Two mobile agents (robots) with distinct labels have to meet in an arbitrary, possibly infinite, unknown connected graph or in an unknown connected terrain in the plane. Agents are modeled as points, and the route of each of them only depends on its label and on the unknown environment. The actual walk of each agent also depends on an asynchronous adversary that may arbitrarily vary the speed of the agent, stop it, or even move it back and forth, as long as the walk of the agent in each segment of its route is continuous, does not leave it and covers all of it. Meeting in a graph means that both agents must be at the same time in some node or in some point inside an edge of the graph, while meeting in a terrain means that both agents must be at the same time in some point of the terrain. Does there exist a deterministic algorithm that allows any two agents to meet in any unknown environment in spite of this very powerful adversary? We give deterministic rendezvous algorithms for agents starting at arbitrary nodes of any anonymous connected graph (finite or infinite) and for agents starting at any interior points with rational coordinates in any closed region of the plane with path-connected interior. While our algorithms work in a very general setting – agents can, indeed, meet almost everywhere – we show that none of the above few limitations imposed on the environment can be removed. On the other hand, our algorithm also guarantees the following approximate rendezvous for agents starting at arbitrary interior points of a terrain as above: agents will eventually get at an arbitrarily small positive distance from each other.

keywords: rendezvous, graph, asynchronous, deterministic
1 Introduction

The problem and the model. Two mobile agents (robots) modeled as points starting at different locations of an unknown environment have to meet. This task is known in the literature as the rendezvous problem, and has been studied under two alternative scenarios. Either the agents move in a network, modeled by an undirected connected graph (the graph scenario), or they move in (some subset of) the plane (the geometric scenario).

In this paper we study the asynchronous version of the rendezvous problem, under both above scenarios: each agent designs its route and an adversary controls the speed of each agent, can vary this speed, stop the agent, or even move it back and forth, as long as the walk of the agent in each segment of its route is continuous, does not leave it and covers all of it. In the asynchronous version of the graph scenario, meeting at a node may be impossible even in the two-node graph, as the adversary can desynchronize the agents and make them visit nodes at different times. Thus it is necessary to relax the requirement and allow agents to meet either in a node or inside an edge. Such a definition of meeting is natural, e.g., when agents are robots traveling in a labyrinth. We consider an embedding of the underlying graph in the three-dimensional Euclidean space, with nodes of the graph being points of the space and edges being pairwise disjoint line segments joining them (hence there are no edge crossings). Agents are modeled as points moving inside this embedding.

If nodes of the graph are labeled and the labeling is known, then agents can decide to meet at a predetermined node and the rendezvous problem reduces to graph exploration. However, in many applications, when rendezvous is needed in a network of unknown topology, such unique labeling of nodes may be unavailable, or agents may be unable to perceive such labels, e.g., due to security reasons. Hence it is important to design rendezvous algorithms for agents operating in anonymous graphs, i.e., graphs without unique labeling of nodes. It is important to note that the agents have to be able to locally distinguish ports at a node: otherwise, an agent may even be unable to visit all neighbors of a node of degree 3 (after visiting the second neighbor, the agent cannot distinguish the port leading to the first visited neighbor from that leading to the unvisited one). Consequently, agents initially located at two nodes of degree 3, might never be able to meet. This justifies a common assumption made in the literature: all ports at a node are locally labeled by distinct positive integers. Degrees of nodes can be either finite or infinite. No coherence between those local labelings is assumed. When an agent leaves a node, it is aware of the port number by which it leaves and when it enters a node, it is aware of the entry port number. It can also verify, at each node, whether a given positive integer is a port number at this node. Agents know neither the graph, nor the initial distance between them. They cannot mark the nodes or the edges in any way. Rendezvous has to be accomplished regardless of local labelings of ports. Each agent terminates its walk at the time of meeting the other agent.

In the geometric scenario, we assume that the terrain in which agents operate is a closed subset of the Euclidean plane, i.e., it contains limits of all converging sequences of points in it. The boundary of the terrain is defined as the set of points having arbitrarily close points both in the terrain and outside of it. Since the terrain is closed, the boundary is included in it. All other points of the terrain are its interior points. Each agent can only distinguish if it is currently in an interior point of the terrain or in its boundary. Agents do not know the terrain in which they operate, they cannot “see” any vicinity of the currently visited point and they cannot leave any marks. Agents are equipped with a compass and with the same unit of length. Thus systems of coordinates of
agents are aligned and the origin for each agent is at its starting point. Again, an agent terminates its walk at the time of meeting the other agent.

