptations of Zwick and Paterson’s value iteration algorithm
for mean-payo� do not work, as we demonstrate at the end of Section 2. In the present
article, we fill in this gap by introducing the first pseudo-polynomial time algorithm for
computing the values in total-payo� games.

Our solution is a non-trivial value iteration algorithm that proceeds through nested fixed
points (see Algorithm 2). A play of a total-payo� game is infinite by essence. We transform
the game so that one of the players (the minimiser) must ensure a reachability objective: we
assume that the game ends once this reachability objective has been met. The intuition
behind this transformation, that stems from the use of an inferior limit in the definition of the
total-payo�, is as follows: in any play fi whose total-payo� is finite, there is a position ¸ in the
play after which all the partial sums TP(fi[i]) (with i > ¸) will be larger than or equal to the
total-payo� TP(fi) of fi, and infinitely often both will be equal. For example, consider the
game depicted in Figure 1(a), where the maximiser player (henceforth called Max) plays with
the round vertices and the minimiser (Min) with the square vertices. For both players, the
optimal value when playing from v1 is 2, and the play fi = v1v2v3 v4v5 v4v3 (v4v5)Ê reaches
this value (i.e., TP(fi) = 2). Moreover, for all k > 7: TP(fi[k]) > TP(fi), and infinitely
many prefixes (fi[8], fi[10], fi[12], . . .) have a total-payo� of 2, as shown in Figure 1(b).

Based on this observation, we transform a total-payo� game G, into a new game that has
the same value as the original total-payo� game but incorporates a reachability objective
for Min. Intuitively, in this new game, we allow a new action for Min: after each play prefix
fi[k], he can ask to stop the game, in which case the payo� of the play is the payo� TP(fi[k])

π = v
0
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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in NP fl co-NP. Mean-payo� games have arguably been best studied from the algorithmic
point of view. A landmark is Zwick and Paterson’s pseudo-polynomial time (i.e., polynomial
in the weighted graph when weights are encoded in unary) algorithm [17], using the value
iteration paradigm that consists in computing a sequence of vectors of values that converges
towards the optimal values of the vertices. After a fixed, pseudo-polynomial, number of steps,
the computed values are precise enough to deduce the actual values of all vertices. Better
pseudo-polynomial time algorithms have later been proposed, e.g., in [1, 4, 6], also achieving
sub-exponential expected running time by means of randomisation.

In this paper, we focus on total-payo� games. Given an infinite play fi, we denote
by fi[k] the prefix of fi of length k, and by TP(fi[k]) the (finite) sum of all edge weights
along this prefix. The total-payo� of fi, TP(fi), is the inferior limit of all those sums, i.e.,
TP(fi) = lim infkæŒ TP(fi[k]). Compared to mean-payo� (and discounted-payo�) games,
the literature on total-payo� games is less extensive. Gimbert and Zielonka have shown [10]
that optimal memoryless strategies always exist for both players and the best algorithm
to compute the values runs in exponential time [9], and consists in iteratively improving
strategies. Other related works include energy games where one player tries to optimise its
energy consumption (computed again as a sum), keeping the energy level always above 0
(which makes di�cult to apply techniques solving those games in the case of total-payo�);
and a probabilistic variant of total-payo� games, where the weights are restricted to be
non-negative [5]. Yet, we argue that the total-payo� objective is interesting as a refinement
of the mean-payo�. Indeed, recall first that the total-payo� is finite if and only if the
mean-payo� is null. Then, the computation of the total-payo� enables a finer, two-stage
analysis of a game G: (i) compute the mean payo� MP(G); (ii) subtract MP(G) from all
edge weights, and scale the resulting weights if necessary to obtain integers. At that point,
one has obtained a new game GÕ with null mean-payo�; (iii) compute TP(GÕ) to quantify
the amount of fluctuation around the mean-payo� of the original game. Unfortunately, so
far, no e�cient (i.e., pseudo-polynomial time) algorithms for total-payo� games have been
proposed, and straightforward adaptations of Zwick and Paterson’s value iteration algorithm
for mean-payo� do not work, as we demonstrate at the end of Section 2. In the present
article, we fill in this gap by introducing the first pseudo-polynomial time algorithm for
computing the values in total-payo� games.

Our solution is a non-trivial value iteration algorithm that proceeds through nested fixed
points (see Algorithm 2). A play of a total-payo� game is infinite by essence. We transform
the game so that one of the players (the minimiser) must ensure a reachability objective: we
assume that the game ends once this reachability objective has been met. The intuition
behind this transformation, that stems from the use of an inferior limit in the definition of the
total-payo�, is as follows: in any play fi whose total-payo� is finite, there is a position ¸ in the
play after which all the partial sums TP(fi[i]) (with i > ¸) will be larger than or equal to the
total-payo� TP(fi) of fi, and infinitely often both will be equal. For example, consider the
game depicted in Figure 1(a), where the maximiser player (henceforth called Max) plays with
the round vertices and the minimiser (Min) with the square vertices. For both players, the
optimal value when playing from v1 is 2, and the play fi = v1v2v3 v4v5 v4v3 (v4v5)Ê reaches
this value (i.e., TP(fi) = 2). Moreover, for all k > 7: TP(fi[k]) > TP(fi), and infinitely
many prefixes (fi[8], fi[10], fi[12], . . .) have a total-payo� of 2, as shown in Figure 1(b).

Based on this observation, we transform a total-payo� game G, into a new game that has
the same value as the original total-payo� game but incorporates a reachability objective
for Min. Intuitively, in this new game, we allow a new action for Min: after each play prefix
fi[k], he can ask to stop the game, in which case the payo� of the play is the payo� TP(fi[k])
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potential theoretical and practical applications1. Those games are discussed in Section 3.
In addition to the pseudo-polynomial time algorithm to compute the values, we show how
to compute optimal strategies for both players and characterise them: there is always a
memoryless strategy for the maximiser player, but we exhibit an example (see Figure 2(a))
where the minimiser player needs (finite) memory. Those results on min-cost reachability
games are exploited in Section 4 where we introduce and prove correct our e�cient algorithm
for total-payo� games.

Finally, we briefly present our implementation in Section 5, using as a core the numerical
model-checker PRISM. This allows us to describe some heuristics able to improve the practical
performances of our algorithms for total-payo� games and min-cost reachability games on
certain subclasses of graphs. More technical explanations and full proofs may be found in an
extended version of this article [2].

2 Quantitative games with arbitrary weights

We denote by Z the set of integers, and ZŒ = Z fi {≠Œ, +Œ}. The set of vectors indexed
by V with values in S is denoted by SV . We let 4 be the pointwise order over ZV

Œ, where
x 4 y if and only if x(v) 6 y(v) for all v œ V .

We consider two-player turn-based games on weighted graphs and denote the two players
by Max and Min. A weighted graph is a tuple ÈV, E, ÊÍ where V = V

Max

‡V
Min

is a finite set of
vertices partitioned into the sets V

Max

and V
Min

of Max and Min respectively, E ™ V ◊ V is a
set of directed edges, Ê : E æ Z is the weight function, associating an integer weight with each
edge. In our drawings, Max vertices are depicted by circles; Min vertices by boxes. For every
vertex v œ V , the set of successors of v by E is denoted by E(v) = {vÕ œ V | (v, vÕ) œ E}.
Without loss of generality, we assume that every graph is deadlock-free, i.e., for all vertices v,
E(v) ”= ÿ. Finally, throughout this article, we let W = max(v,vÕ)œE |Ê(v, vÕ)| be the greatest
edge weight (in absolute value) in the game graph. A finite play is a finite sequence of vertices
fi = v0v1 · · · vk such that for all 0 6 i < k, (vi, vi+1) œ E. A play is an infinite sequence of
vertices fi = v0v1 · · · such that every finite prefix v0 · · · vk, denoted by fi[k], is a finite play.

The total-payo� of a finite play fi = v0v1 · · · vk is obtained by summing up the weights
along fi, i.e., TP(fi) =

qk≠1
i=0 Ê(vi, vi+1). In the following, we sometimes rely on the mean-

payo� to obtain information about total-payo� objectives. The mean-payo� computes the
average weight of fi, i.e., if k > 1, MP(fi) = 1

k

qk≠1
i=0 Ê(vi, vi+1), and MP(fi) = 0 when

k = 0. These definitions are lifted to infinite plays as follows. The total-payo� of a play fi is
given by TP(fi) = lim infkæŒ TP(fi[k]).2 Similarly, the mean-payo� of a play fi is given by
MP(fi) = lim infkæŒ MP(fi[k]). A weighted graph equipped with these payo�s is called a
total-payo� game or a mean-payo� game, respectively.

A strategy for Max (respectively, Min) in a game G = ÈV, E, Ê, PÍ (with P one of the
previous payo�s), is a mapping ‡ : V úV

Max

æ V (respectively, ‡ : V úV
Min

æ V ) such that for
all sequences fi = v0 · · · vk with vk œ V

Max

(respectively, vk œ V
Min

), (vk, ‡(fi)) œ E. A play
or finite play fi = v0v1 · · · conforms to a strategy ‡ of Max (respectively, Min) if for all k

such that vk œ V
Max

(respectively, vk œ V
Min

), vk+1 = ‡(fi[k]). A strategy ‡ is memoryless

1 An example of practical application would be to perform controller synthesis taking into account energy
consumption. On the other hand, the problem of computing the values in certain classes of priced timed
games has recently been reduced to computing the values in min-cost reachability games [3].

2 Our results can easily be extended by substituting a lim sup for the lim inf. The lim inf is more natural
since we adopt the point of view of the maximiser Max, hence the lim inf is the worst partial sum seen
infinitely often.

π = v
0
v
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Figure 1 (a) A total-payo� game, and (b) the evolution of the partial sums in fi.

of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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in NP fl co-NP. Mean-payo� games have arguably been best studied from the algorithmic
point of view. A landmark is Zwick and Paterson’s pseudo-polynomial time (i.e., polynomial
in the weighted graph when weights are encoded in unary) algorithm [17], using the value
iteration paradigm that consists in computing a sequence of vectors of values that converges
towards the optimal values of the vertices. After a fixed, pseudo-polynomial, number of steps,
the computed values are precise enough to deduce the actual values of all vertices. Better
pseudo-polynomial time algorithms have later been proposed, e.g., in [1, 4, 6], also achieving
sub-exponential expected running time by means of randomisation.

In this paper, we focus on total-payo� games. Given an infinite play fi, we denote
by fi[k] the prefix of fi of length k, and by TP(fi[k]) the (finite) sum of all edge weights
along this prefix. The total-payo� of fi, TP(fi), is the inferior limit of all those sums, i.e.,
TP(fi) = lim infkæŒ TP(fi[k]). Compared to mean-payo� (and discounted-payo�) games,
the literature on total-payo� games is less extensive. Gimbert and Zielonka have shown [10]
that optimal memoryless strategies always exist for both players and the best algorithm
to compute the values runs in exponential time [9], and consists in iteratively improving
strategies. Other related works include energy games where one player tries to optimise its
energy consumption (computed again as a sum), keeping the energy level always above 0
(which makes di�cult to apply techniques solving those games in the case of total-payo�);
and a probabilistic variant of total-payo� games, where the weights are restricted to be
non-negative [5]. Yet, we argue that the total-payo� objective is interesting as a refinement
of the mean-payo�. Indeed, recall first that the total-payo� is finite if and only if the
mean-payo� is null. Then, the computation of the total-payo� enables a finer, two-stage
analysis of a game G: (i) compute the mean payo� MP(G); (ii) subtract MP(G) from all
edge weights, and scale the resulting weights if necessary to obtain integers. At that point,
one has obtained a new game GÕ with null mean-payo�; (iii) compute TP(GÕ) to quantify
the amount of fluctuation around the mean-payo� of the original game. Unfortunately, so
far, no e�cient (i.e., pseudo-polynomial time) algorithms for total-payo� games have been
proposed, and straightforward adaptations of Zwick and Paterson’s value iteration algorithm
for mean-payo� do not work, as we demonstrate at the end of Section 2. In the present
article, we fill in this gap by introducing the first pseudo-polynomial time algorithm for
computing the values in total-payo� games.

Our solution is a non-trivial value iteration algorithm that proceeds through nested fixed
points (see Algorithm 2). A play of a total-payo� game is infinite by essence. We transform
the game so that one of the players (the minimiser) must ensure a reachability objective: we
assume that the game ends once this reachability objective has been met. The intuition
behind this transformation, that stems from the use of an inferior limit in the definition of the
total-payo�, is as follows: in any play fi whose total-payo� is finite, there is a position ¸ in the
play after which all the partial sums TP(fi[i]) (with i > ¸) will be larger than or equal to the
total-payo� TP(fi) of fi, and infinitely often both will be equal. For example, consider the
game depicted in Figure 1(a), where the maximiser player (henceforth called Max) plays with
the round vertices and the minimiser (Min) with the square vertices. For both players, the
optimal value when playing from v1 is 2, and the play fi = v1v2v3 v4v5 v4v3 (v4v5)Ê reaches
this value (i.e., TP(fi) = 2). Moreover, for all k > 7: TP(fi[k]) > TP(fi), and infinitely
many prefixes (fi[8], fi[10], fi[12], . . .) have a total-payo� of 2, as shown in Figure 1(b).

Based on this observation, we transform a total-payo� game G, into a new game that has
the same value as the original total-payo� game but incorporates a reachability objective
for Min. Intuitively, in this new game, we allow a new action for Min: after each play prefix
fi[k], he can ask to stop the game, in which case the payo� of the play is the payo� TP(fi[k])
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potential theoretical and practical applications1. Those games are discussed in Section 3.
In addition to the pseudo-polynomial time algorithm to compute the values, we show how
to compute optimal strategies for both players and characterise them: there is always a
memoryless strategy for the maximiser player, but we exhibit an example (see Figure 2(a))
where the minimiser player needs (finite) memory. Those results on min-cost reachability
games are exploited in Section 4 where we introduce and prove correct our e�cient algorithm
for total-payo� games.

Finally, we briefly present our implementation in Section 5, using as a core the numerical
model-checker PRISM. This allows us to describe some heuristics able to improve the practical
performances of our algorithms for total-payo� games and min-cost reachability games on
certain subclasses of graphs. More technical explanations and full proofs may be found in an
extended version of this article [2].

2 Quantitative games with arbitrary weights

We denote by Z the set of integers, and ZŒ = Z fi {≠Œ, +Œ}. The set of vectors indexed
by V with values in S is denoted by SV . We let 4 be the pointwise order over ZV

Œ, where
x 4 y if and only if x(v) 6 y(v) for all v œ V .

We consider two-player turn-based games on weighted graphs and denote the two players
by Max and Min. A weighted graph is a tuple ÈV, E, ÊÍ where V = V

Max

‡V
Min

is a finite set of
vertices partitioned into the sets V

Max

and V
Min

of Max and Min respectively, E ™ V ◊ V is a
set of directed edges, Ê : E æ Z is the weight function, associating an integer weight with each
edge. In our drawings, Max vertices are depicted by circles; Min vertices by boxes. For every
vertex v œ V , the set of successors of v by E is denoted by E(v) = {vÕ œ V | (v, vÕ) œ E}.
Without loss of generality, we assume that every graph is deadlock-free, i.e., for all vertices v,
E(v) ”= ÿ. Finally, throughout this article, we let W = max(v,vÕ)œE |Ê(v, vÕ)| be the greatest
edge weight (in absolute value) in the game graph. A finite play is a finite sequence of vertices
fi = v0v1 · · · vk such that for all 0 6 i < k, (vi, vi+1) œ E. A play is an infinite sequence of
vertices fi = v0v1 · · · such that every finite prefix v0 · · · vk, denoted by fi[k], is a finite play.

The total-payo� of a finite play fi = v0v1 · · · vk is obtained by summing up the weights
along fi, i.e., TP(fi) =

qk≠1
i=0 Ê(vi, vi+1). In the following, we sometimes rely on the mean-

payo� to obtain information about total-payo� objectives. The mean-payo� computes the
average weight of fi, i.e., if k > 1, MP(fi) = 1

k

qk≠1
i=0 Ê(vi, vi+1), and MP(fi) = 0 when

k = 0. These definitions are lifted to infinite plays as follows. The total-payo� of a play fi is
given by TP(fi) = lim infkæŒ TP(fi[k]).2 Similarly, the mean-payo� of a play fi is given by
MP(fi) = lim infkæŒ MP(fi[k]). A weighted graph equipped with these payo�s is called a
total-payo� game or a mean-payo� game, respectively.

A strategy for Max (respectively, Min) in a game G = ÈV, E, Ê, PÍ (with P one of the
previous payo�s), is a mapping ‡ : V úV

Max

æ V (respectively, ‡ : V úV
Min

æ V ) such that for
all sequences fi = v0 · · · vk with vk œ V

Max

(respectively, vk œ V
Min

), (vk, ‡(fi)) œ E. A play
or finite play fi = v0v1 · · · conforms to a strategy ‡ of Max (respectively, Min) if for all k

such that vk œ V
Max

(respectively, vk œ V
Min

), vk+1 = ‡(fi[k]). A strategy ‡ is memoryless

1 An example of practical application would be to perform controller synthesis taking into account energy
consumption. On the other hand, the problem of computing the values in certain classes of priced timed
games has recently been reduced to computing the values in min-cost reachability games [3].

2 Our results can easily be extended by substituting a lim sup for the lim inf. The lim inf is more natural
since we adopt the point of view of the maximiser Max, hence the lim inf is the worst partial sum seen
infinitely often.
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Figure 1 (a) A total-payo� game, and (b) the evolution of the partial sums in fi.

of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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in NP fl co-NP. Mean-payo� games have arguably been best studied from the algorithmic
point of view. A landmark is Zwick and Paterson’s pseudo-polynomial time (i.e., polynomial
in the weighted graph when weights are encoded in unary) algorithm [17], using the value
iteration paradigm that consists in computing a sequence of vectors of values that converges
towards the optimal values of the vertices. After a fixed, pseudo-polynomial, number of steps,
the computed values are precise enough to deduce the actual values of all vertices. Better
pseudo-polynomial time algorithms have later been proposed, e.g., in [1, 4, 6], also achieving
sub-exponential expected running time by means of randomisation.

In this paper, we focus on total-payo� games. Given an infinite play fi, we denote
by fi[k] the prefix of fi of length k, and by TP(fi[k]) the (finite) sum of all edge weights
along this prefix. The total-payo� of fi, TP(fi), is the inferior limit of all those sums, i.e.,
TP(fi) = lim infkæŒ TP(fi[k]). Compared to mean-payo� (and discounted-payo�) games,
the literature on total-payo� games is less extensive. Gimbert and Zielonka have shown [10]
that optimal memoryless strategies always exist for both players and the best algorithm
to compute the values runs in exponential time [9], and consists in iteratively improving
strategies. Other related works include energy games where one player tries to optimise its
energy consumption (computed again as a sum), keeping the energy level always above 0
(which makes di�cult to apply techniques solving those games in the case of total-payo�);
and a probabilistic variant of total-payo� games, where the weights are restricted to be
non-negative [5]. Yet, we argue that the total-payo� objective is interesting as a refinement
of the mean-payo�. Indeed, recall first that the total-payo� is finite if and only if the
mean-payo� is null. Then, the computation of the total-payo� enables a finer, two-stage
analysis of a game G: (i) compute the mean payo� MP(G); (ii) subtract MP(G) from all
edge weights, and scale the resulting weights if necessary to obtain integers. At that point,
one has obtained a new game GÕ with null mean-payo�; (iii) compute TP(GÕ) to quantify
the amount of fluctuation around the mean-payo� of the original game. Unfortunately, so
far, no e�cient (i.e., pseudo-polynomial time) algorithms for total-payo� games have been
proposed, and straightforward adaptations of Zwick and Paterson’s value iteration algorithm
for mean-payo� do not work, as we demonstrate at the end of Section 2. In the present
article, we fill in this gap by introducing the first pseudo-polynomial time algorithm for
computing the values in total-payo� games.

