
Optimality and Competitiveness of Exploring Polygons by Mobile

Robots∗

Jurek Czyzowicz †‡ Arnaud Labourel †§ Andrzej Pelc †¶

July 23, 2009

Abstract

A mobile robot, represented by a point moving along a polygonal line in the plane, has to
explore an unknown polygon and return to the starting point. The robot has a sensing area
which can be a circle or a square centered at the robot. This area shifts while the robot moves
inside the polygon, and at each point of its trajectory the robot “sees” (explores) all points
for which the segment between the robot and the point is contained in the polygon and in
the sensing area. We focus on two tasks: exploring the entire polygon and exploring only its
boundary. We consider several scenarios: both shapes of the sensing area and the Manhattan
and the Euclidean metrics.

We focus on two quality benchmarks for exploration performance: optimality (the length
of the trajectory of the robot is equal to that of the optimal robot knowing the polygon) and
competitiveness (the length of the trajectory of the robot is at most a constant multiple of that
of the optimal robot knowing the polygon). Most of our results concern rectilinear polygons. We
show that optimal exploration is possible in only one scenario, that of exploring the boundary
by a robot with square sensing area, starting at the boundary and using the Manhattan metric.
For this case we give an optimal exploration algorithm, and in all other scenarios we prove
impossibility of optimal exploration. For competitiveness the situation is more optimistic: we
show a competitive exploration algorithm for rectilinear polygons whenever the sensing area is
a square, for both tasks, regardless of the metric and of the starting point. Finally, we show a
competitive exploration algorithm for arbitrary convex polygons, for both shapes of the sensing
area, regardless of the metric and of the starting point.
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1 Introduction

The model and the problem. A mobile robot, represented by a point moving along a polygonal
line in the plane, has to explore an unknown polygon and return to the starting point. We assume
that the boundary is included in the polygon. The robot has a sensing area (abbreviated by SA
in the sequel) which can be a circle or a square centered at the robot. During the exploration
the robot must remain within the polygon, but its SA can partially exceed the boundaries of the
polygon. At each point of its trajectory the robot “sees” (explores) all points for which the segment
between the robot and the point is contained in the polygon to be explored and in the sensing area.
For any explored point the robot is aware of whether this point is on the boundary of the polygon
or not. We consider two tasks: exploring the entire polygon and exploring its boundary, for both
shapes of the SA and for the Manhattan and the Euclidean metrics. The Manhattan metric will be
called L1 and the Euclidean metric will be called L2. (Recall that, in the L1-metric, the distance
between two points is the sum of the differences of their coordinates.) We also differentiate the
situation when the starting point of the robot is at the boundary and when it is an arbitrary point
of the polygon. We assume that the robot remembers what it has explored, i.e., it keeps a partial
map of the explored part of the polygon with its trajectory in it, at all times.

The quality measure of an exploration algorithm not knowing the polygon (an on-line algorithm)
is the length of the trajectory of the robot, and we seek to minimize this length. We compare it to the
smallest length of the trajectory of a robot knowing the polygon (an off-line algorithm), executing
the same task (exploring the boundary or exploring the entire polygon) and starting at the same
point. The ratio between these two lengths, maximized over all pairs (polygon, starting point), is
the competitive ratio of the on-line exploration algorithm. We focus on two quality benchmarks
for exploration performance: optimality (competitive ratio equal 1) and competitiveness (constant
competitive ratio).

Our results. Our first set of results concerns the possibility of optimal on-line exploration.
Here we consider only rectilinear polygons (those whose angles are either π/2 or 3π/2). It turns
out that optimal exploration is possible only in one scenario, that of exploring the boundary by a
robot with square sensing area aligned with the sides of the polygon, starting at the boundary and
using the L1-metric. For this case we give an optimal exploration algorithm. In all other scenarios
(when either the entire polygon has to be explored, or the sensing area is a circle, or the metric
is L2, or the starting point may be strictly inside the polygon) we prove impossibility of optimal
on-line exploration.