If agents are identical, i.e., they do not have distinct identifiers, and execute the same algorithm, then deterministic rendezvous is impossible, e.g., in the ring (graph scenario) or in the plane (geometric scenario): the adversary will make the agents move always in the same direction at the same speed, keeping them at the same distance at all times, thus they will never meet. Hence we assume that agents have distinct identifiers, called labels, which are two different positive integers. This is their only way to break symmetry. We assume that each agent knows its own label but not the label of the other agent. This excludes, e.g., rendezvous strategies of the type “waiting for mommy”, in which the agent with smaller label remains idle and the other agent explores the graph or the terrain. We do not impose any restriction on the memory of the agents: from the computational perspective they are viewed as Turing machines.

Two important notions used to describe movements of agents are the route of each agent and its walk. Roughly speaking, each agent chooses the route where it moves and the adversary describes the walk on this route, deciding how the agent moves. More precisely, these notions are defined as follows. The adversary initially places an agent with label ℓ at some node of the graph or at some point in the terrain. Given this label and this starting point, the route is chosen by the agent and is defined as follows. In the case of the graph, the agent chooses one of the available ports at the current node. After getting to the other end of the corresponding edge, the agent chooses one of the available ports at this node, and so on, indefinitely (until rendezvous). The resulting route of the agent is the corresponding sequence of edges, which is a (not necessarily simple) path in the graph. The route in a terrain is a sequence (S_1, S_2, \ldots) of segments, where $S_i = [a_i, a_{i+1}]$, defined in stages as follows, given the agent’s label and the starting point. In stage i the agent starts at point a_i, and a_1 is the starting point chosen by the adversary. The agent chooses a direction α and distance x. If the segment of length x in direction α starting in v intersects the boundary of the terrain at some distance $y \leq x$ from v, the agent becomes aware of it in the intersection point w closest to v. In this case, the stage ends at w and in the next stage the agent chooses the reverse direction $\overrightarrow{\alpha}$ and the distance y (that will cause it to return to v). If the segment of length x in direction α starting in v does not intersect the boundary of the terrain, the stage ends when the agent reaches point u at distance x from v in direction α. Stages are repeated indefinitely (until rendezvous).

We now describe the walk f of an agent on its route. Let $R = (S_1, S_2, \ldots)$ be the route of an agent. In the graph scenario this is a (not necessarily simple) infinite path in the (spatial embedding of) the graph, and in the geometric scenario it is an infinite polygonal line in the plane. Let (t_1, t_2, \ldots), where $t_1 = 0$, be an increasing sequence of reals, chosen by the adversary, that represent points in time. Let $f_i : [t_i, t_{i+1}] \rightarrow [a_i, a_{i+1}]$ be any continuous function, chosen by the adversary, such that $f_i(t_i) = a_i$ and $f_i(t_{i+1}) = a_{i+1}$. For any $t \in [t_i, t_{i+1}]$, we define $f(t) = f_i(t)$. The interpretation of the walk f is as follows: at time t the agent is at the point $f(t)$ of its route. This general definition of the walk and the fact that it is constructed by the adversary capture the asynchronous characteristics of the process. The movement of the agent can be at arbitrary speed, the agent may sometimes stop or go back and forth, as long as the walk in each segment of the route is continuous and covers all of it.

Notice that the power of the asynchronous adversary to produce any continuous walk on the routes determined by the agents implies the following significant difference with respect to the synchronous scenario. While in the latter scenario the relative movement of the agents depends only on their routes, in our setting, this movement is also controlled by the adversary.
Agents with routes R_1 and R_2 and with walks f_1 and f_2 meet at time t, if points $f_1(t)$ and $f_2(t)$ are identical. A rendezvous is guaranteed for routes R_1 and R_2, if the agents using these routes meet at some time t, regardless of the walks chosen by the adversary. A rendezvous algorithm executed by agents in a graph or in a terrain produces routes of agents, given the label of each agent and its starting point.