Our solution is a non-trivial value iteration algorithm that proceeds through nested fixed
points (see Algorithm 2). A play of a total-payo� game is infinite by essence. We transform
the game so that one of the players (the minimiser) must ensure a reachability objective: we
assume that the game ends once this reachability objective has been met. The intuition
behind this transformation, that stems from the use of an inferior limit in the definition of the
total-payo�, is as follows: in any play fi whose total-payo� is finite, there is a position ¸ in the
play after which all the partial sums TP(fi[i]) (with i > ¸) will be larger than or equal to the
total-payo� TP(fi) of fi, and infinitely often both will be equal. For example, consider the
game depicted in Figure 1(a), where the maximiser player (henceforth called Max) plays with
the round vertices and the minimiser (Min) with the square vertices. For both players, the
optimal value when playing from v1 is 2, and the play fi = v1v2v3 v4v5 v4v3 (v4v5)Ê reaches
this value (i.e., TP(fi) = 2). Moreover, for all k > 7: TP(fi[k]) > TP(fi), and infinitely
many prefixes (fi[8], fi[10], fi[12], . . .) have a total-payo� of 2, as shown in Figure 1(b).

Based on this observation, we transform a total-payo� game G, into a new game that has
the same value as the original total-payo� game but incorporates a reachability objective
for Min. Intuitively, in this new game, we allow a new action for Min: after each play prefix
fi[k], he can ask to stop the game, in which case the payo� of the play is the payo� TP(fi[k])
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potential theoretical and practical applications1. Those games are discussed in Section 3.
In addition to the pseudo-polynomial time algorithm to compute the values, we show how
to compute optimal strategies for both players and characterise them: there is always a
memoryless strategy for the maximiser player, but we exhibit an example (see Figure 2(a))
where the minimiser player needs (finite) memory. Those results on min-cost reachability
games are exploited in Section 4 where we introduce and prove correct our e�cient algorithm
for total-payo� games.

Finally, we briefly present our implementation in Section 5, using as a core the numerical
model-checker PRISM. This allows us to describe some heuristics able to improve the practical
performances of our algorithms for total-payo� games and min-cost reachability games on
certain subclasses of graphs. More technical explanations and full proofs may be found in an
extended version of this article [2].

2 Quantitative games with arbitrary weights

We denote by Z the set of integers, and ZŒ = Z fi {≠Œ, +Œ}. The set of vectors indexed
by V with values in S is denoted by SV . We let 4 be the pointwise order over ZV

Œ, where
x 4 y if and only if x(v) 6 y(v) for all v œ V .

We consider two-player turn-based games on weighted graphs and denote the two players
by Max and Min. A weighted graph is a tuple ÈV, E, ÊÍ where V = V

Max

‡V
Min

is a finite set of
vertices partitioned into the sets V

Max

and V
Min

of Max and Min respectively, E ™ V ◊ V is a
set of directed edges, Ê : E æ Z is the weight function, associating an integer weight with each
edge. In our drawings, Max vertices are depicted by circles; Min vertices by boxes. For every
vertex v œ V , the set of successors of v by E is denoted by E(v) = {vÕ œ V | (v, vÕ) œ E}.
Without loss of generality, we assume that every graph is deadlock-free, i.e., for all vertices v,
E(v) ”= ÿ. Finally, throughout this article, we let W = max(v,vÕ)œE |Ê(v, vÕ)| be the greatest
edge weight (in absolute value) in the game graph. A finite play is a finite sequence of vertices
fi = v0v1 · · · vk such that for all 0 6 i < k, (vi, vi+1) œ E. A play is an infinite sequence of
vertices fi = v0v1 · · · such that every finite prefix v0 · · · vk, denoted by fi[k], is a finite play.

The total-payo� of a finite play fi = v0v1 · · · vk is obtained by summing up the weights
along fi, i.e., TP(fi) =

qk≠1
i=0 Ê(vi, vi+1). In the following, we sometimes rely on the mean-

payo� to obtain information about total-payo� objectives. The mean-payo� computes the
average weight of fi, i.e., if k > 1, MP(fi) = 1

k

qk≠1
i=0 Ê(vi, vi+1), and MP(fi) = 0 when

k = 0. These definitions are lifted to infinite plays as follows. The total-payo� of a play fi is
given by TP(fi) = lim infkæŒ TP(fi[k]).2 Similarly, the mean-payo� of a play fi is given by
MP(fi) = lim infkæŒ MP(fi[k]). A weighted graph equipped with these payo�s is called a
total-payo� game or a mean-payo� game, respectively.

A strategy for Max (respectively, Min) in a game G = ÈV, E, Ê, PÍ (with P one of the
previous payo�s), is a mapping ‡ : V úV

Max

æ V (respectively, ‡ : V úV
Min

æ V ) such that for
all sequences fi = v0 · · · vk with vk œ V

Max

(respectively, vk œ V
Min

), (vk, ‡(fi)) œ E. A play
or finite play fi = v0v1 · · · conforms to a strategy ‡ of Max (respectively, Min) if for all k

such that vk œ V
Max

(respectively, vk œ V
Min

), vk+1 = ‡(fi[k]). A strategy ‡ is memoryless

1 An example of practical application would be to perform controller synthesis taking into account energy
consumption. On the other hand, the problem of computing the values in certain classes of priced timed
games has recently been reduced to computing the values in min-cost reachability games [3].

2 Our results can easily be extended by substituting a lim sup for the lim inf. The lim inf is more natural
since we adopt the point of view of the maximiser Max, hence the lim inf is the worst partial sum seen
infinitely often.
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potential theoretical and practical applications1. Those games are discussed in Section 3.
In addition to the pseudo-polynomial time algorithm to compute the values, we show how
to compute optimal strategies for both players and characterise them: there is always a
memoryless strategy for the maximiser player, but we exhibit an example (see Figure 2(a))
where the minimiser player needs (finite) memory. Those results on min-cost reachability
games are exploited in Section 4 where we introduce and prove correct our e�cient algorithm
for total-payo� games.

Finally, we briefly present our implementation in Section 5, using as a core the numerical
model-checker PRISM. This allows us to describe some heuristics able to improve the practical
performances of our algorithms for total-payo� games and min-cost reachability games on
certain subclasses of graphs. More technical explanations and full proofs may be found in an
extended version of this article [2].

2 Quantitative games with arbitrary weights

We denote by Z the set of integers, and ZŒ = Z fi {≠Œ, +Œ}. The set of vectors indexed
by V with values in S is denoted by SV . We let 4 be the pointwise order over ZV

Œ, where
x 4 y if and only if x(v) 6 y(v) for all v œ V .

We consider two-player turn-based games on weighted graphs and denote the two players
by Max and Min. A weighted graph is a tuple ÈV, E, ÊÍ where V = V

Max

‡V
Min

is a finite set of
vertices partitioned into the sets V

Max

and V
Min

of Max and Min respectively, E ™ V ◊ V is a
set of directed edges, Ê : E æ Z is the weight function, associating an integer weight with each
edge. In our drawings, Max vertices are depicted by circles; Min vertices by boxes. For every
vertex v œ V , the set of successors of v by E is denoted by E(v) = {vÕ œ V | (v, vÕ) œ E}.
Without loss of generality, we assume that every graph is deadlock-free, i.e., for all vertices v,
E(v) ”= ÿ. Finally, throughout this article, we let W = max(v,vÕ)œE |Ê(v, vÕ)| be the greatest
edge weight (in absolute value) in the game graph. A finite play is a finite sequence of vertices
fi = v0v1 · · · vk such that for all 0 6 i < k, (vi, vi+1) œ E. A play is an infinite sequence of
vertices fi = v0v1 · · · such that every finite prefix v0 · · · vk, denoted by fi[k], is a finite play.

The total-payo� of a finite play fi = v0v1 · · · vk is obtained by summing up the weights
along fi, i.e., TP(fi) =

qk≠1
i=0 Ê(vi, vi+1). In the following, we sometimes rely on the mean-

payo� to obtain information about total-payo� objectives. The mean-payo� computes the
average weight of fi, i.e., if k > 1, MP(fi) = 1

k

qk≠1
i=0 Ê(vi, vi+1), and MP(fi) = 0 when

k = 0. These definitions are lifted to infinite plays as follows. The total-payo� of a play fi is
given by TP(fi) = lim infkæŒ TP(fi[k]).2 Similarly, the mean-payo� of a play fi is given by
MP(fi) = lim infkæŒ MP(fi[k]). A weighted graph equipped with these payo�s is called a
total-payo� game or a mean-payo� game, respectively.

A strategy for Max (respectively, Min) in a game G = ÈV, E, Ê, PÍ (with P one of the
previous payo�s), is a mapping ‡ : V úV

Max

æ V (respectively, ‡ : V úV
Min

æ V ) such that for
all sequences fi = v0 · · · vk with vk œ V

Max

(respectively, vk œ V
Min

), (vk, ‡(fi)) œ E. A play
or finite play fi = v0v1 · · · conforms to a strategy ‡ of Max (respectively, Min) if for all k

such that vk œ V
Max

(respectively, vk œ V
Min

), vk+1 = ‡(fi[k]). A strategy ‡ is memoryless

1 An example of practical application would be to perform controller synthesis taking into account energy
consumption. On the other hand, the problem of computing the values in certain classes of priced timed
games has recently been reduced to computing the values in min-cost reachability games [3].

2 Our results can easily be extended by substituting a lim sup for the lim inf. The lim inf is more natural
since we adopt the point of view of the maximiser Max, hence the lim inf is the worst partial sum seen
infinitely often.
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Figure 1 (a) A total-payo� game, and (b) the evolution of the partial sums in fi.

of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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in NP fl co-NP. Mean-payo� games have arguably been best studied from the algorithmic
point of view. A landmark is Zwick and Paterson’s pseudo-polynomial time (i.e., polynomial
in the weighted graph when weights are encoded in unary) algorithm [17], using the value
iteration paradigm that consists in computing a sequence of vectors of values that converges
towards the optimal values of the vertices. After a fixed, pseudo-polynomial, number of steps,
the computed values are precise enough to deduce the actual values of all vertices. Better
pseudo-polynomial time algorithms have later been proposed, e.g., in [1, 4, 6], also achieving
sub-exponential expected running time by means of randomisation.

In this paper, we focus on total-payo� games. Given an infinite play fi, we denote
by fi[k] the prefix of fi of length k, and by TP(fi[k]) the (finite) sum of all edge weights
along this prefix. The total-payo� of fi, TP(fi), is the inferior limit of all those sums, i.e.,
TP(fi) = lim infkæŒ TP(fi[k]). Compared to mean-payo� (and discounted-payo�) games,
the literature on total-payo� games is less extensive. Gimbert and Zielonka have shown [10]
that optimal memoryless strategies always exist for both players and the best algorithm
to compute the values runs in exponential time [9], and consists in iteratively improving
strategies. Other related works include energy games where one player tries to optimise its
energy consumption (computed again as a sum), keeping the energy level always above 0
(which makes di�cult to apply techniques solving those games in the case of total-payo�);
and a probabilistic variant of total-payo� games, where the weights are restricted to be
non-negative [5]. Yet, we argue that the total-payo� objective is interesting as a refinement
of the mean-payo�. Indeed, recall first that the total-payo� is finite if and only if the
mean-payo� is null. Then, the computation of the total-payo� enables a finer, two-stage
analysis of a game G: (i) compute the mean payo� MP(G); (ii) subtract MP(G) from all
edge weights, and scale the resulting weights if necessary to obtain integers. At that point,
one has obtained a new game GÕ with null mean-payo�; (iii) compute TP(GÕ) to quantify
the amount of fluctuation around the mean-payo� of the original game. Unfortunately, so
far, no e�cient (i.e., pseudo-polynomial time) algorithms for total-payo� games have been
proposed, and straightforward adaptations of Zwick and Paterson’s value iteration algorithm
for mean-payo� do not work, as we demonstrate at the end of Section 2. In the present
article, we fill in this gap by introducing the first pseudo-polynomial time algorithm for
computing the values in total-payo� games.

Our solution is a non-trivial value iteration algorithm that proceeds through nested fixed
points (see Algorithm 2). A play of a total-payo� game is infinite by essence. We transform
the game so that one of the players (the minimiser) must ensure a reachability objective: we
assume that the game ends once this reachability objective has been met. The intuition
behind this transformation, that stems from the use of an inferior limit in the definition of the
total-payo�, is as follows: in any play fi whose total-payo� is finite, there is a position ¸ in the
play after which all the partial sums TP(fi[i]) (with i > ¸) will be larger than or equal to the
total-payo� TP(fi) of fi, and infinitely often both will be equal. For example, consider the
game depicted in Figure 1(a), where the maximiser player (henceforth called Max) plays with
the round vertices and the minimiser (Min) with the square vertices. For both players, the
optimal value when playing from v1 is 2, and the play fi = v1v2v3 v4v5 v4v3 (v4v5)Ê reaches
this value (i.e., TP(fi) = 2). Moreover, for all k > 7: TP(fi[k]) > TP(fi), and infinitely
many prefixes (fi[8], fi[10], fi[12], . . .) have a total-payo� of 2, as shown in Figure 1(b).

Based on this observation, we transform a total-payo� game G, into a new game that has
the same value as the original total-payo� game but incorporates a reachability objective
for Min. Intuitively, in this new game, we allow a new action for Min: after each play prefix
fi[k], he can ask to stop the game, in which case the payo� of the play is the payo� TP(fi[k])
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potential theoretical and practical applications1. Those games are discussed in Section 3.
In addition to the pseudo-polynomial time algorithm to compute the values, we show how
to compute optimal strategies for both players and characterise them: there is always a
memoryless strategy for the maximiser player, but we exhibit an example (see Figure 2(a))
where the minimiser player needs (finite) memory. Those results on min-cost reachability
games are exploited in Section 4 where we introduce and prove correct our e�cient algorithm
for total-payo� games.

Finally, we briefly present our implementation in Section 5, using as a core the numerical
model-checker PRISM. This allows us to describe some heuristics able to improve the practical
performances of our algorithms for total-payo� games and min-cost reachability games on
certain subclasses of graphs. More technical explanations and full proofs may be found in an
extended version of this article [2].

2 Quantitative games with arbitrary weights

We denote by Z the set of integers, and ZŒ = Z fi {≠Œ, +Œ}. The set of vectors indexed
by V with values in S is denoted by SV . We let 4 be the pointwise order over ZV

Œ, where
x 4 y if and only if x(v) 6 y(v) for all v œ V .

We consider two-player turn-based games on weighted graphs and denote the two players
by Max and Min. A weighted graph is a tuple ÈV, E, ÊÍ where V = V

Max

‡V
Min

is a finite set of
vertices partitioned into the sets V

Max

and V
Min

of Max and Min respectively, E ™ V ◊ V is a
set of directed edges, Ê : E æ Z is the weight function, associating an integer weight with each
edge. In our drawings, Max vertices are depicted by circles; Min vertices by boxes. For every
vertex v œ V , the set of successors of v by E is denoted by E(v) = {vÕ œ V | (v, vÕ) œ E}.
Without loss of generality, we assume that every graph is deadlock-free, i.e., for all vertices v,
E(v) ”= ÿ. Finally, throughout this article, we let W = max(v,vÕ)œE |Ê(v, vÕ)| be the greatest
edge weight (in absolute value) in the game graph. A finite play is a finite sequence of vertices
fi = v0v1 · · · vk such that for all 0 6 i < k, (vi, vi+1) œ E. A play is an infinite sequence of
vertices fi = v0v1 · · · such that every finite prefix v0 · · · vk, denoted by fi[k], is a finite play.

The total-payo� of a finite play fi = v0v1 · · · vk is obtained by summing up the weights
along fi, i.e., TP(fi) =

qk≠1
i=0 Ê(vi, vi+1). In the following, we sometimes rely on the mean-

payo� to obtain information about total-payo� objectives. The mean-payo� computes the
average weight of fi, i.e., if k > 1, MP(fi) = 1

k

qk≠1
i=0 Ê(vi, vi+1), and MP(fi) = 0 when

k = 0. These definitions are lifted to infinite plays as follows. The total-payo� of a play fi is
given by TP(fi) = lim infkæŒ TP(fi[k]).2 Similarly, the mean-payo� of a play fi is given by
MP(fi) = lim infkæŒ MP(fi[k]). A weighted graph equipped with these payo�s is called a
total-payo� game or a mean-payo� game, respectively.

A strategy for Max (respectively, Min) in a game G = ÈV, E, Ê, PÍ (with P one of the
previous payo�s), is a mapping ‡ : V úV

Max

æ V (respectively, ‡ : V úV
Min

æ V ) such that for
all sequences fi = v0 · · · vk with vk œ V

Max

(respectively, vk œ V
Min

), (vk, ‡(fi)) œ E. A play
or finite play fi = v0v1 · · · conforms to a strategy ‡ of Max (respectively, Min) if for all k

such that vk œ V
Max

(respectively, vk œ V
Min

), vk+1 = ‡(fi[k]). A strategy ‡ is memoryless

1 An example of practical application would be to perform controller synthesis taking into account energy
consumption. On the other hand, the problem of computing the values in certain classes of priced timed
games has recently been reduced to computing the values in min-cost reachability games [3].

2 Our results can easily be extended by substituting a lim sup for the lim inf. The lim inf is more natural
since we adopt the point of view of the maximiser Max, hence the lim inf is the worst partial sum seen
infinitely often.
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Figure 1 (a) A total-payo� game, and (b) the evolution of the partial sums in fi.

of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own

T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege 3

v4v3 v5v2v1
≠2 ≠1

2 12

≠1 ≠1(a)
TP(fi) = 2

0

1

2

3
TP(fi[k])

k
0 1 2 3 4 5 6 7 8 9 10

(b)

Figure 1 (a) A total-payo� game, and (b) the evolution of the partial sums in fi.

of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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in NP fl co-NP. Mean-payo� games have arguably been best studied from the algorithmic
point of view. A landmark is Zwick and Paterson’s pseudo-polynomial time (i.e., polynomial
in the weighted graph when weights are encoded in unary) algorithm [17], using the value
iteration paradigm that consists in computing a sequence of vectors of values that converges
towards the optimal values of the vertices. After a fixed, pseudo-polynomial, number of steps,
the computed values are precise enough to deduce the actual values of all vertices. Better
pseudo-polynomial time algorithms have later been proposed, e.g., in [1, 4, 6], also achieving
sub-exponential expected running time by means of randomisation.