For competitiveness, the situation is more optimistic: our optimal boundary exploration algo-
rithm yields a competitive exploration algorithm for rectilinear polygons whenever the sensing area
is a square aligned with the sides of the polygon, for both tasks (exploring the boundary or the
entire polygon) regardless of the metric and of the starting point. Finally, we show a competitive
exploration algorithm for arbitrary convex polygons, for both shapes of the sensing area, regardless
of the metric and of the starting point.

To the best of our knowledge we propose the first competitive on-line algorithm to explore
arbitrary rectilinear polygons with some limited sensing area.

Related work. Exploration of unknown environments by mobile robots was extensively studied
in the literature under many different models. One of the most important works in this domain
is [5] where the sensing area is unlimited. The authors gave a 2-competitive algorithm for rectilinear
polygon exploration. The competitive ratio was later improved to 5/3 in [8]. It was shown in [13]
that there is no deterministic algorithm for this problem better than 5/4-competitive and that there
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exists a 5/4-competitive randomized algorithm solving it. All these results hold for the L1-metric.
Upper bounds for the L2-metric can be obtained from the fact that any α-competitive algorithm
for the L1-metric is α

√
2-competitive for the L2-metric [5]. The case of non-rectilinear polygons

was also studied in [4, 10] and a competitive algorithm was given in this case.
For polygonal environments with an arbitrary number of polygonal obstacles, it was shown

in [5] that no competitive strategy exists, even if all obstacles are parallelograms. Later, this result
was improved in [1] by giving a lower bound in Ω(

√
k) for the competitive ratio of any on-line

algorithm exploring a polygon with k obstacles. This bound remains true even for rectangular
obstacles. Nevertheless, if the number of obstacles is bounded by a constant m, then there exists
a competitive algorithm with competitive ratio in O(m) [4].

Exploration by a robot with a limited sensing area has been studied, e.g., in [6, 7, 11, 12, 15].
This model is interesting to study, since it is justified by real world constraints. Indeed, computer
vision algorithms based on information obtained by sensors, such as stereo or structured-light finder,
can reliably compute visibility scenes only up to a limited range [7]. To the best of our knowledge,
there were no previous results concerning competitive on-line exploration for arbitrary rectilinear
polygons with limited visibility.

The off-line exploration problem with limited SA is related to older problems such as lawn
mowing, pocket milling and ice rink problems. All these three problems are concerned with finding
an optimal path of a tool moving on a surface (grass area to mow, pocket to mill or ice rink to
sweep), such that all points of the surface are covered by the tool (a mower, cutter or ice rink
machine) at least once during its travel. The only difference between exploration and the lawn
mowing problem is that the robot is not allowed to leave the environment, while the mower can
exit the surface. The ice rink problem is the same as the lawn mowing problem, except for the
notion of the optimal path. In lawn mowing, only the length of the path is considered, while in the
ice rink problem we also need to take into account the number of turns done by the robot, since
those turns are costly [14]. In the pocket milling problem, not only the robot cannot leave the
surface but also the cutter must not leave it. Here, the goal is to find a shortest path that covers
the maximum area possible. The first two problems are NP-hard and the complexity of the third
one is unknown [9]. All three problems admit polynomial time approximation algorithms [2, 14].

On-line exploration with limited SA has been studied, e.g., in [6, 11, 12]. Unlike in our model,
the robot in [6] can see slightly farther than its tool (six times the tool range). The authors describe
an on-line algorithm with competitive ratio 1 + 3(ΠD/A), where Π is a quantity depending on the
perimeter of P , D the size of the tool and A the area of P . Since the ratio ΠD/A can be arbitrarily
large, their algorithm is not competitive in the general case. Moreover, the exploration in [6] fails
on a certain type of polygons, such as those with narrow corridors.