It should be stressed that, while routes of agents are formally defined as infinite sequences of segments, our results imply that in any instance of the rendezvous problem, meeting will occur at some finite time, and thus each agent will compute only finitely many segments of its route. As mentioned above, agents compute their routes in stages, and given any walk chosen by the adversary, each stage is completed in finite time. There is no stopping issue in our solution: rendezvous always occurs at some stage for each of the agents and then both agents stop. Another feature of our rendezvous algorithms is that in the choice of consecutive segments of its route an agent does not use the knowledge of the walk to date. Thus the route depends only on the label of the agent, on the environment (graph or terrain), and on the starting point chosen by the adversary, but not on its other actions.

Our results. We give two deterministic algorithms, the first for rendezvous in the graph scenario and the second in the geometric scenario. For the graph scenario, our algorithm accomplishes rendezvous in any connected countable* (finite or infinite) graph, for arbitrary starting nodes. A consequence of this very general result is the positive answer to the following question from [12]: Is deterministic asynchronous rendezvous feasible in any finite connected graph without knowing any upper bound on its size? (In [12] the authors presented a deterministic asynchronous rendezvous algorithm in arbitrary finite connected graphs with known upper bound on the size.)

For the geometric scenario, our algorithm accomplishes rendezvous for agents starting at any interior points with rational coordinates in any closed region of the plane with path-connected interior. (Recall that a subset T of the plane is path-connected, if for any points $u, v \in T$, there is a continuous function $h : [0, 1] \rightarrow P$, such that $P \subseteq T$ and $h(0) = u, h(1) = v$.) On the other hand, our algorithm guarantees the following approximate rendezvous for agents starting at arbitrary interior points of a terrain as above: agents will eventually get at an arbitrarily small positive distance from each other. This implies the perhaps surprising result that if agents have arbitrarily small positive visibility ranges (rather than 0 visibility range as we assume) and they start in arbitrary points of the (empty) plane, then they will see each other in finite time, regardless of the actions of the adversary.

Discussion of limitations. While our algorithms work in a very general setting – agents can, indeed, meet almost everywhere – it turns out that none of the few limitations imposed on the environment can be removed. For the graph scenario, the only limitation is connectivity of the graph. It is clear that rendezvous in disconnected graphs is impossible, if the agents start in different connected components. For the geometric scenario, let us review the limitations one by one. First, we assume that the terrain is closed. This assumption cannot be entirely removed for the following technical reason. Consider the construction of a route in an open disc. An agent starting at any point, that chooses in the first stage an arbitrary direction and a sufficiently large distance, at some point would have to leave the disc. Since it does not see anything in its vicinity, it cannot know where the boundary is before hitting it, and it cannot hit it, as it is not allowed to leave the terrain. It follows that the agent could not construct further segments of its route. The second assumption is that agents start at interior points of the terrain. This assumption cannot

* A graph is countable if the set of its nodes is countable, i.e., if there exists a one-to-one function from this set into the set of natural numbers.
be removed either. Indeed, suppose that the terrain is a closed disc with a semi-circle attached to it. This is a closed subset of the plane with nonempty path-connected interior. Suppose that one agent starts in the disc and the other at the end of the semi-circle. Since agents need to move along polygonal lines, the second agent could not move at all and the first one cannot reach it. Our next assumption is that the interior of the terrain is path-connected. To show that this assumption cannot be removed, consider two disjoint closed discs joined by an arc of a circle. This terrain is closed and path-connected, but if each agent starts inside a different disc, again they cannot meet, because agents need to move along polygonal lines, and hence cannot traverse the joining arc. The final assumption is that the starting points of the agents have rational coordinates. In Section 4 we prove that if the agents start in arbitrary points, then rendezvous cannot be guaranteed even in the plane. We show, however, that for arbitrary starting points approximate rendezvous is guaranteed.

Related work. The rendezvous problem was first described in [25]. A detailed discussion of the large literature on rendezvous can be found in the excellent book [4]. Most of the results in this domain can be divided into two classes: those considering the geometric scenario (rendezvous in the line, see, e.g., [9, 10, 17], or in the plane, see, e.g., [7, 8]), and those discussing rendezvous in graphs, e.g., [2, 5]. Some of the authors, e.g., [2, 3, 6, 9, 18] consider the probabilistic scenario where inputs and/or rendezvous strategies are random. Randomized rendezvous strategies use random walks in graphs, which were thoroughly investigated and applied also to other problems, such as graph traversing [1], on-line algorithms [13] and estimating volumes of convex bodies [15]. A generalization of the rendezvous problem is that of gathering [16, 18, 19, 20, 23, 27], when more than 2 agents have to meet in one location.