In this paper, we focus on total-payo� games. Given an infinite play fi, we denote
by fi[k] the prefix of fi of length k, and by TP(fi[k]) the (finite) sum of all edge weights
along this prefix. The total-payo� of fi, TP(fi), is the inferior limit of all those sums, i.e.,
TP(fi) = lim infkæŒ TP(fi[k]). Compared to mean-payo� (and discounted-payo�) games,
the literature on total-payo� games is less extensive. Gimbert and Zielonka have shown [10]
that optimal memoryless strategies always exist for both players and the best algorithm
to compute the values runs in exponential time [9], and consists in iteratively improving
strategies. Other related works include energy games where one player tries to optimise its
energy consumption (computed again as a sum), keeping the energy level always above 0
(which makes di�cult to apply techniques solving those games in the case of total-payo�);
and a probabilistic variant of total-payo� games, where the weights are restricted to be
non-negative [5]. Yet, we argue that the total-payo� objective is interesting as a refinement
of the mean-payo�. Indeed, recall first that the total-payo� is finite if and only if the
mean-payo� is null. Then, the computation of the total-payo� enables a finer, two-stage
analysis of a game G: (i) compute the mean payo� MP(G); (ii) subtract MP(G) from all
edge weights, and scale the resulting weights if necessary to obtain integers. At that point,
one has obtained a new game GÕ with null mean-payo�; (iii) compute TP(GÕ) to quantify
the amount of fluctuation around the mean-payo� of the original game. Unfortunately, so
far, no e�cient (i.e., pseudo-polynomial time) algorithms for total-payo� games have been
proposed, and straightforward adaptations of Zwick and Paterson’s value iteration algorithm
for mean-payo� do not work, as we demonstrate at the end of Section 2. In the present
article, we fill in this gap by introducing the first pseudo-polynomial time algorithm for
computing the values in total-payo� games.

Our solution is a non-trivial value iteration algorithm that proceeds through nested fixed
points (see Algorithm 2). A play of a total-payo� game is infinite by essence. We transform
the game so that one of the players (the minimiser) must ensure a reachability objective: we
assume that the game ends once this reachability objective has been met. The intuition
behind this transformation, that stems from the use of an inferior limit in the definition of the
total-payo�, is as follows: in any play fi whose total-payo� is finite, there is a position ¸ in the
play after which all the partial sums TP(fi[i]) (with i > ¸) will be larger than or equal to the
total-payo� TP(fi) of fi, and infinitely often both will be equal. For example, consider the
game depicted in Figure 1(a), where the maximiser player (henceforth called Max) plays with
the round vertices and the minimiser (Min) with the square vertices. For both players, the
optimal value when playing from v1 is 2, and the play fi = v1v2v3 v4v5 v4v3 (v4v5)Ê reaches
this value (i.e., TP(fi) = 2). Moreover, for all k > 7: TP(fi[k]) > TP(fi), and infinitely
many prefixes (fi[8], fi[10], fi[12], . . .) have a total-payo� of 2, as shown in Figure 1(b).

Based on this observation, we transform a total-payo� game G, into a new game that has
the same value as the original total-payo� game but incorporates a reachability objective
for Min. Intuitively, in this new game, we allow a new action for Min: after each play prefix
fi[k], he can ask to stop the game, in which case the payo� of the play is the payo� TP(fi[k])
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potential theoretical and practical applications1. Those games are discussed in Section 3.
In addition to the pseudo-polynomial time algorithm to compute the values, we show how
to compute optimal strategies for both players and characterise them: there is always a
memoryless strategy for the maximiser player, but we exhibit an example (see Figure 2(a))
where the minimiser player needs (finite) memory. Those results on min-cost reachability
games are exploited in Section 4 where we introduce and prove correct our e�cient algorithm
for total-payo� games.

Finally, we briefly present our implementation in Section 5, using as a core the numerical
model-checker PRISM. This allows us to describe some heuristics able to improve the practical
performances of our algorithms for total-payo� games and min-cost reachability games on
certain subclasses of graphs. More technical explanations and full proofs may be found in an
extended version of this article [2].

2 Quantitative games with arbitrary weights

We denote by Z the set of integers, and ZŒ = Z fi {≠Œ, +Œ}. The set of vectors indexed
by V with values in S is denoted by SV . We let 4 be the pointwise order over ZV

Œ, where
x 4 y if and only if x(v) 6 y(v) for all v œ V .

We consider two-player turn-based games on weighted graphs and denote the two players
by Max and Min. A weighted graph is a tuple ÈV, E, ÊÍ where V = V

Max

‡V
Min

is a finite set of
vertices partitioned into the sets V

Max

and V
Min

of Max and Min respectively, E ™ V ◊ V is a
set of directed edges, Ê : E æ Z is the weight function, associating an integer weight with each
edge. In our drawings, Max vertices are depicted by circles; Min vertices by boxes. For every
vertex v œ V , the set of successors of v by E is denoted by E(v) = {vÕ œ V | (v, vÕ) œ E}.
Without loss of generality, we assume that every graph is deadlock-free, i.e., for all vertices v,
E(v) ”= ÿ. Finally, throughout this article, we let W = max(v,vÕ)œE |Ê(v, vÕ)| be the greatest
edge weight (in absolute value) in the game graph. A finite play is a finite sequence of vertices
fi = v0v1 · · · vk such that for all 0 6 i < k, (vi, vi+1) œ E. A play is an infinite sequence of
vertices fi = v0v1 · · · such that every finite prefix v0 · · · vk, denoted by fi[k], is a finite play.

The total-payo� of a finite play fi = v0v1 · · · vk is obtained by summing up the weights
along fi, i.e., TP(fi) =

qk≠1
i=0 Ê(vi, vi+1). In the following, we sometimes rely on the mean-

payo� to obtain information about total-payo� objectives. The mean-payo� computes the
average weight of fi, i.e., if k > 1, MP(fi) = 1

k

qk≠1
i=0 Ê(vi, vi+1), and MP(fi) = 0 when

k = 0. These definitions are lifted to infinite plays as follows. The total-payo� of a play fi is
given by TP(fi) = lim infkæŒ TP(fi[k]).2 Similarly, the mean-payo� of a play fi is given by
MP(fi) = lim infkæŒ MP(fi[k]). A weighted graph equipped with these payo�s is called a
total-payo� game or a mean-payo� game, respectively.

A strategy for Max (respectively, Min) in a game G = ÈV, E, Ê, PÍ (with P one of the
previous payo�s), is a mapping ‡ : V úV

Max

æ V (respectively, ‡ : V úV
Min

æ V ) such that for
all sequences fi = v0 · · · vk with vk œ V

Max

(respectively, vk œ V
Min

), (vk, ‡(fi)) œ E. A play
or finite play fi = v0v1 · · · conforms to a strategy ‡ of Max (respectively, Min) if for all k

such that vk œ V
Max

(respectively, vk œ V
Min

), vk+1 = ‡(fi[k]). A strategy ‡ is memoryless

1 An example of practical application would be to perform controller synthesis taking into account energy
consumption. On the other hand, the problem of computing the values in certain classes of priced timed
games has recently been reduced to computing the values in min-cost reachability games [3].

2 Our results can easily be extended by substituting a lim sup for the lim inf. The lim inf is more natural
since we adopt the point of view of the maximiser Max, hence the lim inf is the worst partial sum seen
infinitely often.
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Known results: 
• Gimbert & Zielonka 2004: optimal memoryless 
strategies always exist for both players

• Gawlitza & Seidl 2009: UP∩co-UP, best known 
algorithm runs in exponential time (policy iteration) 

• No value iteration scheme known to work… 
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Figure 1 (a) A total-payo� game, and (b) the evolution of the partial sums in fi.

of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own

T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege 3

v4v3 v5v2v1
≠2 ≠1

2 12

≠1 ≠1(a)
TP(fi) = 2

0

1

2

3
TP(fi[k])

k
0 1 2 3 4 5 6 7 8 9 10

(b)

Figure 1 (a) A total-payo� game, and (b) the evolution of the partial sums in fi.

of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
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computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.
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target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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in NP fl co-NP. Mean-payo� games have arguably been best studied from the algorithmic
point of view. A landmark is Zwick and Paterson’s pseudo-polynomial time (i.e., polynomial
in the weighted graph when weights are encoded in unary) algorithm [17], using the value
iteration paradigm that consists in computing a sequence of vectors of values that converges
towards the optimal values of the vertices. After a fixed, pseudo-polynomial, number of steps,
the computed values are precise enough to deduce the actual values of all vertices. Better
pseudo-polynomial time algorithms have later been proposed, e.g., in [1, 4, 6], also achieving
sub-exponential expected running time by means of randomisation.

In this paper, we focus on total-payo� games. Given an infinite play fi, we denote
by fi[k] the prefix of fi of length k, and by TP(fi[k]) the (finite) sum of all edge weights
along this prefix. The total-payo� of fi, TP(fi), is the inferior limit of all those sums, i.e.,
TP(fi) = lim infkæŒ TP(fi[k]). Compared to mean-payo� (and discounted-payo�) games,
the literature on total-payo� games is less extensive. Gimbert and Zielonka have shown [10]
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and a probabilistic variant of total-payo� games, where the weights are restricted to be
non-negative [5]. Yet, we argue that the total-payo� objective is interesting as a refinement
of the mean-payo�. Indeed, recall first that the total-payo� is finite if and only if the
mean-payo� is null. Then, the computation of the total-payo� enables a finer, two-stage
analysis of a game G: (i) compute the mean payo� MP(G); (ii) subtract MP(G) from all
edge weights, and scale the resulting weights if necessary to obtain integers. At that point,
one has obtained a new game GÕ with null mean-payo�; (iii) compute TP(GÕ) to quantify
the amount of fluctuation around the mean-payo� of the original game. Unfortunately, so
far, no e�cient (i.e., pseudo-polynomial time) algorithms for total-payo� games have been
proposed, and straightforward adaptations of Zwick and Paterson’s value iteration algorithm
for mean-payo� do not work, as we demonstrate at the end of Section 2. In the present
article, we fill in this gap by introducing the first pseudo-polynomial time algorithm for
computing the values in total-payo� games.

Our solution is a non-trivial value iteration algorithm that proceeds through nested fixed
points (see Algorithm 2). A play of a total-payo� game is infinite by essence. We transform
the game so that one of the players (the minimiser) must ensure a reachability objective: we
assume that the game ends once this reachability objective has been met. The intuition
behind this transformation, that stems from the use of an inferior limit in the definition of the
total-payo�, is as follows: in any play fi whose total-payo� is finite, there is a position ¸ in the
play after which all the partial sums TP(fi[i]) (with i > ¸) will be larger than or equal to the
total-payo� TP(fi) of fi, and infinitely often both will be equal. For example, consider the
game depicted in Figure 1(a), where the maximiser player (henceforth called Max) plays with
the round vertices and the minimiser (Min) with the square vertices. For both players, the
optimal value when playing from v1 is 2, and the play fi = v1v2v3 v4v5 v4v3 (v4v5)Ê reaches
this value (i.e., TP(fi) = 2). Moreover, for all k > 7: TP(fi[k]) > TP(fi), and infinitely
many prefixes (fi[8], fi[10], fi[12], . . .) have a total-payo� of 2, as shown in Figure 1(b).

Based on this observation, we transform a total-payo� game G, into a new game that has
the same value as the original total-payo� game but incorporates a reachability objective
for Min. Intuitively, in this new game, we allow a new action for Min: after each play prefix
fi[k], he can ask to stop the game, in which case the payo� of the play is the payo� TP(fi[k])
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potential theoretical and practical applications1. Those games are discussed in Section 3.
In addition to the pseudo-polynomial time algorithm to compute the values, we show how
to compute optimal strategies for both players and characterise them: there is always a
memoryless strategy for the maximiser player, but we exhibit an example (see Figure 2(a))
where the minimiser player needs (finite) memory. Those results on min-cost reachability
games are exploited in Section 4 where we introduce and prove correct our e�cient algorithm
for total-payo� games.

Finally, we briefly present our implementation in Section 5, using as a core the numerical
model-checker PRISM. This allows us to describe some heuristics able to improve the practical
performances of our algorithms for total-payo� games and min-cost reachability games on
certain subclasses of graphs. More technical explanations and full proofs may be found in an
extended version of this article [2].

2 Quantitative games with arbitrary weights

We denote by Z the set of integers, and ZŒ = Z fi {≠Œ, +Œ}. The set of vectors indexed
by V with values in S is denoted by SV . We let 4 be the pointwise order over ZV
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In addition to the pseudo-polynomial time algorithm to compute the values, we show how
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where the minimiser player needs (finite) memory. Those results on min-cost reachability
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model-checker PRISM. This allows us to describe some heuristics able to improve the practical
performances of our algorithms for total-payo� games and min-cost reachability games on
certain subclasses of graphs. More technical explanations and full proofs may be found in an
extended version of this article [2].

2 Quantitative games with arbitrary weights

We denote by Z the set of integers, and ZŒ = Z fi {≠Œ, +Œ}. The set of vectors indexed
by V with values in S is denoted by SV . We let 4 be the pointwise order over ZV

Œ, where
x 4 y if and only if x(v) 6 y(v) for all v œ V .

We consider two-player turn-based games on weighted graphs and denote the two players
by Max and Min. A weighted graph is a tuple ÈV, E, ÊÍ where V = V

Max

‡V
Min

is a finite set of
vertices partitioned into the sets V

Max

and V
Min

of Max and Min respectively, E ™ V ◊ V is a
set of directed edges, Ê : E æ Z is the weight function, associating an integer weight with each
edge. In our drawings, Max vertices are depicted by circles; Min vertices by boxes. For every
vertex v œ V , the set of successors of v by E is denoted by E(v) = {vÕ œ V | (v, vÕ) œ E}.
Without loss of generality, we assume that every graph is deadlock-free, i.e., for all vertices v,
E(v) ”= ÿ. Finally, throughout this article, we let W = max(v,vÕ)œE |Ê(v, vÕ)| be the greatest
edge weight (in absolute value) in the game graph. A finite play is a finite sequence of vertices
fi = v0v1 · · · vk such that for all 0 6 i < k, (vi, vi+1) œ E. A play is an infinite sequence of
vertices fi = v0v1 · · · such that every finite prefix v0 · · · vk, denoted by fi[k], is a finite play.

The total-payo� of a finite play fi = v0v1 · · · vk is obtained by summing up the weights
along fi, i.e., TP(fi) =

qk≠1
i=0 Ê(vi, vi+1). In the following, we sometimes rely on the mean-

payo� to obtain information about total-payo� objectives. The mean-payo� computes the
average weight of fi, i.e., if k > 1, MP(fi) = 1

k

qk≠1
i=0 Ê(vi, vi+1), and MP(fi) = 0 when

k = 0. These definitions are lifted to infinite plays as follows. The total-payo� of a play fi is
given by TP(fi) = lim infkæŒ TP(fi[k]).2 Similarly, the mean-payo� of a play fi is given by
MP(fi) = lim infkæŒ MP(fi[k]). A weighted graph equipped with these payo�s is called a
total-payo� game or a mean-payo� game, respectively.

A strategy for Max (respectively, Min) in a game G = ÈV, E, Ê, PÍ (with P one of the
previous payo�s), is a mapping ‡ : V úV

Max

æ V (respectively, ‡ : V úV
Min

æ V ) such that for
all sequences fi = v0 · · · vk with vk œ V

Max

(respectively, vk œ V
Min

), (vk, ‡(fi)) œ E. A play
or finite play fi = v0v1 · · · conforms to a strategy ‡ of Max (respectively, Min) if for all k

such that vk œ V
Max

(respectively, vk œ V
Min

), vk+1 = ‡(fi[k]). A strategy ‡ is memoryless

1 An example of practical application would be to perform controller synthesis taking into account energy
consumption. On the other hand, the problem of computing the values in certain classes of priced timed
games has recently been reduced to computing the values in min-cost reachability games [3].

2 Our results can easily be extended by substituting a lim sup for the lim inf. The lim inf is more natural
since we adopt the point of view of the maximiser Max, hence the lim inf is the worst partial sum seen
infinitely often.

Known results: 
• Gimbert & Zielonka 2004: optimal memoryless 
strategies always exist for both players

• Gawlitza & Seidl 2009: UP∩co-UP, best known 
algorithm runs in exponential time (policy iteration) 

• No value iteration scheme known to work… 

Our contribution:
• First pseudo-polynomial time algorithm for total-
payoff games + heuristics

• Requires the study of a variant with reachability
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Figure 1 (a) A total-payo� game, and (b) the evolution of the partial sums in fi.

of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own

T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege 3

v4v3 v5v2v1
≠2 ≠1

2 12

≠1 ≠1(a)
TP(fi) = 2

0

1

2

3
TP(fi[k])

k
0 1 2 3 4 5 6 7 8 9 10

(b)

Figure 1 (a) A total-payo� game, and (b) the evolution of the partial sums in fi.

of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payo� game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after fi[2], which is strictly smaller
that the actual total-payo� (2) of the whole play fi. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is su�cient: trying to obtain a better
payo� than the optimal, Min could request to stop after fi[0], fi[2] and fi[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payo� of all prefixes fi[k] with k > 6 are larger than or equal to TP(fi) = 2. Our
key technical contribution is to show that for all total-payo� games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +Œ and ≠Œ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we e�ectively reduce the
computation of the values in the total-payo� game G to the computation of the values in the
total-payo� game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payo� games—where Min must reach a designated
target vertex—will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payo� of all plays that do not reach the target is +Œ,
irrespective of the weights along the play. Otherwise, the payo� of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP fl co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payo� games. However,
because of this peculiar context of mean-payo� games, their definition of the length of a
path di�ers from our definition of the payo� and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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"
, and the vector (1, ≠1, 0) is indeed a fixed point of F .

However, it is neither the greatest nor the smallest fixed point of F , since if x is a fixed
point of F , then x + (a, a, a) is also a fixed point, for all constant a œ Z. If we try to initialise
the value iteration algorithm with value (0, 0, 0), which could seem a reasonable choice, the
sequence of computed vectors is: (0, 0, 0), (2, ≠1, 1), (1, 0, 0), (2, ≠1, 1), (1, 0, 0), . . . that is
not stationary, and does not even contain (1, ≠1, 0). Thus, it seems di�cult to compute the
actual game values with an iterative algorithm relying on the F operator, as in the case
of mean-payo� games.3 Notice that, in the previous example, the Zwick and Paterson’s
algorithm [17] to solve mean-payo� games would easily conclude from the sequence above,
since the vectors of interest are then the one divided by the length of the current sequence,
i.e., (0, 0, 0), (1, ≠0.5, 0.5), (0.33, 0, 0), (0.5, ≠0.25, 0.25), (0.2, 0, 0), . . . indeed converging
towards (0, 0, 0), the mean-payo� values of this game.

Instead, as explained in the introduction, we propose a di�erent approach that consists
in reducing total-payo� games to min-cost reachability games where Min must enforce a
reachability objective on top of his optimisation objective. The aim of the next section is to
study these games, and we reduce total-payo� games to them in Section 4.