In [11, 12], the authors consider the exploration of a particular class of polygons: those composed
of complete identical squares, called cells of size a priori known to the robot. In this model, the
robot explores all points in a cell when it enters the cell for the first time, and can move in one
step to any adjacent cell. The cost of the exploration is measured by the number of steps. There
exists a 2-competitive algorithm for exploration of such polygons with obstacles [11]. For polygons
without obstacles, there exists a 4/3-competitive algorithm for exploration and no algorithm can
achieve a competitive ratio better than 7/6 [12].

There are only a few papers on how to explore the boundary of a terrain with limited sensing
area. This problem was first considered in [15] (in its off-line version) using a reduction to the safari
route problem. The safari route problem consists in finding a shortest trajectory, starting at the
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point s of the boundary of a polygon P and going back to s, that visits a specified set of polygons
P contained in P . It is assumed in [15] that the polygons in P are attached to the boundary of
P (share at least one point with the boundary of P ), since otherwise the problem is NP-hard [15].
The author gives a O(mn2) algorithm solving this problem, where m is the cardinality of P and n
is the total number of vertices of P and polygons in P. It is shown that an optimal safari route
visiting all the circular sectors of vertices corresponding to the angles of P , (i.e., the region inside P
from which the vertex is visible), is an optimal boundary exploration trajectory [15]. To solve the
safari route problem, circular sectors are approximated with polygons and the obtained solution is
within 0.3% of optimal. It is computed in cubic time.

2 Definitions and preliminary results

In this section and in the part of the paper concerning optimality of exploration, we only consider
rectilinear polygons. Let P be such a polygon. For convenience, without loss of generality, we
assume that each side of the polygon P is either parallel to the x-axis (east-west sides) or to the
y-axis (north-south sides).

A rectilinear trajectory path has each of its segments parallel to either the x-axis or the y-axis.
Since in the L1-metric there is always a rectilinear path among the shortest paths between two
points, we consider only rectilinear paths and we drop the word ”rectilinear” in all considerations
regarding the L1-metric. In particular, we use this convention in this section and in Section 3.1.

A segment T contained in a polygon P is separating, if it divides P into two simple polygons
called the subpolygons defined by T . The foreign polygon defined by T according to a point u,
denoted by FP u(T ), is the subpolygon not containing u. Note that the foreign polygon is undefined
if u ∈ T . A separating segment T dominates a separating segment T ′ according to the point u, if
FP u(T ) is strictly contained in FP u(T ′). For instance, in Fig. 1(a), the segment T1 is dominated
by segment V according to point r0.

The robot at position r explores a point x, if the segment rx is included both in the polygon
and in the SA centered in r. We consider two types of SA: a round SA which is a disc of diameter
2 and a square SA which is a 2× 2 square. For exploration of rectilinear polygons, we assume that
the sides of a square SA are aligned with the sides of the polygons. An exploration trajectory of
polygon P is a path contained in P such that each point of P is explored by the robot at some
point of this path. A boundary exploration trajectory is a trajectory of a robot inside the polygon
P , exploring the boundary of P . In both cases, the start and the end of the trajectory are equal
and are denoted by r0.

In our proofs we use the following results from the literature.

Proposition 2.1 (Corollary 2.6 in [5]) Let M be a separating segment of a rectilinear polygon
P . Let u be any point in P and v be any point in M . There is a shortest path from u to v, which
consists of a shortest path from u to M , meeting M at point t, followed by the segment tv ⊆M .

Proposition 2.2 (Lemma 2.5 in [5]) Let u be a point and let M and M ′ be two separating
segments, such that M ′ dominates M according to u. There is a shortest path from u to M ′, which
consists of a shortest path from u to M , meeting M at point t, followed by a path from t to M ′.

Proposition 2.3 (Proposition 2.7 in [5]) Let M and M ′ be two intersecting north-south and
east-west separating segments of a polygon P , dividing P into four subpolygons such that points u
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and v are in diagonally opposite quadrants. (They may be on M and/or M ′). There is a shortest
path from u to v, which consists of a path from u to the intersection X(M,M ′) followed by a path
from X(M,M ′) to v.