If graphs are unlabeled, deterministic rendezvous requires breaking symmetry, which can be accomplished either by allowing marking nodes or by labeling the agents. Deterministic rendezvous with anonymous agents working in unlabeled graphs but equipped with tokens used to mark nodes was considered e.g., in [22]. In [28] the authors studied gathering many agents with unique labels. In [14, 21, 29] deterministic rendezvous in graphs with labeled agents was considered. However, in all the above papers, the synchronous setting was assumed. Asynchronous gathering under geometric scenarios has been studied, e.g., in [11, 16, 24] in different models than ours: agents could not remember past events, but they were assumed to have at least partial visibility of the scene. The first paper to consider deterministic asynchronous rendezvous in graphs was [12]. The authors concentrated on complexity of rendezvous in simple graphs, such as the ring and the infinite line. They also showed feasibility of deterministic asynchronous rendezvous in arbitrary finite connected graphs with known upper bound on the size. Further improvements of the above results for the infinite line were proposed in [26]. Gathering many robots in a graph, under a different asynchronous model and assuming that the whole graph is seen by each robot, has been studied in [19, 20].

2 Preliminary notions and results

A fundamental notion on which our algorithms are based is that of a tunnel. Consider any graph G and two routes R_1 and R_2 starting at nodes v and w, respectively. We say that these routes form a tunnel, if there exists a prefix $[e_1, e_2, \ldots, e_n]$ of route R_1 and a prefix $[e_n, e_{n-1}, \ldots, e_1]$ of route R_2, for some edges e_i in the graph, such that $e_i = \{v_i, v_{i+1}\}$, where $v_1 = v$ and $v_{n+1} = w$. Intuitively, the route R_1 has a prefix P ending at w and the route R_2 has a prefix which is the reverse of P, ending at v. By a slight abuse of terminology we will also say that prefixes $[e_1, e_2, \ldots, e_n]$ and $[e_n, e_{n-1}, \ldots, e_1]$ form a tunnel.

Proposition 2.1 If routes R_1 and R_2 form a tunnel, then they guarantee rendezvous.
Proof: Consider an embedding of the graph G in the three-dimensional Euclidean space, with nodes of the graph being points of the space and edges being pairwise disjoint line segments joining them. Consider routes R_1 and R_2 starting at nodes v and w, respectively. Let agent a_i execute route R_i. Let P be the polygonal line joining v with w, corresponding to the prefixes of the routes, given by the tunnel. Let D be its length defined as the sum of lengths of edges in the corresponding prefixes of the routes. (For non-simple paths in the graph, the same edge is counted many times.) Consider any walks f_1 on R_1 and f_2 on R_2. Let t' be the first moment when an agent leaves its starting point and let t'' be the moment when an agent gets to the end of P other than its starting point. For any $t \in [t', t'']$, let $d_1(t)$ be the distance of agent a_1 from its starting point v at time t, counted on the route R_1, and let $d_2(t)$ be the distance of agent a_2 from its target point v at time t, counted on the route R_2. Let $\delta(t) = d_2(t) - d_1(t)$. We have $\delta(t') = D$ and $\delta(t'') = d \leq 0$. The function δ is thus a continuous function from the interval $[t', t'']$ onto some interval $[d', D]$, where $d' \leq d$, in view of the continuity of walks f_1 and f_2. Since 0 belongs to the interval $[d', D]$, there must exist a moment t in the interval $[t', t'']$, for which $\delta(t) = 0$. For this point we have $f_1(t) = f_2(t)$, and the rendezvous occurs. \hfill \Box

We now recall some basic facts from set theory, that will be used in further considerations.

Proposition 2.2 The set of rational numbers and the set of positive rational numbers are countable. The set of sequences of positive integers is countable. The set of all finite sequences with terms in a countable set is countable.

3 Rendezvous in the graph scenario

Let $G = (V, E)$ be the connected graph in which the rendezvous must be performed. Let S_n be the set of sequences of n positive integers. Let $P = \{(i, j, s', s'') \mid i, j \in \mathbb{N}, i < j \text{ and } \exists n \text{ s.t. } s', s'' \in S_n\}$. There exists a bijection from the set of positive integers onto P, in view of Proposition 2.2. Let $(\varphi_1, \varphi_2, \ldots)$ be a fixed enumeration of P. All agents have to agree on the same enumeration. It is easy to produce a formula computing ϕ_k for any k. This formula is included in the rendezvous algorithm. For a finite path r in G, we denote by \bar{r} the path with the same edges as in r, but in the reverse order. Remark that r and \bar{r} form a tunnel.