3 Min-cost reachability games

In this section, we consider min-cost reachability games (MCR games for short), a variant of
total-payo� games where one player has a reachability objective that he must fulfil first, before
optimising his quantitative objective. Without loss of generality, we assign the reachability
objective to player Min, as this will make our reduction from total-payo� games easier to
explain. Hence, when the target is not reached along a path, its payo� shall be the worst
possible for Min, i.e., +Œ. Formally, an MCR game is played on a weighted graph ÈV, E, ÊÍ
equipped with a target set of vertices T ™ V . The payo� T -MCR(fi) of a play fi = v0v1 . . .

is given by T -MCR(fi) = +Œ if the play avoids T , i.e., if for all k > 0, vk /œ T , and
T -MCR(fi) = TP(fi[k]) if k is the least position in fi such that vk œ T . Lower and upper
values are then defined as in Section 2. By an indirect consequence of Martin’s theorem [12],
we can show that MCR games are also determined. Optimal strategies may however not
exist, as we will see later.

As an example, consider the MCR game played on the weighted graph of Figure 2(a),
where W is a positive integer and v3 is the target. We claim that the values of vertices v1 and
v2 are both ≠W . Indeed, consider the following strategy for Min: during each of the first W

visits to v2 (if any), go to v1; else, go to v3. Clearly, this strategy ensures that the target will
eventually be reached, and that either (i) edge (v1, v3) (with weight ≠W ) will eventually be
traversed; or (ii) edge (v1, v2) (with weight ≠1) will be traversed at least W times. Hence,

3 In the context of stochastic models like Markov decision processes, Strauch [14] already noticed that in
the presence of arbitrary weights, the value iteration algorithm does not necessarily converge towards
the accurate value: see [13, Ex. 7.3.3] for a detailed explanation.
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in reducing total-payo� games to min-cost reachability games where Min must enforce a
reachability objective on top of his optimisation objective. The aim of the next section is to
study these games, and we reduce total-payo� games to them in Section 4.

3 Min-cost reachability games

In this section, we consider min-cost reachability games (MCR games for short), a variant of
total-payo� games where one player has a reachability objective that he must fulfil first, before
optimising his quantitative objective. Without loss of generality, we assign the reachability
objective to player Min, as this will make our reduction from total-payo� games easier to
explain. Hence, when the target is not reached along a path, its payo� shall be the worst
possible for Min, i.e., +Œ. Formally, an MCR game is played on a weighted graph ÈV, E, ÊÍ
equipped with a target set of vertices T ™ V . The payo� T -MCR(fi) of a play fi = v0v1 . . .

is given by T -MCR(fi) = +Œ if the play avoids T , i.e., if for all k > 0, vk /œ T , and
T -MCR(fi) = TP(fi[k]) if k is the least position in fi such that vk œ T . Lower and upper
values are then defined as in Section 2. By an indirect consequence of Martin’s theorem [12],
we can show that MCR games are also determined. Optimal strategies may however not
exist, as we will see later.

As an example, consider the MCR game played on the weighted graph of Figure 2(a),
where W is a positive integer and v3 is the target. We claim that the values of vertices v1 and
v2 are both ≠W . Indeed, consider the following strategy for Min: during each of the first W

visits to v2 (if any), go to v1; else, go to v3. Clearly, this strategy ensures that the target will
eventually be reached, and that either (i) edge (v1, v3) (with weight ≠W ) will eventually be
traversed; or (ii) edge (v1, v2) (with weight ≠1) will be traversed at least W times. Hence,

3 In the context of stochastic models like Markov decision processes, Strauch [14] already noticed that in
the presence of arbitrary weights, the value iteration algorithm does not necessarily converge towards
the accurate value: see [13, Ex. 7.3.3] for a detailed explanation.
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, and the vector (1, ≠1, 0) is indeed a fixed point of F .

However, it is neither the greatest nor the smallest fixed point of F , since if x is a fixed
point of F , then x + (a, a, a) is also a fixed point, for all constant a œ Z. If we try to initialise
the value iteration algorithm with value (0, 0, 0), which could seem a reasonable choice, the
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not stationary, and does not even contain (1, ≠1, 0). Thus, it seems di�cult to compute the
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since the vectors of interest are then the one divided by the length of the current sequence,
i.e., (0, 0, 0), (1, ≠0.5, 0.5), (0.33, 0, 0), (0.5, ≠0.25, 0.25), (0.2, 0, 0), . . . indeed converging
towards (0, 0, 0), the mean-payo� values of this game.

Instead, as explained in the introduction, we propose a di�erent approach that consists
in reducing total-payo� games to min-cost reachability games where Min must enforce a
reachability objective on top of his optimisation objective. The aim of the next section is to
study these games, and we reduce total-payo� games to them in Section 4.
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➡ Polynomial time

• Case non-negative weights: Dijsktra’s algorithm adapted by 
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➡ Polynomial time
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➡ Attractor computation: polynomial time

• Detecting vertices with value –∞
➡ Equivalent to checking if the value of a mean-payoff game is 

negative: decidable in NP∩co-NP, pseudo-polynomial time

• Computing finite values
➡ Value iteration running in pseudo-polynomial time

• Computing optimal strategies when all values are finite
➡ May be done simultaneously, with same complexity
➡ Maximiser: memoryless optimal strategy
➡ Minimiser: finite memory suffices, and may be required
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, and the vector (1, ≠1, 0) is indeed a fixed point of F .

However, it is neither the greatest nor the smallest fixed point of F , since if x is a fixed
point of F , then x + (a, a, a) is also a fixed point, for all constant a œ Z. If we try to initialise
the value iteration algorithm with value (0, 0, 0), which could seem a reasonable choice, the
sequence of computed vectors is: (0, 0, 0), (2, ≠1, 1), (1, 0, 0), (2, ≠1, 1), (1, 0, 0), . . . that is
not stationary, and does not even contain (1, ≠1, 0). Thus, it seems di�cult to compute the
actual game values with an iterative algorithm relying on the F operator, as in the case
of mean-payo� games.3 Notice that, in the previous example, the Zwick and Paterson’s
algorithm [17] to solve mean-payo� games would easily conclude from the sequence above,
since the vectors of interest are then the one divided by the length of the current sequence,
i.e., (0, 0, 0), (1, ≠0.5, 0.5), (0.33, 0, 0), (0.5, ≠0.25, 0.25), (0.2, 0, 0), . . . indeed converging
towards (0, 0, 0), the mean-payo� values of this game.

Instead, as explained in the introduction, we propose a di�erent approach that consists
in reducing total-payo� games to min-cost reachability games where Min must enforce a
reachability objective on top of his optimisation objective. The aim of the next section is to
study these games, and we reduce total-payo� games to them in Section 4.

3 Min-cost reachability games

In this section, we consider min-cost reachability games (MCR games for short), a variant of
total-payo� games where one player has a reachability objective that he must fulfil first, before
optimising his quantitative objective. Without loss of generality, we assign the reachability
objective to player Min, as this will make our reduction from total-payo� games easier to
explain. Hence, when the target is not reached along a path, its payo� shall be the worst
possible for Min, i.e., +Œ. Formally, an MCR game is played on a weighted graph ÈV, E, ÊÍ
equipped with a target set of vertices T ™ V . The payo� T -MCR(fi) of a play fi = v0v1 . . .

is given by T -MCR(fi) = +Œ if the play avoids T , i.e., if for all k > 0, vk /œ T , and
T -MCR(fi) = TP(fi[k]) if k is the least position in fi such that vk œ T . Lower and upper
values are then defined as in Section 2. By an indirect consequence of Martin’s theorem [12],
we can show that MCR games are also determined. Optimal strategies may however not
exist, as we will see later.

As an example, consider the MCR game played on the weighted graph of Figure 2(a),
where W is a positive integer and v3 is the target. We claim that the values of vertices v1 and
v2 are both ≠W . Indeed, consider the following strategy for Min: during each of the first W

visits to v2 (if any), go to v1; else, go to v3. Clearly, this strategy ensures that the target will
eventually be reached, and that either (i) edge (v1, v3) (with weight ≠W ) will eventually be
traversed; or (ii) edge (v1, v2) (with weight ≠1) will be traversed at least W times. Hence,

3 In the context of stochastic models like Markov decision processes, Strauch [14] already noticed that in
the presence of arbitrary weights, the value iteration algorithm does not necessarily converge towards
the accurate value: see [13, Ex. 7.3.3] for a detailed explanation.
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reachability objective on top of his optimisation objective. The aim of the next section is to
study these games, and we reduce total-payo� games to them in Section 4.

3 Min-cost reachability games

In this section, we consider min-cost reachability games (MCR games for short), a variant of
total-payo� games where one player has a reachability objective that he must fulfil first, before
optimising his quantitative objective. Without loss of generality, we assign the reachability
objective to player Min, as this will make our reduction from total-payo� games easier to
explain. Hence, when the target is not reached along a path, its payo� shall be the worst
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is given by T -MCR(fi) = +Œ if the play avoids T , i.e., if for all k > 0, vk /œ T , and
T -MCR(fi) = TP(fi[k]) if k is the least position in fi such that vk œ T . Lower and upper
values are then defined as in Section 2. By an indirect consequence of Martin’s theorem [12],
we can show that MCR games are also determined. Optimal strategies may however not
exist, as we will see later.

As an example, consider the MCR game played on the weighted graph of Figure 2(a),
where W is a positive integer and v3 is the target. We claim that the values of vertices v1 and
v2 are both ≠W . Indeed, consider the following strategy for Min: during each of the first W

visits to v2 (if any), go to v1; else, go to v3. Clearly, this strategy ensures that the target will
eventually be reached, and that either (i) edge (v1, v3) (with weight ≠W ) will eventually be
traversed; or (ii) edge (v1, v2) (with weight ≠1) will be traversed at least W times. Hence,

3 In the context of stochastic models like Markov decision processes, Strauch [14] already noticed that in
the presence of arbitrary weights, the value iteration algorithm does not necessarily converge towards
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As an example, consider the MCR game played on the weighted graph of Figure 2(a),
where W is a positive integer and v3 is the target. We claim that the values of vertices v1 and
v2 are both ≠W . Indeed, consider the following strategy for Min: during each of the first W

visits to v2 (if any), go to v1; else, go to v3. Clearly, this strategy ensures that the target will
eventually be reached, and that either (i) edge (v1, v3) (with weight ≠W ) will eventually be
traversed; or (ii) edge (v1, v2) (with weight ≠1) will be traversed at least W times. Hence,

3 In the context of stochastic models like Markov decision processes, Strauch [14] already noticed that in
the presence of arbitrary weights, the value iteration algorithm does not necessarily converge towards
the accurate value: see [13, Ex. 7.3.3] for a detailed explanation.
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, and the vector (1, ≠1, 0) is indeed a fixed point of F .

However, it is neither the greatest nor the smallest fixed point of F , since if x is a fixed
point of F , then x + (a, a, a) is also a fixed point, for all constant a œ Z. If we try to initialise
the value iteration algorithm with value (0, 0, 0), which could seem a reasonable choice, the
sequence of computed vectors is: (0, 0, 0), (2, ≠1, 1), (1, 0, 0), (2, ≠1, 1), (1, 0, 0), . . . that is
not stationary, and does not even contain (1, ≠1, 0). Thus, it seems di�cult to compute the
actual game values with an iterative algorithm relying on the F operator, as in the case
of mean-payo� games.3 Notice that, in the previous example, the Zwick and Paterson’s
algorithm [17] to solve mean-payo� games would easily conclude from the sequence above,
since the vectors of interest are then the one divided by the length of the current sequence,
i.e., (0, 0, 0), (1, ≠0.5, 0.5), (0.33, 0, 0), (0.5, ≠0.25, 0.25), (0.2, 0, 0), . . . indeed converging
towards (0, 0, 0), the mean-payo� values of this game.

Instead, as explained in the introduction, we propose a di�erent approach that consists
in reducing total-payo� games to min-cost reachability games where Min must enforce a
reachability objective on top of his optimisation objective. The aim of the next section is to
study these games, and we reduce total-payo� games to them in Section 4.

3 Min-cost reachability games

In this section, we consider min-cost reachability games (MCR games for short), a variant of
total-payo� games where one player has a reachability objective that he must fulfil first, before
optimising his quantitative objective. Without loss of generality, we assign the reachability
objective to player Min, as this will make our reduction from total-payo� games easier to
explain. Hence, when the target is not reached along a path, its payo� shall be the worst
possible for Min, i.e., +Œ. Formally, an MCR game is played on a weighted graph ÈV, E, ÊÍ
equipped with a target set of vertices T ™ V . The payo� T -MCR(fi) of a play fi = v0v1 . . .

is given by T -MCR(fi) = +Œ if the play avoids T , i.e., if for all k > 0, vk /œ T , and
T -MCR(fi) = TP(fi[k]) if k is the least position in fi such that vk œ T . Lower and upper
values are then defined as in Section 2. By an indirect consequence of Martin’s theorem [12],
we can show that MCR games are also determined. Optimal strategies may however not
exist, as we will see later.

As an example, consider the MCR game played on the weighted graph of Figure 2(a),
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v2 are both ≠W . Indeed, consider the following strategy for Min: during each of the first W

visits to v2 (if any), go to v1; else, go to v3. Clearly, this strategy ensures that the target will
eventually be reached, and that either (i) edge (v1, v3) (with weight ≠W ) will eventually be
traversed; or (ii) edge (v1, v2) (with weight ≠1) will be traversed at least W times. Hence,

3 In the context of stochastic models like Markov decision processes, Strauch [14] already noticed that in
the presence of arbitrary weights, the value iteration algorithm does not necessarily converge towards
the accurate value: see [13, Ex. 7.3.3] for a detailed explanation.
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visits to v2 (if any), go to v1; else, go to v3. Clearly, this strategy ensures that the target will
eventually be reached, and that either (i) edge (v1, v3) (with weight ≠W ) will eventually be
traversed; or (ii) edge (v1, v2) (with weight ≠1) will be traversed at least W times. Hence,

3 In the context of stochastic models like Markov decision processes, Strauch [14] already noticed that in
the presence of arbitrary weights, the value iteration algorithm does not necessarily converge towards
the accurate value: see [13, Ex. 7.3.3] for a detailed explanation.

Minimiser
Maximiser

+∞ +∞ 0

+∞ 0 0

–1 0 0

–1 –1 0

what may both players 
achieve in 1 step



Value iteration on an example

10

6 To Reach or not to Reach? E�cient Algorithms for Total-Payo� Games

v1 v2 v3

≠W

≠1

0
0 0(a) v1 v2 v3

≠W

1

W 0(b)

Figure 2 Two weighted graphs

!
2 + x4, max(≠2 + x3, ≠1 + x5), 1 + x4

"
, and the vector (1, ≠1, 0) is indeed a fixed point of F .

However, it is neither the greatest nor the smallest fixed point of F , since if x is a fixed
point of F , then x + (a, a, a) is also a fixed point, for all constant a œ Z. If we try to initialise
the value iteration algorithm with value (0, 0, 0), which could seem a reasonable choice, the
sequence of computed vectors is: (0, 0, 0), (2, ≠1, 1), (1, 0, 0), (2, ≠1, 1), (1, 0, 0), . . . that is
not stationary, and does not even contain (1, ≠1, 0). Thus, it seems di�cult to compute the
actual game values with an iterative algorithm relying on the F operator, as in the case
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reachability objective on top of his optimisation objective. The aim of the next section is to
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T -MCR(fi) = TP(fi[k]) if k is the least position in fi such that vk œ T . Lower and upper
values are then defined as in Section 2. By an indirect consequence of Martin’s theorem [12],
we can show that MCR games are also determined. Optimal strategies may however not
exist, as we will see later.

As an example, consider the MCR game played on the weighted graph of Figure 2(a),
where W is a positive integer and v3 is the target. We claim that the values of vertices v1 and
v2 are both ≠W . Indeed, consider the following strategy for Min: during each of the first W

visits to v2 (if any), go to v1; else, go to v3. Clearly, this strategy ensures that the target will
eventually be reached, and that either (i) edge (v1, v3) (with weight ≠W ) will eventually be
traversed; or (ii) edge (v1, v2) (with weight ≠1) will be traversed at least W times. Hence,

3 In the context of stochastic models like Markov decision processes, Strauch [14] already noticed that in
the presence of arbitrary weights, the value iteration algorithm does not necessarily converge towards
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not stationary, and does not even contain (1, ≠1, 0). Thus, it seems di�cult to compute the
actual game values with an iterative algorithm relying on the F operator, as in the case
of mean-payo� games.3 Notice that, in the previous example, the Zwick and Paterson’s
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Instead, as explained in the introduction, we propose a di�erent approach that consists
in reducing total-payo� games to min-cost reachability games where Min must enforce a
reachability objective on top of his optimisation objective. The aim of the next section is to
study these games, and we reduce total-payo� games to them in Section 4.

3 Min-cost reachability games

In this section, we consider min-cost reachability games (MCR games for short), a variant of
total-payo� games where one player has a reachability objective that he must fulfil first, before
optimising his quantitative objective. Without loss of generality, we assign the reachability
objective to player Min, as this will make our reduction from total-payo� games easier to
explain. Hence, when the target is not reached along a path, its payo� shall be the worst
possible for Min, i.e., +Œ. Formally, an MCR game is played on a weighted graph ÈV, E, ÊÍ
equipped with a target set of vertices T ™ V . The payo� T -MCR(fi) of a play fi = v0v1 . . .

is given by T -MCR(fi) = +Œ if the play avoids T , i.e., if for all k > 0, vk /œ T , and
T -MCR(fi) = TP(fi[k]) if k is the least position in fi such that vk œ T . Lower and upper
values are then defined as in Section 2. By an indirect consequence of Martin’s theorem [12],
we can show that MCR games are also determined. Optimal strategies may however not
exist, as we will see later.

As an example, consider the MCR game played on the weighted graph of Figure 2(a),
where W is a positive integer and v3 is the target. We claim that the values of vertices v1 and
v2 are both ≠W . Indeed, consider the following strategy for Min: during each of the first W

visits to v2 (if any), go to v1; else, go to v3. Clearly, this strategy ensures that the target will
eventually be reached, and that either (i) edge (v1, v3) (with weight ≠W ) will eventually be
traversed; or (ii) edge (v1, v2) (with weight ≠1) will be traversed at least W times. Hence,

3 In the context of stochastic models like Markov decision processes, Strauch [14] already noticed that in
the presence of arbitrary weights, the value iteration algorithm does not necessarily converge towards
the accurate value: see [13, Ex. 7.3.3] for a detailed explanation.
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3 Min-cost reachability games
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total-payo� games where one player has a reachability objective that he must fulfil first, before
optimising his quantitative objective. Without loss of generality, we assign the reachability
objective to player Min, as this will make our reduction from total-payo� games easier to
explain. Hence, when the target is not reached along a path, its payo� shall be the worst
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T -MCR(fi) = TP(fi[k]) if k is the least position in fi such that vk œ T . Lower and upper
values are then defined as in Section 2. By an indirect consequence of Martin’s theorem [12],
we can show that MCR games are also determined. Optimal strategies may however not
exist, as we will see later.
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where W is a positive integer and v3 is the target. We claim that the values of vertices v1 and
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Figure 3 MCR game G3 associated with the total-payo� game of Figure 2(a)

the first (as far as we know) pseudo-polynomial time algorithm for solving those games in
the presence of arbitrary weights, thanks to a reduction from total-payo� games to min-cost
reachability games. The MCR game produced by the reduction has size pseudo-polynomial
in the size of the original total-payo� game. Then, we show how to compute the values of
the total-payo� game without building the entire MCR game, and explain how to deduce
memoryless optimal strategies from the computation of our algorithm.