Proposition 2.4 (Corollary 2.8 in [5]) Let M and M ′ be two intersecting north-south and east-
west separating segments of a polygon P , dividing P into four subpolygons such that points u and
v are on the same side of M ′ but on opposite sides of M . Among all paths from u to v that visit
M ′, there is a shortest one which consists of a path from u to the intersection X(M,M ′), followed
by a path from X(M,M ′) to v.

Proposition 2.5 (Lemma 3 in [3]) For any boundary exploration trajectory with crossings in
a polygon P , there exists a boundary exploration trajectory with no crossings that uses the same
trajectory parts between crossings, but in different order.

For each side S of a polygon P , we extend S inside P , possibly from both ends, until it first hits
the boundary of P . Each contiguous section of the resulting segment, if any, excluding S itself, is
called an extension segment (cf. [5]) associated with S (see Fig. 1(a)). For each side S of a polygon
P , we draw the line L parallel to S at distance one from it, on the side of the interior of P . If
this line intersects P , we define the vicinity segment associated with S, as the part of L between
the closest point of P ∩ L from S in clockwise order along the boundary and the closest one in
anti-clockwise order (see Fig. 1(a)).

Each extension or vicinity segment M of side S is a separating segment. In the rest of the
paper, any domination relation or foreign polygon FP (M) is defined according to point r0, if no
other point of reference is specified. If r0 ∈M , we set FP (M) to be the subpolygon defined by M
that contains S. Starting at r0, if side S ∈ FP (M), where M is an extension or vicinity segment
of S, then S can become explored only if M is visited (i.e., either crossed or touched). If this is the
case, we call M a necessary segment of S. For instance, the segment T1 in Fig. 1(a) is necessary.
For two necessary (extension or vicinity) segments M1 and M2, if M1 dominates M2 then there is
no way to visit M1 without crossing M2 from r0. So, we can ignore M2, since it is automatically
visited, if we visit M1. A non-dominated necessary segment is called essential. To see all sides of
a polygon, starting at r0, the robot has to visit every essential segment.

If the starting point r0 is on the boundary of P , then it induces a natural order of essential
segments, clockwise along the boundary of the polygon P : E1, E2, . . . , Em, where E1 is the first
essential segment encountered when moving clockwise along the boundary from r0, and so on. For
i ∈ 1, . . . ,m, we denote by xi the point on Ei at the minimum distance from point xi−1, with the
starting point r0 = x0. As shown in [5], these points are uniquely defined by r0. This trajectory
from x0 to xm, and back directly from xm to x0, is called GE for ’Greedy Essential’. See Fig. 1(b)
for an example of such a trajectory in a polygon.

We define, similarly as in [5], a new ”reduced” polygon P ′ obtained from P as follows: For each
essential segment E, remove from P the foreign subpolygon defined by E. The following lemma is
used in the proofs of Lemma 2.2 and Theorem 4.1.

Lemma 2.1 Each optimal boundary exploration trajectory for P is entirely contained in the reduced
polygon P ′.
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Figure 1: (a) Vicinity segment V and extension segments T1 and T2 associated with side S.
(b) Example of a GE trajectory.

Proof: Assume, for contradiction, that there is an optimal trajectory T for boundary exploration
of P that is not contained in P ′. So, there is an essential segment E, such that T crosses E
and visits its foreign polygon. We can assume, without loss of generality, that E is a north-south
segment.

Consider the trajectory T ′ obtained by replacing the part s of T contained in FP (E) by its
orthogonal projection s′ on the line L defined by E. The trajectory T ′ is strictly shorter than T ,
since its part s′ is strictly shorter than s.

Now, we show that T ′ is a boundary exploration trajectory shorter than T which is assumed
to be optimal, a contradiction. To show that T ′ is a boundary exploration trajectory, it suffices to
show that the polygon FP (E) is explored by trajectory s′. Consider three points: u ∈ FP (E), v ∈
s, v′ ∈ s′, such that u is explored from v and v′ is the orthogonal projection of v onto L. Since u
is explored from v, the difference between their y-coordinates is at most one. By the projection
on L, the y-coordinate is preserved and the difference between the y-coordinates of u and v′ is
at most one. The difference between x-coordinates of u and v′ is also at most one. Indeed, any
larger difference would imply the existence of a necessary vicinity segment parallel to E contained
in FP (E) and would contradict the fact that E is essential. Hence, the point u is in the (square)
SA centered in v′.