We first give a high-level idea of the algorithm referring to the pseudo code given below. We “force” the routes of any two agents to form a tunnel for every possible combination of starting nodes and labels of the two agents. By Proposition 2.1, this suffices to guarantee rendezvous. Any starting configuration of robot i placed at node v and robot j placed at node w by the adversary corresponds to a quadruple (i, j, s', s'') where s' is a sequence of ports inducing a path from v to w and s'' is a sequence of ports inducing the reverse path from w to v.

Each agent constructs its route in phases. At the beginning and at the end of each phase the agent is in its starting node. At phase k the previously constructed initial part of the route r_{has} is extended while the agent processes quadruple φ_k (some of the extensions are null). This extension guarantees that the routes of agents of the corresponding starting configuration will form a tunnel. When agent with label l processes quadruple $\varphi_k = (i, j, s', s'')$ nothing happens if $l \neq i$ and $l \neq j$ (line 4). If $l = i$, agent i tries to extend its route to guarantee rendezvous with agent j under the hypothesis that a path from v to w corresponds to the sequence s' of ports and the reverse path corresponds to the sequence s''. For this to happen, the agent first tries to follow the path $r(s')$ induced by the sequence s' of ports (lines 8-11). This attempt is considered successful if the following conditions are satisfied:
at consecutive nodes of the traversed path, ports with numbers from the sequence s' are available,
the reverse path corresponds to the sequence s'' of ports.

When the attempt is successful (the condition of line 13 is satisfied) the agent is at node w and it simulates the first $k - 1$ phases of the execution of the algorithm by agent with label j starting from w. The effect of this simulation is the path r_{sim}. Upon completion of this part, agent with label i returns to w. Now the agent is able to further extend its path to form a tunnel with the route of agent j (line 16). Finally, whether the attempt to follow the path $r(s')$ is successful or not, the agent with label i backtracks to v (line 17). If $l = j$, the above actions are performed with the roles of i and j reversed and the role of s' and s'' reversed.

Algorithm GraphRV calls the recursive function GraphRVREC. This function is called in two different modes controlled by the boolean $mode$. In the “main” mode ($mode = true$) the function is executed indefinitely, until rendezvous. In the “simulation” mode ($mode = false$), the function is executed for all values up to a given p, or until rendezvous, whichever comes first. The symbol \sim denotes the concatenation of sequences.

Algorithm GraphRV
INPUT: A starting node $v \in V$ and a label l of the agent.
OUTPUT: A rendezvous route r.

GraphRVREC($v, l, 0$, true);

function GraphRVREC(node v, label l, integer p, boolean $mode$)
1 $k := 1$; $r := \lambda$;
2 while not rendezvous and ($k \leq p$ or $mode$) do
3 let $\varphi_k = (i, j, s', s'')$; $r_{\text{hist}} := r$;
4 if $l = i$ or $l = j$ then
5 if $l = i$ then $s_1 := s'$; $s_2 := s''$; $l' := j$
6 else $s_1 := s''$; $s_2 := s'$; $l' := i$;
7 let $s_1 = (p_1, \ldots, p_n)$; $m := 1$; $r(s_1) := \lambda$;
8 while $m \leq n$ and p_m is a port at the current node do
9 $r(s_1) := r(s_1) \sim (e_m)$ where e_m is the edge corresponding to port p_m;
10 let a_m be the port corresponding to e_m at its other endpoint;
11 $m := m + 1$;
12 $r := r \sim r(s_1)$;
13 if $s_2 = (a_n, \ldots, a_1)$ then
14 let w be the current node;
15 $r_{\text{sim}} := \text{GraphRVREC}(w, l', k - 1, false)$;
16 $r := r \sim r_{\text{sim}} \sim r(s_1) \sim r_{\text{hist}} \sim r(s_1) \sim r_{\text{sim}}$;
17 $r := r \sim r(s_1)$;
18 $k := k + 1$;
19 return r

Theorem 3.1 Algorithm GraphRV guarantees asynchronous rendezvous for arbitrary two agents starting from any nodes of an arbitrary connected graph.