Reduction to min-cost reachability games. We provide a transformation from a total-
payo� game G = ÈV, E, Ê, TPÍ to a min-cost reachability game GK such that the values of G
can be extracted from the values in GK (as formalised below). Intuitively, GK simulates the
game where players play in G; Min may propose to stop playing and reach a fresh vertex t

acting as the target; Max can then accept, in which case we reach the target, or refuse at most
K times, in which case the game continues. Structurally, GK consists of a sequence of copies
of G along with some new states that we now describe formally. We let t be a fresh vertex,
and, for all n > 1, we define the min-cost reachability game Gn = ÈV n, En, Ên, {t}-MCRÍ
where V n

Max
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"
that have weight Ê(v, vÕ).

For example, considering the weighted graph of Figure 2(a), the corresponding reachability
total-payo� game G3 is depicted in Figure 3 (where weights 0 have been removed). The next
proposition formalises the relationship between the two games.
I Proposition 2. Let K = |V |(2(|V | ≠ 1)W + 1). For all v œ V and k > K,

ValG(v) ”= +Œ if and only if ValG(v) = ValGk ((v, k));
ValG(v) = +Œ if and only if ValGk ((v, k)) > (|V | ≠ 1)W + 1.

The bound K is found by using the fact (informally described in the previous section) that
if not infinite, the value of a min-cost reachability game belongs in [≠(|V |≠1)◊W +1, |V |◊W ],
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"
, and the vector (1, ≠1, 0) is indeed a fixed point of F .

However, it is neither the greatest nor the smallest fixed point of F , since if x is a fixed
point of F , then x + (a, a, a) is also a fixed point, for all constant a œ Z. If we try to initialise
the value iteration algorithm with value (0, 0, 0), which could seem a reasonable choice, the
sequence of computed vectors is: (0, 0, 0), (2, ≠1, 1), (1, 0, 0), (2, ≠1, 1), (1, 0, 0), . . . that is
not stationary, and does not even contain (1, ≠1, 0). Thus, it seems di�cult to compute the
actual game values with an iterative algorithm relying on the F operator, as in the case
of mean-payo� games.3 Notice that, in the previous example, the Zwick and Paterson’s
algorithm [17] to solve mean-payo� games would easily conclude from the sequence above,
since the vectors of interest are then the one divided by the length of the current sequence,
i.e., (0, 0, 0), (1, ≠0.5, 0.5), (0.33, 0, 0), (0.5, ≠0.25, 0.25), (0.2, 0, 0), . . . indeed converging
towards (0, 0, 0), the mean-payo� values of this game.

Instead, as explained in the introduction, we propose a di�erent approach that consists
in reducing total-payo� games to min-cost reachability games where Min must enforce a
reachability objective on top of his optimisation objective. The aim of the next section is to
study these games, and we reduce total-payo� games to them in Section 4.

3 Min-cost reachability games

In this section, we consider min-cost reachability games (MCR games for short), a variant of
total-payo� games where one player has a reachability objective that he must fulfil first, before
optimising his quantitative objective. Without loss of generality, we assign the reachability
objective to player Min, as this will make our reduction from total-payo� games easier to
explain. Hence, when the target is not reached along a path, its payo� shall be the worst
possible for Min, i.e., +Œ. Formally, an MCR game is played on a weighted graph ÈV, E, ÊÍ
equipped with a target set of vertices T ™ V . The payo� T -MCR(fi) of a play fi = v0v1 . . .

is given by T -MCR(fi) = +Œ if the play avoids T , i.e., if for all k > 0, vk /œ T , and
T -MCR(fi) = TP(fi[k]) if k is the least position in fi such that vk œ T . Lower and upper
values are then defined as in Section 2. By an indirect consequence of Martin’s theorem [12],
we can show that MCR games are also determined. Optimal strategies may however not
exist, as we will see later.

As an example, consider the MCR game played on the weighted graph of Figure 2(a),
where W is a positive integer and v3 is the target. We claim that the values of vertices v1 and
v2 are both ≠W . Indeed, consider the following strategy for Min: during each of the first W

visits to v2 (if any), go to v1; else, go to v3. Clearly, this strategy ensures that the target will
eventually be reached, and that either (i) edge (v1, v3) (with weight ≠W ) will eventually be
traversed; or (ii) edge (v1, v2) (with weight ≠1) will be traversed at least W times. Hence,

3 In the context of stochastic models like Markov decision processes, Strauch [14] already noticed that in
the presence of arbitrary weights, the value iteration algorithm does not necessarily converge towards
the accurate value: see [13, Ex. 7.3.3] for a detailed explanation.

Minimiser

Maximiser



From total-payoff to MCR games

• For all K, unfold K times the arena, allowing Minimiser to ask to go to target t
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Figure 3 MCR game G3 associated with the total-payo� game of Figure 2(a)

the first (as far as we know) pseudo-polynomial time algorithm for solving those games in
the presence of arbitrary weights, thanks to a reduction from total-payo� games to min-cost
reachability games. The MCR game produced by the reduction has size pseudo-polynomial
in the size of the original total-payo� game. Then, we show how to compute the values of
the total-payo� game without building the entire MCR game, and explain how to deduce
memoryless optimal strategies from the computation of our algorithm.

Reduction to min-cost reachability games. We provide a transformation from a total-
payo� game G = ÈV, E, Ê, TPÍ to a min-cost reachability game GK such that the values of G
can be extracted from the values in GK (as formalised below). Intuitively, GK simulates the
game where players play in G; Min may propose to stop playing and reach a fresh vertex t

acting as the target; Max can then accept, in which case we reach the target, or refuse at most
K times, in which case the game continues. Structurally, GK consists of a sequence of copies
of G along with some new states that we now describe formally. We let t be a fresh vertex,
and, for all n > 1, we define the min-cost reachability game Gn = ÈV n, En, Ên, {t}-MCRÍ
where V n
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1 6 j 6 n (respectively, interior vertices (in, v, j) for all v œ V and 1 6 j 6 n). Moreover,
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contains the fresh target vertex t. Edges are given by
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that have weight Ê(v, vÕ).

For example, considering the weighted graph of Figure 2(a), the corresponding reachability
total-payo� game G3 is depicted in Figure 3 (where weights 0 have been removed). The next
proposition formalises the relationship between the two games.
I Proposition 2. Let K = |V |(2(|V | ≠ 1)W + 1). For all v œ V and k > K,

ValG(v) ”= +Œ if and only if ValG(v) = ValGk ((v, k));
ValG(v) = +Œ if and only if ValGk ((v, k)) > (|V | ≠ 1)W + 1.

The bound K is found by using the fact (informally described in the previous section) that
if not infinite, the value of a min-cost reachability game belongs in [≠(|V |≠1)◊W +1, |V |◊W ],
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, and the vector (1, ≠1, 0) is indeed a fixed point of F .

However, it is neither the greatest nor the smallest fixed point of F , since if x is a fixed
point of F , then x + (a, a, a) is also a fixed point, for all constant a œ Z. If we try to initialise
the value iteration algorithm with value (0, 0, 0), which could seem a reasonable choice, the
sequence of computed vectors is: (0, 0, 0), (2, ≠1, 1), (1, 0, 0), (2, ≠1, 1), (1, 0, 0), . . . that is
not stationary, and does not even contain (1, ≠1, 0). Thus, it seems di�cult to compute the
actual game values with an iterative algorithm relying on the F operator, as in the case
of mean-payo� games.3 Notice that, in the previous example, the Zwick and Paterson’s
algorithm [17] to solve mean-payo� games would easily conclude from the sequence above,
since the vectors of interest are then the one divided by the length of the current sequence,
i.e., (0, 0, 0), (1, ≠0.5, 0.5), (0.33, 0, 0), (0.5, ≠0.25, 0.25), (0.2, 0, 0), . . . indeed converging
towards (0, 0, 0), the mean-payo� values of this game.

Instead, as explained in the introduction, we propose a di�erent approach that consists
in reducing total-payo� games to min-cost reachability games where Min must enforce a
reachability objective on top of his optimisation objective. The aim of the next section is to
study these games, and we reduce total-payo� games to them in Section 4.

3 Min-cost reachability games

In this section, we consider min-cost reachability games (MCR games for short), a variant of
total-payo� games where one player has a reachability objective that he must fulfil first, before
optimising his quantitative objective. Without loss of generality, we assign the reachability
objective to player Min, as this will make our reduction from total-payo� games easier to
explain. Hence, when the target is not reached along a path, its payo� shall be the worst
possible for Min, i.e., +Œ. Formally, an MCR game is played on a weighted graph ÈV, E, ÊÍ
equipped with a target set of vertices T ™ V . The payo� T -MCR(fi) of a play fi = v0v1 . . .

is given by T -MCR(fi) = +Œ if the play avoids T , i.e., if for all k > 0, vk /œ T , and
T -MCR(fi) = TP(fi[k]) if k is the least position in fi such that vk œ T . Lower and upper
values are then defined as in Section 2. By an indirect consequence of Martin’s theorem [12],
we can show that MCR games are also determined. Optimal strategies may however not
exist, as we will see later.

As an example, consider the MCR game played on the weighted graph of Figure 2(a),
where W is a positive integer and v3 is the target. We claim that the values of vertices v1 and
v2 are both ≠W . Indeed, consider the following strategy for Min: during each of the first W

visits to v2 (if any), go to v1; else, go to v3. Clearly, this strategy ensures that the target will
eventually be reached, and that either (i) edge (v1, v3) (with weight ≠W ) will eventually be
traversed; or (ii) edge (v1, v2) (with weight ≠1) will be traversed at least W times. Hence,

3 In the context of stochastic models like Markov decision processes, Strauch [14] already noticed that in
the presence of arbitrary weights, the value iteration algorithm does not necessarily converge towards
the accurate value: see [13, Ex. 7.3.3] for a detailed explanation.

Minimiser

Maximiser

Proposition: For K = O(|V| W), if values of G are not +∞, 
then they are equal to the values of the MCR game GK.

Key argument: the value of an MCR game is necessarily in interval [–(|V|–1) W+1, |V| W]

➡Pseudo-polynomial time algorithm: build GK and compute its values
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the first (as far as we know) pseudo-polynomial time algorithm for solving those games in
the presence of arbitrary weights, thanks to a reduction from total-payo� games to min-cost
reachability games. The MCR game produced by the reduction has size pseudo-polynomial
in the size of the original total-payo� game. Then, we show how to compute the values of
the total-payo� game without building the entire MCR game, and explain how to deduce
memoryless optimal strategies from the computation of our algorithm.

Reduction to min-cost reachability games. We provide a transformation from a total-
payo� game G = ÈV, E, Ê, TPÍ to a min-cost reachability game GK such that the values of G
can be extracted from the values in GK (as formalised below). Intuitively, GK simulates the
game where players play in G; Min may propose to stop playing and reach a fresh vertex t

acting as the target; Max can then accept, in which case we reach the target, or refuse at most
K times, in which case the game continues. Structurally, GK consists of a sequence of copies
of G along with some new states that we now describe formally. We let t be a fresh vertex,
and, for all n > 1, we define the min-cost reachability game Gn = ÈV n, En, Ên, {t}-MCRÍ
where V n

Max

(respectively, V n
Min

) consists of n copies (v, j), with 1 6 j 6 n, of each vertex
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Max

(respectively, v œ V
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) and some exterior vertices (ex, v, j) for all v œ V and
1 6 j 6 n (respectively, interior vertices (in, v, j) for all v œ V and 1 6 j 6 n). Moreover,
V n

Max

contains the fresh target vertex t. Edges are given by

En = {(t, t)} ‡ )!
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All edge weights are zero, except edges
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"
that have weight Ê(v, vÕ).

For example, considering the weighted graph of Figure 2(a), the corresponding reachability
total-payo� game G3 is depicted in Figure 3 (where weights 0 have been removed). The next
proposition formalises the relationship between the two games.
I Proposition 2. Let K = |V |(2(|V | ≠ 1)W + 1). For all v œ V and k > K,

ValG(v) ”= +Œ if and only if ValG(v) = ValGk ((v, k));
ValG(v) = +Œ if and only if ValGk ((v, k)) > (|V | ≠ 1)W + 1.

The bound K is found by using the fact (informally described in the previous section) that
if not infinite, the value of a min-cost reachability game belongs in [≠(|V |≠1)◊W +1, |V |◊W ],



How not to build GK?…
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the first (as far as we know) pseudo-polynomial time algorithm for solving those games in
the presence of arbitrary weights, thanks to a reduction from total-payo� games to min-cost
reachability games. The MCR game produced by the reduction has size pseudo-polynomial
in the size of the original total-payo� game. Then, we show how to compute the values of
the total-payo� game without building the entire MCR game, and explain how to deduce
memoryless optimal strategies from the computation of our algorithm.

Reduction to min-cost reachability games. We provide a transformation from a total-
payo� game G = ÈV, E, Ê, TPÍ to a min-cost reachability game GK such that the values of G
can be extracted from the values in GK (as formalised below). Intuitively, GK simulates the
game where players play in G; Min may propose to stop playing and reach a fresh vertex t

acting as the target; Max can then accept, in which case we reach the target, or refuse at most
K times, in which case the game continues. Structurally, GK consists of a sequence of copies
of G along with some new states that we now describe formally. We let t be a fresh vertex,
and, for all n > 1, we define the min-cost reachability game Gn = ÈV n, En, Ên, {t}-MCRÍ
where V n
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For example, considering the weighted graph of Figure 2(a), the corresponding reachability
total-payo� game G3 is depicted in Figure 3 (where weights 0 have been removed). The next
proposition formalises the relationship between the two games.
I Proposition 2. Let K = |V |(2(|V | ≠ 1)W + 1). For all v œ V and k > K,

ValG(v) ”= +Œ if and only if ValG(v) = ValGk ((v, k));
ValG(v) = +Œ if and only if ValGk ((v, k)) > (|V | ≠ 1)W + 1.

The bound K is found by using the fact (informally described in the previous section) that
if not infinite, the value of a min-cost reachability game belongs in [≠(|V |≠1)◊W +1, |V |◊W ],
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• Each time, it is the same arena: only the exit values evolve… 
Compute the values of a linear size MCR game (inner loop)
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the first (as far as we know) pseudo-polynomial time algorithm for solving those games in
the presence of arbitrary weights, thanks to a reduction from total-payo� games to min-cost
reachability games. The MCR game produced by the reduction has size pseudo-polynomial
in the size of the original total-payo� game. Then, we show how to compute the values of
the total-payo� game without building the entire MCR game, and explain how to deduce
memoryless optimal strategies from the computation of our algorithm.

Reduction to min-cost reachability games. We provide a transformation from a total-
payo� game G = ÈV, E, Ê, TPÍ to a min-cost reachability game GK such that the values of G
can be extracted from the values in GK (as formalised below). Intuitively, GK simulates the
game where players play in G; Min may propose to stop playing and reach a fresh vertex t

acting as the target; Max can then accept, in which case we reach the target, or refuse at most
K times, in which case the game continues. Structurally, GK consists of a sequence of copies
of G along with some new states that we now describe formally. We let t be a fresh vertex,
and, for all n > 1, we define the min-cost reachability game Gn = ÈV n, En, Ên, {t}-MCRÍ
where V n
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For example, considering the weighted graph of Figure 2(a), the corresponding reachability
total-payo� game G3 is depicted in Figure 3 (where weights 0 have been removed). The next
proposition formalises the relationship between the two games.
I Proposition 2. Let K = |V |(2(|V | ≠ 1)W + 1). For all v œ V and k > K,

ValG(v) ”= +Œ if and only if ValG(v) = ValGk ((v, k));
ValG(v) = +Œ if and only if ValGk ((v, k)) > (|V | ≠ 1)W + 1.

The bound K is found by using the fact (informally described in the previous section) that
if not infinite, the value of a min-cost reachability game belongs in [≠(|V |≠1)◊W +1, |V |◊W ],
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Figure 4 MCR game GY associated with the total-payo� game of Figure 2(a)

and that after enough visits of the same vertex, an adequate loop ensures that Gk verifies
the above properties.

Value iteration algorithm for total-payo� games. By Proposition 2, an immediate way to
obtain a value iteration algorithm for total-payo� games is to build game GK , run Algorithm 1
on it, and map the computed values back to G. We take advantage of the structure of GK

to provide a better algorithm that avoids building GK . We first compute the values of the
vertices in the last copy of the game (vertices of the form (v, 1), (in, v, 1) and (ex, v, 1)), then
of those in the penultimate (vertices of the form (v, 2), (in, v, 2) and (ex, v, 2)), and so on.

We formalise this idea as follows. Let Zj be a vector mapping each vertex v of G to the
value Zj(v) of vertex (v, j) in GK . Then, let us define an operator H such that Zj+1 = H(Zj).
The intuition behind the definition of H(Y ) for some vector Y , is to extract from GK one copy
of the game, and make Y appear in the weights of some edges as illustrated in Figure 4. This
game, GY , simulates a play in G in which Min can opt for ‘leaving the game’ at each round
(by moving to the target), obtaining max(0, Y (v)), if v is the current vertex. Then H(Y )(v)
is defined as the value of v in GY . By construction, it is easy to see that Zj+1 = H(Zj) holds
for all j > 1. Furthermore, we define Z0(v) = ≠Œ for all v, and have Z1 = H(Z0). One can
prove the following properties of H: (i) H is monotonic, but may not be Scott-continuous;
(ii) the sequence (Zj)j>0 converges towards ValG .

We are now ready to introduce Algorithm 2 to solve total-payo� games. Intuitively, the
outer loop computes, in variable Y, a non-decreasing sequence of vectors whose limit is ValG ,
and that is stationary (this is not necessarily the case for the sequence (Zj)j>0). Line 1
initialises Y to Z0. Each iteration of the outer loop amounts to running Algorithm 1 to
compute H(Ypre) (lines 3 to 10), then detecting if some vertices have value +Œ, updating Y

accordingly (line 11, following the second item of Proposition 2). One can show that, for all
j > 0, if we let Y j be the value of Y after the j-th iteration of the main loop, Zj 4 Y j 4 ValG ,
which ensures the correctness of the algorithm.

I Theorem 3. If a total-payo� game G = ÈV, E, Ê, TPÍ is given as input, Algorithm 2
outputs the vector ValG of optimal values, after at most K = |V |(2(|V | ≠ 1)W + 1) iterations
of the external loop. The complexity of the algorithm is O(|V |4|E|W 2).

The number of iterations in each internal loop is controlled by Theorem 1. On the example
of Figure 2(a), only 2 external iterations are necessary, but the number of iterations of each
internal loop would be 2W . By contrast, for the total-payo� game depicted in Figure 2(b),
each internal loop requires 2 iterations to converge, but the external loop takes W iterations
to stabilise. A combination of both examples would experience a pseudo-polynomial number
of iterations to converge in both the internal and external loops, matching the W 2 term of
the above complexity.