Proof: Let v and i (resp. w and j) be the starting node and the label of the first agent (resp. the second agent). There exists a path q linking v to w, since the graph G is connected. Let s'
route of agent i: $r_v \leftarrow q \leftarrow r_w \leftarrow \overline{q} \leftarrow r_v \leftarrow q \leftarrow r_w \leftarrow \overline{q}$ \ldots
route of agent j: $r_w \leftarrow q \leftarrow r_v \leftarrow q \leftarrow r_w \leftarrow q \leftarrow r_v \leftarrow q$ \ldots
tunnel: $r_v \leftarrow q \leftarrow r_w \leftarrow q \leftarrow r_v \leftarrow q \leftarrow r_w$

Figure 1: Tunnel between the routes of two agents

Let r_v (resp. r_w) be the output of the execution of the first $k-1$ phases of Algorithm GraphRV for agent i (resp. j) starting in node v (resp. w). At the beginning of phase k, the portion of the route constructed by agent i is $r_v \leftarrow q$, since the agent has started the phase in node v. The path r_{hist} computed by the recursive call of GraphRVREC is equal to r_w. It follows that at the end of phase k, the portion of the route constructed by agent i is $\rho = r_v \leftarrow q \leftarrow r_w \leftarrow \overline{q} \leftarrow r_v \leftarrow q \leftarrow r_w \leftarrow q$. Similarly, at the end of phase k, the portion of the route constructed by agent j is $\rho' = r_w \leftarrow q \leftarrow r_v \leftarrow q \leftarrow r_w \leftarrow q \leftarrow r_v \leftarrow q$. By construction, the part $r_v \leftarrow q \leftarrow r_w \leftarrow q \leftarrow r_v \leftarrow q$ of ρ and the part $r_w \leftarrow q \leftarrow r_v \leftarrow q \leftarrow r_w \leftarrow q$ of ρ' form a tunnel (see Fig 1).

4 Rendezvous in the geometric scenario

In this section we consider the problem of rendezvous in a terrain included in the Euclidean plane. As announced in the introduction, we restrict attention to closed subsets of the plane whose interior is path-connected. We observed that these restrictions cannot be removed.

Fix a system of coordinates Σ with the y-axis pointing to North (shown by compasses of the agents) and with the unit of length equal to that of the agents. Points with rational coordinates in Σ will
be called rational. A polygonal line all of whose vertices, including extremities, are rational will be called a rational line. For any point u, let Σ_u be the shift of the system Σ with origin at point u.

Lemma 4.1 In any path-connected, open subset S of the plane and for any rational points $u, v \in S$, there exists a rational polygonal line included in S, with extremities u and v, all of whose vertices are rational.

Proof: By path-connectivity of S, there exists a path p included in S with extremities u and v, which is a continuous image of the interval $[0,1]$. Let d be the distance from p to cS - the complement of S. Since $p \cap cS = \emptyset$ and both p and cS are closed sets, we have $d > 0$. Partition the plane into squares of side length at most $d/2$ with rational vertices. Let Q be the set of squares intersecting p. Since p is a bounded set, Q is finite. Consider the graph G_p with node set Q, such that $x, y \in Q$ are adjacent if p contains a point belonging to a common boundary of x and y. Since G_p is connected, there exists a path (x_1, \ldots, x_k) in G_p linking squares x_1 containing u and x_k containing v. Let p^* be the polygonal path $(uw_1, w_1w_2, \ldots, w_{k-1}w_k, w_kwv)$, where w_i is the center of square x_i, for all $i = 1, \ldots, k$. The path p^* is rational and contained in the union of squares from Q. Since each point of p^* is at distance at most $d\sqrt{2}/2$ from some point of p, we have $p^* \cap cS = \emptyset$, hence p^* is included in S. □

We define the following graph $G_T = (V, E)$, for a given terrain T. The set of nodes V is the union of two disjoint subsets V_1, V_2. The set V_1 is the set of all interior, rational points of T and the set V_2 is defined below.

For each pair of points p_1, p_2, such that $p_1 \in V_1$ and p_2 is any rational point of the plane, we consider the segment $s = \overline{p_1p_2}$. If s does not intersect the boundary of T, then p_2 must belong to V_1 and we add the edge $\{p_1, p_2\}$ to E. If s intersects the boundary of T, we add a new node v to V_2 and we add the edge $\{p_1, v\}$ to E. Note that such a node v is always added to V_2 when point p_2 is on the boundary of T or outside of T (and it may or may not be added to V_2 when p_2 is in the interior of T). Since each node in V_2 corresponds to a pair of rational points p_1, p_2, there is a countable number of nodes in V_2, each of them having degree 1. The unique port at any node in V_2 has number 1 and ports at any node in V_1 are defined as follows. Let (z_1, z_2, \ldots, z_i) be any fixed enumeration of all pairs of rational numbers. Let $z_i = (q_1, q_2)$. Let u be the point in the plane with coordinates (q_1, q_2) in the system Σ_p. The port at p corresponding to edge $\{p, u\}$ has number i.

Algorithm GeometricRV

The algorithm is a direct application of Algorithm GraphRV to the graph G_T. The agent operating in an unknown terrain T designs a route in the corresponding unknown graph G_T as follows. When the agent chooses a port at a node $p \in V_1$, this edge corresponds to some rational point q_i in the plane that the agent tries to reach from p. Two cases may occur. The agent either walks in the interior of T until reaching q_i, which corresponds to the traversal of an edge between two nodes of V_1, or it hits the boundary of T, which corresponds to a visit of a node $p' \in V_2$. At a node $p' \in V_2$ there is no choice of port, since its degree is 1. The agent takes the unique port which leads to the (already visited) node $p \in V_1$. The resulting route is a sequence of segments joining rational interior points of the terrain T and of pairs of consecutive segments $(\overline{vb}, \overline{bw})$, where v is a rational interior point of T and b is a point on the boundary of T.

Since by Lemma 4.1 graph G_T is connected, rendezvous is guaranteed in the graph G_T, which implies rendezvous in T.

8
Theorem 4.1 Algorithm GeometricRV guarantees asynchronous rendezvous for arbitrary two agents starting from arbitrary rational interior points of any closed terrain T with path-connected interior.

Theorem 4.1 should be contrasted with the following negative result showing that the restriction on the starting points of the agents cannot be removed, even for rendezvous in the (empty) plane.

Proposition 4.1 There is no algorithm that guarantees asynchronous rendezvous of arbitrary agents starting from arbitrary points in the plane.

Proof: Consider the agent with label ℓ operating in the empty plane. Since the terrain is fixed, the route of this agent depends only on the starting point. Let $R = (e_1, e_2, \ldots)$ be the route of the agent with label 1 starting at a fixed point v. Consider the route $R_2(w)$ of the agent with label 2 starting at point w. Since there are no boundary points in the terrain, for any starting points w' and w'', route $R_2(w'')$ is a parallel shift of route $R_2(w')$ by the vector (w', w''). Both of them are polygonal lines.

We will say that two routes are almost disjoint if all vertices of each of them are outside the other route. Observe that if, for some starting point w, route $R_2(w)$ of agent 2 is almost disjoint from route R of agent 1, then the adversary can avoid rendezvous of agents 1 and 2 following these routes, by first moving agent 1 to the end of the first segment of its route, then moving agent 2 to the end of the first segment of its route and so on, alternating traversals of agents on consecutive segments of their routes. Hence, in order to prove our result, it is enough to show the existence of a point w^*, such that route $R_2(w^*)$ is almost disjoint from route R.

Let (f_1, f_2, \ldots) be the sequence of vectors corresponding to consecutive segments of the route $R_2(w)$, for any starting point w. For any fixed point w, denote by $f_j(w)$ the segment corresponding to vector f_j on route $R_2(w)$. Let (p_1, p_2, \ldots) be any sequence that orders all couples (e_i, f_j), for all positive integers i, j. For any k, let $p_k = (e_{i_k}, f_{j_k})$ We will construct by induction a descending sequence of closed discs (D_1, D_2, \ldots) of positive radii, satisfying the following invariant. For all points $w \in D_k$, both endpoints of the segment e_{i_k} are outside of the segment $f_{j_k}(w)$ and both endpoints of the segment $f_{j_k}(w)$ are outside of the segment e_{i_k}. Suppose that the invariant is satisfied for $k-1$ (for $k = 1$ we may take as D_0 any disc with radius 1). The set of points w inside disc D_{k-1} that may possibly violate the invariant for k is contained in the union of four segments: two segments parallel to f_{j_k} and two segments parallel to e_{i_k}. There exists a closed disc of positive radius contained in D_{k-1} which is disjoint from those four segments. Let D_k be such a disc. Thus the invariant is satisfied for k. This completes the construction by induction.