How not to build GK?…
• In the value iteration for MCR games, we may compute the value 

from the last copy of the game to the first one (outer loop)

• Each time, it is the same arena: only the exit values evolve… 
Compute the values of a linear size MCR game (inner loop)

• Stop early inner and outer loops…
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Figure 3 MCR game G3 associated with the total-payo� game of Figure 2(a)

the first (as far as we know) pseudo-polynomial time algorithm for solving those games in
the presence of arbitrary weights, thanks to a reduction from total-payo� games to min-cost
reachability games. The MCR game produced by the reduction has size pseudo-polynomial
in the size of the original total-payo� game. Then, we show how to compute the values of
the total-payo� game without building the entire MCR game, and explain how to deduce
memoryless optimal strategies from the computation of our algorithm.

Reduction to min-cost reachability games. We provide a transformation from a total-
payo� game G = ÈV, E, Ê, TPÍ to a min-cost reachability game GK such that the values of G
can be extracted from the values in GK (as formalised below). Intuitively, GK simulates the
game where players play in G; Min may propose to stop playing and reach a fresh vertex t

acting as the target; Max can then accept, in which case we reach the target, or refuse at most
K times, in which case the game continues. Structurally, GK consists of a sequence of copies
of G along with some new states that we now describe formally. We let t be a fresh vertex,
and, for all n > 1, we define the min-cost reachability game Gn = ÈV n, En, Ên, {t}-MCRÍ
where V n

Max

(respectively, V n
Min

) consists of n copies (v, j), with 1 6 j 6 n, of each vertex
v œ V

Max

(respectively, v œ V
Min

) and some exterior vertices (ex, v, j) for all v œ V and
1 6 j 6 n (respectively, interior vertices (in, v, j) for all v œ V and 1 6 j 6 n). Moreover,
V n

Max

contains the fresh target vertex t. Edges are given by

En = {(t, t)} ‡ )!
(v, j), (in, vÕ, j)

" | (v, vÕ) œ E, 1 6 j 6 n
*

‡ )!
(in, v, j), (v, j)

" | v œ V, 1 6 j 6 n
* ‡ )!

(ex, v, j), t

" | v œ V, 1 6 j 6 n
*

‡ )!
(in, v, j), (ex, v, j)

" | v œ V, 1 6 j 6 n
*

‡ )!
(ex, v, j), (v, j ≠ 1)

" | v œ V, 1 < j 6 n
*

.

All edge weights are zero, except edges
!
(v, j), (in, vÕ, j)

"
that have weight Ê(v, vÕ).

For example, considering the weighted graph of Figure 2(a), the corresponding reachability
total-payo� game G3 is depicted in Figure 3 (where weights 0 have been removed). The next
proposition formalises the relationship between the two games.
I Proposition 2. Let K = |V |(2(|V | ≠ 1)W + 1). For all v œ V and k > K,

ValG(v) ”= +Œ if and only if ValG(v) = ValGk ((v, k));
ValG(v) = +Œ if and only if ValGk ((v, k)) > (|V | ≠ 1)W + 1.

The bound K is found by using the fact (informally described in the previous section) that
if not infinite, the value of a min-cost reachability game belongs in [≠(|V |≠1)◊W +1, |V |◊W ],

12 To Reach or not to Reach? E�cient Algorithms for Total-Payo� Games

Algorithm 2: A value iteration algorithm for total-payo� games
Input: Total-payo� game G = ÈV, E, Ê, TPÍ, W largest weight in absolute value

1 foreach v œ V do Y(v) := ≠Œ
2 repeat

3 foreach v œ V do Ypre(v) := Y(v); Y(v) := max(0, Y(v)); X(v) := +Œ
4 repeat

5 Xpre := X

6 foreach v œ V
Max

do X(v) := maxvÕœE(v)
#
Ê(v, vÕ) + min(Xpre(vÕ), Y(vÕ))

$

7 foreach v œ V
Min

do X(v) := minvÕœE(v)
#
Ê(v, vÕ) + min(Xpre(vÕ), Y(vÕ))

$

8 foreach v œ V such that X(v) < ≠(|V | ≠ 1)W do X(v) := ≠Œ
9 until X = Xpre

10 Y := X

11 foreach v œ V such that Y(v) > (|V | ≠ 1)W do Y(v) := +Œ
12 until Y = Ypre

13 return Y

Optimal strategies. In Section 3, we have shown, for any min-cost reachability game, the
existence of a pair of memoryless strategies permitting to reconstruct a switching optimal
strategy for Min (if every vertex has value di�erent from ≠Œ, or a strategy ensuring any
possible threshold for vertices with value ≠Œ). If we apply this construction to the game
G

ValG , we obtain a pair (‡1
Min

, ‡2
Min

) of strategies (remember that ‡2
Min

is a strategy obtained by
the attractor construction, hence it will not be useful for us for total-payo� games). Consider
the strategy ‡

Min

, obtained by projecting ‡1
Min

on V as follows: for all finite plays fi and
vertex v œ V

Min

, let ‡
Min

(fiv) = vÕ if ‡1
Min

(v) = (in, vÕ). We can show that ‡
Min

is optimal for
Min in G. Notice that ‡1

Min

, and hence ‡
Min

, can be computed during the last iteration of
the value iteration algorithm, as explained in the case of min-cost reachability. A similar
construction can be done to compute an optimal strategy of Max.

5 Implementation and heuristics

In this section, we report on a prototype implementation of our algorithms.4 For convenience
reasons, we have implemented them as an add-on to PRISM-games [5], although we could
have chosen to extend another model-checker as we do not rely on the probabilistic features
of PRISM models (i.e., we use the PRISM syntax of stochastic multi-player games, allowing
arbitrary rewards, and forbidding probability distributions di�erent of Dirac ones). We then
use rPATL specifications of the form ÈÈCÍÍRmin / max=?[FŒÏ] and ÈÈCÍÍRmin / max=?[Fc‹] to
model respectively min-cost reachability games and total-payo� games, where C represents
a coalition of players that want to minimise/maximise the payo�, and Ï is another rPATL
formula describing the target set of vertices (for total-payo� games, such a formula is not
necessary). We have tested our implementation on toy examples. On the parametric one
studied after Theorem 3, obtained by mixing the graphs of Figure 2 and repeating them for
n layers, results obtained by applying our algorithm for total-payo� games are summarised in
Table 1, where for each pair (W, n), we give the time t in seconds, the number ke of iterations

4 Source and binary files, as well as some examples, can be downloaded from http://www.ulb.ac.be/di/

verif/monmege/tool/TP-MCR/.
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and that after enough visits of the same vertex, an adequate loop ensures that Gk verifies
the above properties.

Value iteration algorithm for total-payo� games. By Proposition 2, an immediate way to
obtain a value iteration algorithm for total-payo� games is to build game GK , run Algorithm 1
on it, and map the computed values back to G. We take advantage of the structure of GK

to provide a better algorithm that avoids building GK . We first compute the values of the
vertices in the last copy of the game (vertices of the form (v, 1), (in, v, 1) and (ex, v, 1)), then
of those in the penultimate (vertices of the form (v, 2), (in, v, 2) and (ex, v, 2)), and so on.

We formalise this idea as follows. Let Zj be a vector mapping each vertex v of G to the
value Zj(v) of vertex (v, j) in GK . Then, let us define an operator H such that Zj+1 = H(Zj).
The intuition behind the definition of H(Y ) for some vector Y , is to extract from GK one copy
of the game, and make Y appear in the weights of some edges as illustrated in Figure 4. This
game, GY , simulates a play in G in which Min can opt for ‘leaving the game’ at each round
(by moving to the target), obtaining max(0, Y (v)), if v is the current vertex. Then H(Y )(v)
is defined as the value of v in GY . By construction, it is easy to see that Zj+1 = H(Zj) holds
for all j > 1. Furthermore, we define Z0(v) = ≠Œ for all v, and have Z1 = H(Z0). One can
prove the following properties of H: (i) H is monotonic, but may not be Scott-continuous;
(ii) the sequence (Zj)j>0 converges towards ValG .

We are now ready to introduce Algorithm 2 to solve total-payo� games. Intuitively, the
outer loop computes, in variable Y, a non-decreasing sequence of vectors whose limit is ValG ,
and that is stationary (this is not necessarily the case for the sequence (Zj)j>0). Line 1
initialises Y to Z0. Each iteration of the outer loop amounts to running Algorithm 1 to
compute H(Ypre) (lines 3 to 10), then detecting if some vertices have value +Œ, updating Y

accordingly (line 11, following the second item of Proposition 2). One can show that, for all
j > 0, if we let Y j be the value of Y after the j-th iteration of the main loop, Zj 4 Y j 4 ValG ,
which ensures the correctness of the algorithm.

I Theorem 3. If a total-payo� game G = ÈV, E, Ê, TPÍ is given as input, Algorithm 2
outputs the vector ValG of optimal values, after at most K = |V |(2(|V | ≠ 1)W + 1) iterations
of the external loop. The complexity of the algorithm is O(|V |4|E|W 2).

The number of iterations in each internal loop is controlled by Theorem 1. On the example
of Figure 2(a), only 2 external iterations are necessary, but the number of iterations of each
internal loop would be 2W . By contrast, for the total-payo� game depicted in Figure 2(b),
each internal loop requires 2 iterations to converge, but the external loop takes W iterations
to stabilise. A combination of both examples would experience a pseudo-polynomial number
of iterations to converge in both the internal and external loops, matching the W 2 term of
the above complexity.



How not to build GK?…
• In the value iteration for MCR games, we may compute the value 

from the last copy of the game to the first one (outer loop)

• Each time, it is the same arena: only the exit values evolve… 
Compute the values of a linear size MCR game (inner loop)

• Stop early inner and outer loops…
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the first (as far as we know) pseudo-polynomial time algorithm for solving those games in
the presence of arbitrary weights, thanks to a reduction from total-payo� games to min-cost
reachability games. The MCR game produced by the reduction has size pseudo-polynomial
in the size of the original total-payo� game. Then, we show how to compute the values of
the total-payo� game without building the entire MCR game, and explain how to deduce
memoryless optimal strategies from the computation of our algorithm.

Reduction to min-cost reachability games. We provide a transformation from a total-
payo� game G = ÈV, E, Ê, TPÍ to a min-cost reachability game GK such that the values of G
can be extracted from the values in GK (as formalised below). Intuitively, GK simulates the
game where players play in G; Min may propose to stop playing and reach a fresh vertex t

acting as the target; Max can then accept, in which case we reach the target, or refuse at most
K times, in which case the game continues. Structurally, GK consists of a sequence of copies
of G along with some new states that we now describe formally. We let t be a fresh vertex,
and, for all n > 1, we define the min-cost reachability game Gn = ÈV n, En, Ên, {t}-MCRÍ
where V n

Max

(respectively, V n
Min

) consists of n copies (v, j), with 1 6 j 6 n, of each vertex
v œ V

Max

(respectively, v œ V
Min

) and some exterior vertices (ex, v, j) for all v œ V and
1 6 j 6 n (respectively, interior vertices (in, v, j) for all v œ V and 1 6 j 6 n). Moreover,
V n

Max

contains the fresh target vertex t. Edges are given by

En = {(t, t)} ‡ )!
(v, j), (in, vÕ, j)

" | (v, vÕ) œ E, 1 6 j 6 n
*

‡ )!
(in, v, j), (v, j)

" | v œ V, 1 6 j 6 n
* ‡ )!

(ex, v, j), t

" | v œ V, 1 6 j 6 n
*

‡ )!
(in, v, j), (ex, v, j)

" | v œ V, 1 6 j 6 n
*

‡ )!
(ex, v, j), (v, j ≠ 1)

" | v œ V, 1 < j 6 n
*

.

All edge weights are zero, except edges
!
(v, j), (in, vÕ, j)

"
that have weight Ê(v, vÕ).

For example, considering the weighted graph of Figure 2(a), the corresponding reachability
total-payo� game G3 is depicted in Figure 3 (where weights 0 have been removed). The next
proposition formalises the relationship between the two games.
I Proposition 2. Let K = |V |(2(|V | ≠ 1)W + 1). For all v œ V and k > K,

ValG(v) ”= +Œ if and only if ValG(v) = ValGk ((v, k));
ValG(v) = +Œ if and only if ValGk ((v, k)) > (|V | ≠ 1)W + 1.

The bound K is found by using the fact (informally described in the previous section) that
if not infinite, the value of a min-cost reachability game belongs in [≠(|V |≠1)◊W +1, |V |◊W ],
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Algorithm 2: A value iteration algorithm for total-payo� games
Input: Total-payo� game G = ÈV, E, Ê, TPÍ, W largest weight in absolute value

1 foreach v œ V do Y(v) := ≠Œ
2 repeat

3 foreach v œ V do Ypre(v) := Y(v); Y(v) := max(0, Y(v)); X(v) := +Œ
4 repeat

5 Xpre := X

6 foreach v œ V
Max

do X(v) := maxvÕœE(v)
#
Ê(v, vÕ) + min(Xpre(vÕ), Y(vÕ))

$

7 foreach v œ V
Min

do X(v) := minvÕœE(v)
#
Ê(v, vÕ) + min(Xpre(vÕ), Y(vÕ))

$

8 foreach v œ V such that X(v) < ≠(|V | ≠ 1)W do X(v) := ≠Œ
9 until X = Xpre

10 Y := X

11 foreach v œ V such that Y(v) > (|V | ≠ 1)W do Y(v) := +Œ
12 until Y = Ypre

13 return Y

Optimal strategies. In Section 3, we have shown, for any min-cost reachability game, the
existence of a pair of memoryless strategies permitting to reconstruct a switching optimal
strategy for Min (if every vertex has value di�erent from ≠Œ, or a strategy ensuring any
possible threshold for vertices with value ≠Œ). If we apply this construction to the game
G

ValG , we obtain a pair (‡1
Min

, ‡2
Min

) of strategies (remember that ‡2
Min

is a strategy obtained by
the attractor construction, hence it will not be useful for us for total-payo� games). Consider
the strategy ‡

Min

, obtained by projecting ‡1
Min

on V as follows: for all finite plays fi and
vertex v œ V

Min

, let ‡
Min

(fiv) = vÕ if ‡1
Min

(v) = (in, vÕ). We can show that ‡
Min

is optimal for
Min in G. Notice that ‡1

Min

, and hence ‡
Min

, can be computed during the last iteration of
the value iteration algorithm, as explained in the case of min-cost reachability. A similar
construction can be done to compute an optimal strategy of Max.

5 Implementation and heuristics

In this section, we report on a prototype implementation of our algorithms.4 For convenience
reasons, we have implemented them as an add-on to PRISM-games [5], although we could
have chosen to extend another model-checker as we do not rely on the probabilistic features
of PRISM models (i.e., we use the PRISM syntax of stochastic multi-player games, allowing
arbitrary rewards, and forbidding probability distributions di�erent of Dirac ones). We then
use rPATL specifications of the form ÈÈCÍÍRmin / max=?[FŒÏ] and ÈÈCÍÍRmin / max=?[Fc‹] to
model respectively min-cost reachability games and total-payo� games, where C represents
a coalition of players that want to minimise/maximise the payo�, and Ï is another rPATL
formula describing the target set of vertices (for total-payo� games, such a formula is not
necessary). We have tested our implementation on toy examples. On the parametric one
studied after Theorem 3, obtained by mixing the graphs of Figure 2 and repeating them for
n layers, results obtained by applying our algorithm for total-payo� games are summarised in
Table 1, where for each pair (W, n), we give the time t in seconds, the number ke of iterations

4 Source and binary files, as well as some examples, can be downloaded from http://www.ulb.ac.be/di/

verif/monmege/tool/TP-MCR/.

Requires very few memory (no need to construct GK)

➡Pseudo-polynomial time: O(|V|4 |E| W2)
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and that after enough visits of the same vertex, an adequate loop ensures that Gk verifies
the above properties.

Value iteration algorithm for total-payo� games. By Proposition 2, an immediate way to
obtain a value iteration algorithm for total-payo� games is to build game GK , run Algorithm 1
on it, and map the computed values back to G. We take advantage of the structure of GK

to provide a better algorithm that avoids building GK . We first compute the values of the
vertices in the last copy of the game (vertices of the form (v, 1), (in, v, 1) and (ex, v, 1)), then
of those in the penultimate (vertices of the form (v, 2), (in, v, 2) and (ex, v, 2)), and so on.

We formalise this idea as follows. Let Zj be a vector mapping each vertex v of G to the
value Zj(v) of vertex (v, j) in GK . Then, let us define an operator H such that Zj+1 = H(Zj).
The intuition behind the definition of H(Y ) for some vector Y , is to extract from GK one copy
of the game, and make Y appear in the weights of some edges as illustrated in Figure 4. This
game, GY , simulates a play in G in which Min can opt for ‘leaving the game’ at each round
(by moving to the target), obtaining max(0, Y (v)), if v is the current vertex. Then H(Y )(v)
is defined as the value of v in GY . By construction, it is easy to see that Zj+1 = H(Zj) holds
for all j > 1. Furthermore, we define Z0(v) = ≠Œ for all v, and have Z1 = H(Z0). One can
prove the following properties of H: (i) H is monotonic, but may not be Scott-continuous;
(ii) the sequence (Zj)j>0 converges towards ValG .

We are now ready to introduce Algorithm 2 to solve total-payo� games. Intuitively, the
outer loop computes, in variable Y, a non-decreasing sequence of vectors whose limit is ValG ,
and that is stationary (this is not necessarily the case for the sequence (Zj)j>0). Line 1
initialises Y to Z0. Each iteration of the outer loop amounts to running Algorithm 1 to
compute H(Ypre) (lines 3 to 10), then detecting if some vertices have value +Œ, updating Y

accordingly (line 11, following the second item of Proposition 2). One can show that, for all
j > 0, if we let Y j be the value of Y after the j-th iteration of the main loop, Zj 4 Y j 4 ValG ,
which ensures the correctness of the algorithm.

I Theorem 3. If a total-payo� game G = ÈV, E, Ê, TPÍ is given as input, Algorithm 2
outputs the vector ValG of optimal values, after at most K = |V |(2(|V | ≠ 1)W + 1) iterations
of the external loop. The complexity of the algorithm is O(|V |4|E|W 2).

The number of iterations in each internal loop is controlled by Theorem 1. On the example
of Figure 2(a), only 2 external iterations are necessary, but the number of iterations of each
internal loop would be 2W . By contrast, for the total-payo� game depicted in Figure 2(b),
each internal loop requires 2 iterations to converge, but the external loop takes W iterations
to stabilise. A combination of both examples would experience a pseudo-polynomial number
of iterations to converge in both the internal and external loops, matching the W 2 term of
the above complexity.



On an example
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Figure 7 Parametric weighted graph

Notice that the number of iterations in both internal and external loops do no longer depend on the choice of
parameter W , as well as the execution time. With respect to the execution time, the decrease from the case
without acceleration is even larger, since the updates of vector X inside the inner loop need only to be performed
on the vertices of the current component. For large instances, the execution time may again become very large,
but in case W = 500 (as previously said, this value is independent of the result) and n = 1000, it shrinks to 2.3s

whereas the total number of iterations in the internal loop becomes 14004, i.e., 5 orders of magnitude less than
for the algorithm without acceleration heuristics.

J Acceleration heuristics in MCR games

Algorithm 4 and 5 are enhanced versions of Algorithm 1 and 2 respectively, that apply the acceleration heuristics
described at the end of Section 5.

Algorithm 4: Accelerated value iteration algorithm for min-cost reachability games
Input: min-cost reachability game ÈV, E, Ê, {t}-MCRÍ, SCC-decomposition c : V æ {0, 1, . . . , p} and an

oracle O(q, v) outputting sets (Sv)vœc

≠1(q)

1 X(t) := 0
2 for q = 1 to p do

3 (Sv)vœc

≠1(q) := O(q, X) /* Use of the oracle */

4 foreach v œ c

≠1(q) do X(v) := max Sv

5 repeat

6 Xpre := X

7 foreach v œ c

≠1(q) fl V
Max

do

8 X(v) := maxvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

9 foreach v œ c

≠1(q) fl V
Min

do

10 X(v) := minvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

11 foreach v œ c

≠1(q) do X(v) := max
!
Sv fl [≠Œ, X(v)]

"

12 until X = Xpre

13 return X

• As a total-payoff game, values of 
v1 and v2 are 0, value of v3 is W…
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Notice that the number of iterations in both internal and external loops do no longer depend on the choice of
parameter W , as well as the execution time. With respect to the execution time, the decrease from the case
without acceleration is even larger, since the updates of vector X inside the inner loop need only to be performed
on the vertices of the current component. For large instances, the execution time may again become very large,
but in case W = 500 (as previously said, this value is independent of the result) and n = 1000, it shrinks to 2.3s

whereas the total number of iterations in the internal loop becomes 14004, i.e., 5 orders of magnitude less than
for the algorithm without acceleration heuristics.

J Acceleration heuristics in MCR games

Algorithm 4 and 5 are enhanced versions of Algorithm 1 and 2 respectively, that apply the acceleration heuristics
described at the end of Section 5.

Algorithm 4: Accelerated value iteration algorithm for min-cost reachability games
Input: min-cost reachability game ÈV, E, Ê, {t}-MCRÍ, SCC-decomposition c : V æ {0, 1, . . . , p} and an

oracle O(q, v) outputting sets (Sv)vœc

≠1(q)

1 X(t) := 0
2 for q = 1 to p do

3 (Sv)vœc

≠1(q) := O(q, X) /* Use of the oracle */

4 foreach v œ c

≠1(q) do X(v) := max Sv

5 repeat

6 Xpre := X

7 foreach v œ c

≠1(q) fl V
Max

do

8 X(v) := maxvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

9 foreach v œ c

≠1(q) fl V
Min

do

10 X(v) := minvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

11 foreach v œ c

≠1(q) do X(v) := max
!
Sv fl [≠Œ, X(v)]

"

12 until X = Xpre

13 return X

• As a total-payoff game, values of 
v1 and v2 are 0, value of v3 is W…

• Each inner loop computes all 
the values (needs O(n W) steps)
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Notice that the number of iterations in both internal and external loops do no longer depend on the choice of
parameter W , as well as the execution time. With respect to the execution time, the decrease from the case
without acceleration is even larger, since the updates of vector X inside the inner loop need only to be performed
on the vertices of the current component. For large instances, the execution time may again become very large,
but in case W = 500 (as previously said, this value is independent of the result) and n = 1000, it shrinks to 2.3s

whereas the total number of iterations in the internal loop becomes 14004, i.e., 5 orders of magnitude less than
for the algorithm without acceleration heuristics.

J Acceleration heuristics in MCR games

Algorithm 4 and 5 are enhanced versions of Algorithm 1 and 2 respectively, that apply the acceleration heuristics
described at the end of Section 5.

Algorithm 4: Accelerated value iteration algorithm for min-cost reachability games
Input: min-cost reachability game ÈV, E, Ê, {t}-MCRÍ, SCC-decomposition c : V æ {0, 1, . . . , p} and an

oracle O(q, v) outputting sets (Sv)vœc

≠1(q)

1 X(t) := 0
2 for q = 1 to p do

3 (Sv)vœc

≠1(q) := O(q, X) /* Use of the oracle */

4 foreach v œ c

≠1(q) do X(v) := max Sv

5 repeat

6 Xpre := X

7 foreach v œ c

≠1(q) fl V
Max

do

8 X(v) := maxvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

9 foreach v œ c

≠1(q) fl V
Min

do

10 X(v) := minvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

11 foreach v œ c

≠1(q) do X(v) := max
!
Sv fl [≠Œ, X(v)]

"

12 until X = Xpre

13 return X

• As a total-payoff game, values of 
v1 and v2 are 0, value of v3 is W…

• After 1 outer loop, only the 
values of the last 
component are correct…

• Each inner loop computes all 
the values (needs O(n W) steps)
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Notice that the number of iterations in both internal and external loops do no longer depend on the choice of
parameter W , as well as the execution time. With respect to the execution time, the decrease from the case
without acceleration is even larger, since the updates of vector X inside the inner loop need only to be performed
on the vertices of the current component. For large instances, the execution time may again become very large,
but in case W = 500 (as previously said, this value is independent of the result) and n = 1000, it shrinks to 2.3s

whereas the total number of iterations in the internal loop becomes 14004, i.e., 5 orders of magnitude less than
for the algorithm without acceleration heuristics.

J Acceleration heuristics in MCR games

Algorithm 4 and 5 are enhanced versions of Algorithm 1 and 2 respectively, that apply the acceleration heuristics
described at the end of Section 5.

Algorithm 4: Accelerated value iteration algorithm for min-cost reachability games
Input: min-cost reachability game ÈV, E, Ê, {t}-MCRÍ, SCC-decomposition c : V æ {0, 1, . . . , p} and an

oracle O(q, v) outputting sets (Sv)vœc

≠1(q)

1 X(t) := 0
2 for q = 1 to p do

3 (Sv)vœc

≠1(q) := O(q, X) /* Use of the oracle */

4 foreach v œ c

≠1(q) do X(v) := max Sv

5 repeat

6 Xpre := X

7 foreach v œ c

≠1(q) fl V
Max

do

8 X(v) := maxvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

9 foreach v œ c

≠1(q) fl V
Min

do

10 X(v) := minvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

11 foreach v œ c

≠1(q) do X(v) := max
!
Sv fl [≠Œ, X(v)]

"

12 until X = Xpre

13 return X

• As a total-payoff game, values of 
v1 and v2 are 0, value of v3 is W…

• After 1 outer loop, only the 
values of the last 
component are correct…

• Requires n outer loops to 
converge

• Each inner loop computes all 
the values (needs O(n W) steps)
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Notice that the number of iterations in both internal and external loops do no longer depend on the choice of
parameter W , as well as the execution time. With respect to the execution time, the decrease from the case
without acceleration is even larger, since the updates of vector X inside the inner loop need only to be performed
on the vertices of the current component. For large instances, the execution time may again become very large,
but in case W = 500 (as previously said, this value is independent of the result) and n = 1000, it shrinks to 2.3s

whereas the total number of iterations in the internal loop becomes 14004, i.e., 5 orders of magnitude less than
for the algorithm without acceleration heuristics.

J Acceleration heuristics in MCR games

Algorithm 4 and 5 are enhanced versions of Algorithm 1 and 2 respectively, that apply the acceleration heuristics
described at the end of Section 5.

Algorithm 4: Accelerated value iteration algorithm for min-cost reachability games
Input: min-cost reachability game ÈV, E, Ê, {t}-MCRÍ, SCC-decomposition c : V æ {0, 1, . . . , p} and an

oracle O(q, v) outputting sets (Sv)vœc

≠1(q)

1 X(t) := 0
2 for q = 1 to p do

3 (Sv)vœc

≠1(q) := O(q, X) /* Use of the oracle */

4 foreach v œ c

≠1(q) do X(v) := max Sv

5 repeat

6 Xpre := X

7 foreach v œ c

≠1(q) fl V
Max

do

8 X(v) := maxvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

9 foreach v œ c

≠1(q) fl V
Min

do

10 X(v) := minvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

11 foreach v œ c

≠1(q) do X(v) := max
!
Sv fl [≠Œ, X(v)]

"

12 until X = Xpre

13 return X

• As a total-payoff game, values of 
v1 and v2 are 0, value of v3 is W…

• After 1 outer loop, only the 
values of the last 
component are correct…

• Requires n outer loops to 
converge

• Each inner loop computes all 
the values (needs O(n W) steps)
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Proof. For j = 0, we have Y 0(v) = ≠Œ = ValG0(v, 0) for all vertex v œ V . Suppose then that the invariant
holds for j > 0. We know that ValGj+1(v, j + 1) = H((ValGj (vÕ, j))vÕœV ). Moreover, after the assignment of
line 10, by definition of H, variable Y contains H(Y j). The operation performed on line 11 only increases the
values of vector Y, so that at the end of the jth iteration, we have H(Y j) 4 Y j+1. Since H is monotonous, and
by the invariant at step j, we obtain

ValGj+1(v, j + 1) = H((ValGj (vÕ, j))vÕœV ) 6 H(Y j) 6 Y j+1 .

Moreover, using again the monotony of H and Lemma 26, we have

H(Y j) 4 H(ValG) 4 ValG .

A closer look at line 11 shows that H(Y j) and Y j+1 coincide over vertices v such that H(Y j)(v) 6 (|V |≠1)W , and
otherwise Y j+1(v) = +Œ. Hence, if H(Y j)(v) 6 (|V | ≠ 1)W , we directly obtain Y j+1(v) = H(Y j)(v) 6 ValG(v).
Otherwise, we know that ValG(v) > (|V | ≠ 1)W . By Corollary 20, we know that ValG(v) = +Œ, so that
Y j+1(v) = +Œ = ValG(v). In the overall, we have proved

ValGj+1(v, j + 1) 6 Y j+1(v) 6 ValG(v) (6)

J

We are now able to prove the correction of the algorithm.

Proof of Theorem 3. For j = K (remember that K was defined in the previous section), the invariant of
Lemma 28 becomes

ValGK (v, K) 6 Y K(v) 6 ValG(v)

for all vertices v œ V . Notice that the iteration may have stopped before iteration K, in which case the sequence
(Y j)j>0 may be considered as stationary. In case ValG(v) ”= +Œ, Proposition 2 proves that ValGK (v, K) = ValG(v),
so that we have Y K(v) = ValG(v). In case ValG(v) = +Œ, Proposition 2 shows that ValGK (v, K) > (|V | ≠ 1)W :
by the operation performed at line 11, we obtain that Y K(v) = +Œ = ValG(v).

Hence, K = |V |(2(|V | ≠ 1)W + 1) is an upper bound on the number of iterations before convergence of
Algorithm 2, and moreover, at the convergence, the algorithm outputs the vector of optimal values of the
total-payo� game. J

I An example of parametric total-payo� game

We depict in Fig. 7 a weighted graph parametrized with the number n of layers, as well as the greatest weight
W > 0. For both the min-cost reachability objective (with t the target) and the total-payo� objectives, the
values of the vertices are as follows: vertices v3k+1 and v3k+2 (k œ {0, . . . , n ≠ 1}) have value 0, whereas vertices
v3k (k œ {1, . . . , n}) have value W . In our add-on prototype of PRISM, we model the min-cost objective with
ÈÈMaxÍÍRmax=?[FŒ

t] for Max and ÈÈMinÍÍRmin=?[FŒ
t] for Min, whereas total-payo� objectives are modelled by

ÈÈMaxÍÍRmax=?[Fc‹] and ÈÈMinÍÍRmin=?[Fc‹].
We present in the following table the time for resolution (in seconds), the number of iterations in the external

loop, and the total number of iterations in the internal loops for the total-payo� resolution, for various values of
parameters W and n:

W \n 100 200 300 400 500
50 0.52 / 151 / 12603 1.90 / 251 / 22703 3.84 / 351 / 32803 6.05 / 451 / 42903 9.83 / 551 / 53003
100 1.00 / 201 / 30103 3.48 / 301 / 50203 8.64 / 401 / 70303 13.53 / 501 / 90403 22.64 / 601 / 110503
150 1.89 / 251 / 52603 6.02 / 351 / 82703 12.88 / 451 / 112803 22.13 / 551 / 142903 34.16 / 651 / 173003
200 2.96 / 301 / 80103 9.62 / 401 / 120203 18.33 / 501 / 160303 30.42 / 601 / 200403 45.64 / 701 / 240503
250 3.92 / 351 / 112603 13.28 / 451 / 162703 25.18 / 551 / 212803 46.23 / 651 / 262903 71.51 / 751 / 313003

Notice that due to the very little memory consumption of the algorithm, there is no risk of running out of
memory. However, the execution time can become very large. For instance, in case W = 500 and n = 1000, the
execution time becomes 536s whereas the total number of iterations in the internal loop is greater than a million.

On this example, with n + 1 components, the acceleration heuristics presented in details in Appendix J gives
excellent results. Indeed, by combining both heuristics, we obtain the following results:

W \n 100 200 300 400 500
50 0.01 / 402 / 1404 0.08 / 802 / 2804 0.22 / 1202 / 4204 0.38 / 1602 / 5604 0.42 / 2002 / 7004
100 0.02 / 402 / 1404 0.09 / 802 / 2804 0.19 / 1202 / 4204 0.33 / 1602 / 5604 0.40 / 2002 / 7004
150 0.03 / 402 / 1404 0.09 / 802 / 2804 0.18 / 1202 / 4204 0.29 / 1602 / 5604 0.47 / 2002 / 7004
200 0.02 / 402 / 1404 0.07 / 802 / 2804 0.16 / 1202 / 4204 0.23 / 1602 / 5604 0.47 / 2002 / 7004
250 0.01 / 402 / 1404 0.07 / 802 / 2804 0.17 / 1202 / 4204 0.29 / 1602 / 5604 0.48 / 2002 / 7004

time (s)
# of outer loops

total # of inner loops
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Notice that the number of iterations in both internal and external loops do no longer depend on the choice of
parameter W , as well as the execution time. With respect to the execution time, the decrease from the case
without acceleration is even larger, since the updates of vector X inside the inner loop need only to be performed
on the vertices of the current component. For large instances, the execution time may again become very large,
but in case W = 500 (as previously said, this value is independent of the result) and n = 1000, it shrinks to 2.3s

whereas the total number of iterations in the internal loop becomes 14004, i.e., 5 orders of magnitude less than
for the algorithm without acceleration heuristics.

J Acceleration heuristics in MCR games

Algorithm 4 and 5 are enhanced versions of Algorithm 1 and 2 respectively, that apply the acceleration heuristics
described at the end of Section 5.

Algorithm 4: Accelerated value iteration algorithm for min-cost reachability games
Input: min-cost reachability game ÈV, E, Ê, {t}-MCRÍ, SCC-decomposition c : V æ {0, 1, . . . , p} and an

oracle O(q, v) outputting sets (Sv)vœc

≠1(q)

1 X(t) := 0
2 for q = 1 to p do

3 (Sv)vœc

≠1(q) := O(q, X) /* Use of the oracle */

4 foreach v œ c

≠1(q) do X(v) := max Sv

5 repeat

6 Xpre := X

7 foreach v œ c

≠1(q) fl V
Max

do

8 X(v) := maxvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

9 foreach v œ c

≠1(q) fl V
Min

do

10 X(v) := minvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

11 foreach v œ c

≠1(q) do X(v) := max
!
Sv fl [≠Œ, X(v)]

"

12 until X = Xpre

13 return X

• In the outer loop, 
compute SCC by SCC
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Notice that the number of iterations in both internal and external loops do no longer depend on the choice of
parameter W , as well as the execution time. With respect to the execution time, the decrease from the case
without acceleration is even larger, since the updates of vector X inside the inner loop need only to be performed
on the vertices of the current component. For large instances, the execution time may again become very large,
but in case W = 500 (as previously said, this value is independent of the result) and n = 1000, it shrinks to 2.3s

whereas the total number of iterations in the internal loop becomes 14004, i.e., 5 orders of magnitude less than
for the algorithm without acceleration heuristics.

J Acceleration heuristics in MCR games

Algorithm 4 and 5 are enhanced versions of Algorithm 1 and 2 respectively, that apply the acceleration heuristics
described at the end of Section 5.

Algorithm 4: Accelerated value iteration algorithm for min-cost reachability games
Input: min-cost reachability game ÈV, E, Ê, {t}-MCRÍ, SCC-decomposition c : V æ {0, 1, . . . , p} and an

oracle O(q, v) outputting sets (Sv)vœc

≠1(q)

1 X(t) := 0
2 for q = 1 to p do

3 (Sv)vœc

≠1(q) := O(q, X) /* Use of the oracle */

4 foreach v œ c

≠1(q) do X(v) := max Sv

5 repeat

6 Xpre := X

7 foreach v œ c

≠1(q) fl V
Max

do

8 X(v) := maxvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

9 foreach v œ c

≠1(q) fl V
Min

do

10 X(v) := minvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

11 foreach v œ c

≠1(q) do X(v) := max
!
Sv fl [≠Œ, X(v)]

"

12 until X = Xpre

13 return X

• In the outer loop, 
compute SCC by SCC
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Notice that the number of iterations in both internal and external loops do no longer depend on the choice of
parameter W , as well as the execution time. With respect to the execution time, the decrease from the case
without acceleration is even larger, since the updates of vector X inside the inner loop need only to be performed
on the vertices of the current component. For large instances, the execution time may again become very large,
but in case W = 500 (as previously said, this value is independent of the result) and n = 1000, it shrinks to 2.3s

whereas the total number of iterations in the internal loop becomes 14004, i.e., 5 orders of magnitude less than
for the algorithm without acceleration heuristics.

J Acceleration heuristics in MCR games

Algorithm 4 and 5 are enhanced versions of Algorithm 1 and 2 respectively, that apply the acceleration heuristics
described at the end of Section 5.

Algorithm 4: Accelerated value iteration algorithm for min-cost reachability games
Input: min-cost reachability game ÈV, E, Ê, {t}-MCRÍ, SCC-decomposition c : V æ {0, 1, . . . , p} and an

oracle O(q, v) outputting sets (Sv)vœc

≠1(q)

1 X(t) := 0
2 for q = 1 to p do

3 (Sv)vœc

≠1(q) := O(q, X) /* Use of the oracle */

4 foreach v œ c

≠1(q) do X(v) := max Sv

5 repeat

6 Xpre := X

7 foreach v œ c

≠1(q) fl V
Max

do

8 X(v) := maxvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

9 foreach v œ c

≠1(q) fl V
Min

do

10 X(v) := minvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

11 foreach v œ c

≠1(q) do X(v) := max
!
Sv fl [≠Œ, X(v)]

"

12 until X = Xpre

13 return X

• In the outer loop, 
compute SCC by SCC
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Notice that the number of iterations in both internal and external loops do no longer depend on the choice of
parameter W , as well as the execution time. With respect to the execution time, the decrease from the case
without acceleration is even larger, since the updates of vector X inside the inner loop need only to be performed
on the vertices of the current component. For large instances, the execution time may again become very large,
but in case W = 500 (as previously said, this value is independent of the result) and n = 1000, it shrinks to 2.3s

whereas the total number of iterations in the internal loop becomes 14004, i.e., 5 orders of magnitude less than
for the algorithm without acceleration heuristics.

J Acceleration heuristics in MCR games

Algorithm 4 and 5 are enhanced versions of Algorithm 1 and 2 respectively, that apply the acceleration heuristics
described at the end of Section 5.