The intersection of all discs D_k is non-empty. Let w^* be a point in this intersection. Since (p_1, p_2, \ldots) enumerated all couples (e_i, f_j), it follows that route $R_2(w^*)$ is almost disjoint from route R, and hence agents 1 and 2 starting at points v and w^*, respectively, do not meet for some walks chosen by the adversary. \hfill \square

While Proposition 4.1 shows that rendezvous of agents starting from arbitrary points is impossible, it turns out that a slightly easier task can be accomplished in this setting. For any $\epsilon > 0$, we say that routes R_1 and R_2 of agents guarantee ϵ-approximate rendezvous, if at some point t of time, the agents get at distance at most ϵ from each other, regardless of the walks chosen by the adversary.

Theorem 4.2 Algorithm GeometricRV guarantees ϵ-approximate rendezvous for any $\epsilon > 0$, for arbitrary agents starting from arbitrary interior points of any closed terrain T with path-connected interior.
Proof: Fix an $\epsilon > 0$. Consider any two agents starting at interior points v and w of the terrain T. Let $\rho > 0$ be the distance from w to the boundary of T. Choose a point w' with rational coordinates in Σ_v, in the interior of the disc D of radius $\rho/2$ centered at w. By Lemma 4.1 (applied to the system Σ_v, instead of Σ), there exists a rational polygonal line P in the system Σ_v, included in the interior of T and joining v and w'. Let $d > 0$ be the distance between P and the boundary of T. Let $r = \min(\rho/2, d/2, \epsilon)$. Choose a point w'' with rational coordinates in the system Σ_v, at distance less than r from w. Let P_v be the polygonal line P extended by the segment $\overline{w'w''}$. Note that P_v is at distance at least r from the boundary of T. Indeed, if $x \in P$, then the distance from x to the boundary is at least $d > r$, and if $x \in \overline{w'w''}$, then the distance from x to the boundary is at least $\rho/2 \geq r$, as the entire segment $\overline{w'w''}$ is included in disc D.

Let Φ be the translation by the vector $(w''w)$ and let P_w be the image of P_v with respect to Φ. The point w is one of the extremities of P_w. Since the distance from w'' to w is less than r, the entire polygonal line P_w is in the interior of T. The polygonal line P_w is rational in the system Σ_w.

Let f be any walk of the first agent on any route with the initial part P_v starting at v, and let g be any walk of the second agent on any route with the initial part P_w starting at w. Consider the composition $g^* = \Phi^{-1} \circ g$. Hence g^* is a walk on a route with initial part P_v, starting at w''. By Theorem 4.1, Algorithm GeometricRV guarantees rendezvous of agents at some point in time t, for the walk f starting at v and the walk g^* starting at w''.

Consider the positions at time t of both agents starting at v and w, in walks f and g. Since $f(t) = g^*(t) = \Phi^{-1}(g(t))$, and Φ is a translation by a vector of length less than r (hence less than ϵ), it follows that the distance between $f(t)$ and $g(t)$ is less than ϵ. Since walks f and g were arbitrarily chosen by the adversary, this guarantees ϵ-approximate rendezvous.

A consequence of Theorem 4.2 is that if agents have arbitrarily small positive visibility ranges (rather than 0 visibility range as we assumed) and they start in arbitrary points of the (empty) plane, then Algorithm GeometricRV guarantees that they will see each other in finite time, regardless of the actions of the adversary.

5 Conclusion

We provided deterministic asynchronous rendezvous algorithms for graphs and for terrains in the plane. We studied only the feasibility of rendezvous and our results are very general: for the graph scenario, we showed that rendezvous is possible in any connected countable (finite or infinite) graph, starting from any node, without any information on the graph. The only thing an agent needs to know is its own label. In particular, this result implies a positive solution of a problem from [12].

Our algorithms rely on an arbitrary fixed enumeration of quadruples (i, j, s', s''), where i and j are positive integers and s' and s'' are finite sequences of positive integers. The complexity of the algorithm (measured by the worst-case length of paths that the agents have to traverse until rendezvous) depends on this enumeration, but we do not think any enumeration can make the algorithm efficient. Thus a natural interesting question left for further investigations is the following:

Does there exist a deterministic asynchronous rendezvous algorithm, working for all connected countable unknown graphs, with complexity polynomial in the labels of the agents and in the initial distance between them?
References

[27] L. Thomas, Finding your kids when they are lost, Journal on Operational Res. Soc. 43 (1992), 637-639.