Algorithm 4: Accelerated value iteration algorithm for min-cost reachability games
Input: min-cost reachability game ÈV, E, Ê, {t}-MCRÍ, SCC-decomposition c : V æ {0, 1, . . . , p} and an

oracle O(q, v) outputting sets (Sv)vœc

≠1(q)

1 X(t) := 0
2 for q = 1 to p do

3 (Sv)vœc

≠1(q) := O(q, X) /* Use of the oracle */

4 foreach v œ c

≠1(q) do X(v) := max Sv

5 repeat

6 Xpre := X

7 foreach v œ c

≠1(q) fl V
Max

do

8 X(v) := maxvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

9 foreach v œ c

≠1(q) fl V
Min

do

10 X(v) := minvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

11 foreach v œ c

≠1(q) do X(v) := max
!
Sv fl [≠Œ, X(v)]

"

12 until X = Xpre

13 return X
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Notice that the number of iterations in both internal and external loops do no longer depend on the choice of
parameter W , as well as the execution time. With respect to the execution time, the decrease from the case
without acceleration is even larger, since the updates of vector X inside the inner loop need only to be performed
on the vertices of the current component. For large instances, the execution time may again become very large,
but in case W = 500 (as previously said, this value is independent of the result) and n = 1000, it shrinks to 2.3s

whereas the total number of iterations in the internal loop becomes 14004, i.e., 5 orders of magnitude less than
for the algorithm without acceleration heuristics.

J Acceleration heuristics in MCR games

Algorithm 4 and 5 are enhanced versions of Algorithm 1 and 2 respectively, that apply the acceleration heuristics
described at the end of Section 5.

Algorithm 4: Accelerated value iteration algorithm for min-cost reachability games
Input: min-cost reachability game ÈV, E, Ê, {t}-MCRÍ, SCC-decomposition c : V æ {0, 1, . . . , p} and an

oracle O(q, v) outputting sets (Sv)vœc

≠1(q)

1 X(t) := 0
2 for q = 1 to p do

3 (Sv)vœc
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≠1(q) do X(v) := max Sv
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8 X(v) := maxvÕœE(v)
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Notice that the number of iterations in both internal and external loops do no longer depend on the choice of
parameter W , as well as the execution time. With respect to the execution time, the decrease from the case
without acceleration is even larger, since the updates of vector X inside the inner loop need only to be performed
on the vertices of the current component. For large instances, the execution time may again become very large,
but in case W = 500 (as previously said, this value is independent of the result) and n = 1000, it shrinks to 2.3s

whereas the total number of iterations in the internal loop becomes 14004, i.e., 5 orders of magnitude less than
for the algorithm without acceleration heuristics.

J Acceleration heuristics in MCR games

Algorithm 4 and 5 are enhanced versions of Algorithm 1 and 2 respectively, that apply the acceleration heuristics
described at the end of Section 5.

Algorithm 4: Accelerated value iteration algorithm for min-cost reachability games
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2 for q = 1 to p do
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≠1(q) := O(q, X) /* Use of the oracle */

4 foreach v œ c

≠1(q) do X(v) := max Sv
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≠1(q) fl V
Max

do

8 X(v) := maxvÕœE(v)
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Notice that the number of iterations in both internal and external loops do no longer depend on the choice of
parameter W , as well as the execution time. With respect to the execution time, the decrease from the case
without acceleration is even larger, since the updates of vector X inside the inner loop need only to be performed
on the vertices of the current component. For large instances, the execution time may again become very large,
but in case W = 500 (as previously said, this value is independent of the result) and n = 1000, it shrinks to 2.3s

whereas the total number of iterations in the internal loop becomes 14004, i.e., 5 orders of magnitude less than
for the algorithm without acceleration heuristics.

J Acceleration heuristics in MCR games

Algorithm 4 and 5 are enhanced versions of Algorithm 1 and 2 respectively, that apply the acceleration heuristics
described at the end of Section 5.

Algorithm 4: Accelerated value iteration algorithm for min-cost reachability games
Input: min-cost reachability game ÈV, E, Ê, {t}-MCRÍ, SCC-decomposition c : V æ {0, 1, . . . , p} and an

oracle O(q, v) outputting sets (Sv)vœc

≠1(q)

1 X(t) := 0
2 for q = 1 to p do

3 (Sv)vœc

≠1(q) := O(q, X) /* Use of the oracle */

4 foreach v œ c

≠1(q) do X(v) := max Sv

5 repeat

6 Xpre := X

7 foreach v œ c

≠1(q) fl V
Max

do

8 X(v) := maxvÕœE(v)
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Ê(v, vÕ) + Xpre(vÕ)
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9 foreach v œ c

≠1(q) fl V
Min

do

10 X(v) := minvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

11 foreach v œ c

≠1(q) do X(v) := max
!
Sv fl [≠Œ, X(v)]

"

12 until X = Xpre

13 return X

• In the outer loop, 
compute SCC by SCC
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–2 –2 0
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• For each inner loop, we 
solve an MCR game:  
optimal memoryless 
strategies, so value is 
weight of a simple path… 
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Notice that the number of iterations in both internal and external loops do no longer depend on the choice of
parameter W , as well as the execution time. With respect to the execution time, the decrease from the case
without acceleration is even larger, since the updates of vector X inside the inner loop need only to be performed
on the vertices of the current component. For large instances, the execution time may again become very large,
but in case W = 500 (as previously said, this value is independent of the result) and n = 1000, it shrinks to 2.3s

whereas the total number of iterations in the internal loop becomes 14004, i.e., 5 orders of magnitude less than
for the algorithm without acceleration heuristics.
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"
, and the vector (1, ≠1, 0) is indeed a fixed point of F .

However, it is neither the greatest nor the smallest fixed point of F , since if x is a fixed
point of F , then x + (a, a, a) is also a fixed point, for all constant a œ Z. If we try to initialise
the value iteration algorithm with value (0, 0, 0), which could seem a reasonable choice, the
sequence of computed vectors is: (0, 0, 0), (2, ≠1, 1), (1, 0, 0), (2, ≠1, 1), (1, 0, 0), . . . that is
not stationary, and does not even contain (1, ≠1, 0). Thus, it seems di�cult to compute the
actual game values with an iterative algorithm relying on the F operator, as in the case
of mean-payo� games.3 Notice that, in the previous example, the Zwick and Paterson’s
algorithm [17] to solve mean-payo� games would easily conclude from the sequence above,
since the vectors of interest are then the one divided by the length of the current sequence,
i.e., (0, 0, 0), (1, ≠0.5, 0.5), (0.33, 0, 0), (0.5, ≠0.25, 0.25), (0.2, 0, 0), . . . indeed converging
towards (0, 0, 0), the mean-payo� values of this game.

Instead, as explained in the introduction, we propose a di�erent approach that consists
in reducing total-payo� games to min-cost reachability games where Min must enforce a
reachability objective on top of his optimisation objective. The aim of the next section is to
study these games, and we reduce total-payo� games to them in Section 4.

3 Min-cost reachability games

In this section, we consider min-cost reachability games (MCR games for short), a variant of
total-payo� games where one player has a reachability objective that he must fulfil first, before
optimising his quantitative objective. Without loss of generality, we assign the reachability
objective to player Min, as this will make our reduction from total-payo� games easier to
explain. Hence, when the target is not reached along a path, its payo� shall be the worst
possible for Min, i.e., +Œ. Formally, an MCR game is played on a weighted graph ÈV, E, ÊÍ
equipped with a target set of vertices T ™ V . The payo� T -MCR(fi) of a play fi = v0v1 . . .

is given by T -MCR(fi) = +Œ if the play avoids T , i.e., if for all k > 0, vk /œ T , and
T -MCR(fi) = TP(fi[k]) if k is the least position in fi such that vk œ T . Lower and upper
values are then defined as in Section 2. By an indirect consequence of Martin’s theorem [12],
we can show that MCR games are also determined. Optimal strategies may however not
exist, as we will see later.

As an example, consider the MCR game played on the weighted graph of Figure 2(a),
where W is a positive integer and v3 is the target. We claim that the values of vertices v1 and
v2 are both ≠W . Indeed, consider the following strategy for Min: during each of the first W

visits to v2 (if any), go to v1; else, go to v3. Clearly, this strategy ensures that the target will
eventually be reached, and that either (i) edge (v1, v3) (with weight ≠W ) will eventually be
traversed; or (ii) edge (v1, v2) (with weight ≠1) will be traversed at least W times. Hence,

3 In the context of stochastic models like Markov decision processes, Strauch [14] already noticed that in
the presence of arbitrary weights, the value iteration algorithm does not necessarily converge towards
the accurate value: see [13, Ex. 7.3.3] for a detailed explanation.
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Notice that the number of iterations in both internal and external loops do no longer depend on the choice of
parameter W , as well as the execution time. With respect to the execution time, the decrease from the case
without acceleration is even larger, since the updates of vector X inside the inner loop need only to be performed
on the vertices of the current component. For large instances, the execution time may again become very large,
but in case W = 500 (as previously said, this value is independent of the result) and n = 1000, it shrinks to 2.3s

whereas the total number of iterations in the internal loop becomes 14004, i.e., 5 orders of magnitude less than
for the algorithm without acceleration heuristics.

J Acceleration heuristics in MCR games

Algorithm 4 and 5 are enhanced versions of Algorithm 1 and 2 respectively, that apply the acceleration heuristics
described at the end of Section 5.

Algorithm 4: Accelerated value iteration algorithm for min-cost reachability games
Input: min-cost reachability game ÈV, E, Ê, {t}-MCRÍ, SCC-decomposition c : V æ {0, 1, . . . , p} and an

oracle O(q, v) outputting sets (Sv)vœc

≠1(q)

1 X(t) := 0
2 for q = 1 to p do

3 (Sv)vœc

≠1(q) := O(q, X) /* Use of the oracle */

4 foreach v œ c

≠1(q) do X(v) := max Sv

5 repeat

6 Xpre := X
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≠1(q) fl V
Max

do

8 X(v) := maxvÕœE(v)
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"

11 foreach v œ c
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• In the outer loop, 
compute SCC by SCC
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, and the vector (1, ≠1, 0) is indeed a fixed point of F .

However, it is neither the greatest nor the smallest fixed point of F , since if x is a fixed
point of F , then x + (a, a, a) is also a fixed point, for all constant a œ Z. If we try to initialise
the value iteration algorithm with value (0, 0, 0), which could seem a reasonable choice, the
sequence of computed vectors is: (0, 0, 0), (2, ≠1, 1), (1, 0, 0), (2, ≠1, 1), (1, 0, 0), . . . that is
not stationary, and does not even contain (1, ≠1, 0). Thus, it seems di�cult to compute the
actual game values with an iterative algorithm relying on the F operator, as in the case
of mean-payo� games.3 Notice that, in the previous example, the Zwick and Paterson’s
algorithm [17] to solve mean-payo� games would easily conclude from the sequence above,
since the vectors of interest are then the one divided by the length of the current sequence,
i.e., (0, 0, 0), (1, ≠0.5, 0.5), (0.33, 0, 0), (0.5, ≠0.25, 0.25), (0.2, 0, 0), . . . indeed converging
towards (0, 0, 0), the mean-payo� values of this game.

Instead, as explained in the introduction, we propose a di�erent approach that consists
in reducing total-payo� games to min-cost reachability games where Min must enforce a
reachability objective on top of his optimisation objective. The aim of the next section is to
study these games, and we reduce total-payo� games to them in Section 4.

3 Min-cost reachability games

In this section, we consider min-cost reachability games (MCR games for short), a variant of
total-payo� games where one player has a reachability objective that he must fulfil first, before
optimising his quantitative objective. Without loss of generality, we assign the reachability
objective to player Min, as this will make our reduction from total-payo� games easier to
explain. Hence, when the target is not reached along a path, its payo� shall be the worst
possible for Min, i.e., +Œ. Formally, an MCR game is played on a weighted graph ÈV, E, ÊÍ
equipped with a target set of vertices T ™ V . The payo� T -MCR(fi) of a play fi = v0v1 . . .

is given by T -MCR(fi) = +Œ if the play avoids T , i.e., if for all k > 0, vk /œ T , and
T -MCR(fi) = TP(fi[k]) if k is the least position in fi such that vk œ T . Lower and upper
values are then defined as in Section 2. By an indirect consequence of Martin’s theorem [12],
we can show that MCR games are also determined. Optimal strategies may however not
exist, as we will see later.

As an example, consider the MCR game played on the weighted graph of Figure 2(a),
where W is a positive integer and v3 is the target. We claim that the values of vertices v1 and
v2 are both ≠W . Indeed, consider the following strategy for Min: during each of the first W

visits to v2 (if any), go to v1; else, go to v3. Clearly, this strategy ensures that the target will
eventually be reached, and that either (i) edge (v1, v3) (with weight ≠W ) will eventually be
traversed; or (ii) edge (v1, v2) (with weight ≠1) will be traversed at least W times. Hence,

3 In the context of stochastic models like Markov decision processes, Strauch [14] already noticed that in
the presence of arbitrary weights, the value iteration algorithm does not necessarily converge towards
the accurate value: see [13, Ex. 7.3.3] for a detailed explanation.
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Notice that the number of iterations in both internal and external loops do no longer depend on the choice of
parameter W , as well as the execution time. With respect to the execution time, the decrease from the case
without acceleration is even larger, since the updates of vector X inside the inner loop need only to be performed
on the vertices of the current component. For large instances, the execution time may again become very large,
but in case W = 500 (as previously said, this value is independent of the result) and n = 1000, it shrinks to 2.3s

whereas the total number of iterations in the internal loop becomes 14004, i.e., 5 orders of magnitude less than
for the algorithm without acceleration heuristics.

J Acceleration heuristics in MCR games

Algorithm 4 and 5 are enhanced versions of Algorithm 1 and 2 respectively, that apply the acceleration heuristics
described at the end of Section 5.

Algorithm 4: Accelerated value iteration algorithm for min-cost reachability games
Input: min-cost reachability game ÈV, E, Ê, {t}-MCRÍ, SCC-decomposition c : V æ {0, 1, . . . , p} and an

oracle O(q, v) outputting sets (Sv)vœc

≠1(q)

1 X(t) := 0
2 for q = 1 to p do

3 (Sv)vœc

≠1(q) := O(q, X) /* Use of the oracle */

4 foreach v œ c

≠1(q) do X(v) := max Sv

5 repeat

6 Xpre := X

7 foreach v œ c

≠1(q) fl V
Max

do

8 X(v) := maxvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

9 foreach v œ c

≠1(q) fl V
Min

do

10 X(v) := minvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

11 foreach v œ c

≠1(q) do X(v) := max
!
Sv fl [≠Œ, X(v)]

"

12 until X = Xpre

13 return X
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Notice that the number of iterations in both internal and external loops do no longer depend on the choice of
parameter W , as well as the execution time. With respect to the execution time, the decrease from the case
without acceleration is even larger, since the updates of vector X inside the inner loop need only to be performed
on the vertices of the current component. For large instances, the execution time may again become very large,
but in case W = 500 (as previously said, this value is independent of the result) and n = 1000, it shrinks to 2.3s

whereas the total number of iterations in the internal loop becomes 14004, i.e., 5 orders of magnitude less than
for the algorithm without acceleration heuristics.

J Acceleration heuristics in MCR games

Algorithm 4 and 5 are enhanced versions of Algorithm 1 and 2 respectively, that apply the acceleration heuristics
described at the end of Section 5.

Algorithm 4: Accelerated value iteration algorithm for min-cost reachability games
Input: min-cost reachability game ÈV, E, Ê, {t}-MCRÍ, SCC-decomposition c : V æ {0, 1, . . . , p} and an

oracle O(q, v) outputting sets (Sv)vœc

≠1(q)

1 X(t) := 0
2 for q = 1 to p do

3 (Sv)vœc

≠1(q) := O(q, X) /* Use of the oracle */

4 foreach v œ c

≠1(q) do X(v) := max Sv

5 repeat

6 Xpre := X

7 foreach v œ c

≠1(q) fl V
Max

do

8 X(v) := maxvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

9 foreach v œ c

≠1(q) fl V
Min

do

10 X(v) := minvÕœE(v)
!
Ê(v, vÕ) + Xpre(vÕ)

"

11 foreach v œ c

≠1(q) do X(v) := max
!
Sv fl [≠Œ, X(v)]

"

12 until X = Xpre

13 return X
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Table 1 Results of value iteration on a parametric example

without heuristics with heuristics
W n t ke ki t ke ki

50 100 0.52s 151 12,603 0.01s 402 1,404
50 500 9.83s 551 53,003 0.42s 2,002 7,004
200 100 2.96s 301 80,103 0.02s 402 1,404
200 500 45.64s 701 240,503 0.47s 2,002 7,004
500 1,000 536s 1,501 1,251,003 2.37s 4,002 14,004

in the external loop, and the total number ki of iterations in the internal loop.

We close this section by sketching two techniques that can be used to speed up the
computation of the fixed point in Algorithms 1 and 2. We fix a weighted graph ÈV, E, ÊÍ.
Both accelerations rely on a topological order of the strongly connected components (SCC
for short) of the graph, given as a function c : V æ N, mapping each vertex to its component,
verifying that (i) c(V ) = {0, . . . , p} for some p > 0, (ii) c

≠1(q) is a maximal SCC for all q,
(iii) and c(v) > c(vÕ) for all (v, vÕ) œ E.5 In case of an MRC game with t the unique target,
c

≠1(0) = {t}. Intuitively, c induces a directed acyclic graph whose vertices are the sets
c

≠1(q) for all q œ c(V ), and with an edge (S1, S2) if and only if there are v1 œ S1, v2 œ S2
such that (v1, v2) œ E.

The first acceleration heuristic is a divide-and-conquer technique that consists in applying
Algorithm 1 (or the inner loop of Algorithm 2) iteratively on each c

≠1(q) for q = 0, 1, 2, . . . , p,
using at each step the information computed during steps j < q (since the value of a
vertex v depends only on the values of the vertices vÕ such that c(vÕ) 6 c(v)). The second
acceleration heuristic consists in studying more precisely each component c

≠1(q). Having
already computed the optimal values Val(v) of vertices v œ c

≠1({0, . . . , q ≠ 1}), we ask
an oracle to precompute a finite set Sv ™ ZŒ of possible optimal values for each vertex
v œ c

≠1(q). For MCR games and the inner iteration of the algorithm for total-payo� games,
one way to construct such a set Sv is to consider that possible optimal values are the one of
non-looping paths inside the component exiting it, since, in MCR games, there exist optimal
strategies for both players whose outcome is a non-looping path (see Section 3).

We can identify classes of weighted graphs for which there exists an oracle that runs in
polynomial time and returns, for all vertices v, a set Sv of polynomial size. On such classes,
Algorithms 1 and 2, enhanced with our two acceleration techniques, run in polynomial time.
For instance, for all fixed positive integers L, the class of weighted graphs where every
component c

≠1(q) uses at most L distinct weights (that can be arbitrarily large in absolute
value) satisfies this criterion. Table 1 contains the results obtained with the heuristics on the
parametric example presented before. Observe that the acceleration technique permits here
to decrease drastically the execution time, the number of iterations in both loops depending
not even anymore on W . Even though the number of iterations in the external loop increases
with heuristics, due to the decomposition, less computation is required in each internal loop
since we only apply the computation for the active component.

5 Such a mapping is computable in linear time, e.g., by Tarjan’s algorithm [15].
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Thank you for your attention!