To show that u is explored from v′, it remains to show that the segment uv′ is inside P . Assume,
for contradiction, that uv′ is not inside P . Since uv is inside P , the only possibility is that there is
a 3π/2-angle b, as depicted in Fig. 2. The side incident to b not explored from v′ has an extension
segment E′ parallel to E and inside FP (E). E′ is necessary and dominates E, a contradiction
with the fact that E is essential. So, uv′ is inside P and u is explored by v′. Any point of FP (E)
explored by s is explored by s′, and so T is a boundary exploration trajectory.

�

Lemma 2.2 Any boundary exploration trajectory is not shorter than GE.

Proof: We first observe that there always exists a shortest path visiting the essential extensions
in the clockwise order, that does not self-intersect. This is a slight variation of a result from [3],
with extension and vicinity essential segments replacing essential extension segments. The result
still holds by Proposition 2.5 and Lemma 2.1.
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Figure 2: Example of trajectories s and s′

Hence, GE is an optimal way of visiting each essential segment in clockwise order [5]. Since any
boundary exploration trajectory has to visit all the essential segments, any boundary exploration
trajectory starting from and ending at r0 is not shorter than GE. �

3 Optimality

3.1 The optimal boundary exploration algorithm

In this section, we assume that the SA is a 2× 2 square aligned with sides of a rectilinear polygon.
Our aim is to construct a boundary exploration algorithm starting at a boundary point r0 and
following GE as closely as possible. Unfortunately, in the case of a robot with bounded SA (unlike
the robot from [5] which had unbounded visibility), it is impossible for an on-line algorithm to visit
essential extensions greedily, using shortest paths. The following proposition shows this significant
difference between our scenario and that from [5].

Proposition 3.1 There is no on-line algorithm that greedily visits the essential segments of ev-
ery polygon, i.e., that visits the essential segments by following shortest paths between them, even
starting at the boundary.

Proof: We consider two polygons P and P ′ depicted in Fig. 3. Let the corner x be the starting
point of the robot. Since both polygons P and P ′ are symmetric, we can assume without loss of
generality that the first essential segment visited is E1 in P and is E′1 in P ′. In order to achieve
a shortest path from x to either E1 or E′1, the robot must move along the side xy. Notice that
both polygons P and P ′ look the same to the robot when it moves along the side xy. So, the
adversary can arbitrarily choose one of the two polygons when the robot stops moving along the
side xy. The adversarial strategy consists in taking the polygon P ′, if the robot stops moving along
xy at distance at least one from y, and in taking the polygon P otherwise. In the first case, the
trajectory of the robot from x to E′1 is not a shortest path, since the robot does not move along
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xy to visit E′1. In the second case, the trajectory of the robot from z (intersection of E1 and xy)
to E2 is not a shortest path, since the robot does not move along E1 to visit E2. Hence, in both
cases, the robot does not greedily visit the essential segments of the polygon.

E2

3/2

x

1/2

1/2

1
2

1
2

E′
1

E′
2

1

1

x

E1

Polygon P Polygon P ′

y y

z

3/2

2

2

Figure 3: The polygons P and P ′

�

Since, as shown above, our bounded visibility scenario is more difficult than that from [5], our
optimal boundary exploration algorithm must also be more subtle. Its idea is as follows.

The robot tries to increase the contiguous part of the boundary seen to date. The rest of the
boundary is not yet explored by the robot for three possible reasons: an obstructing angle limiting
the view of the currently explored side, a 3π/2-angle terminating the currently explored side and
obstructing the view of the next side, or finally the end of the SA limiting the view of the currently
explored side. The strategy of the robot is to move towards the extension corresponding to the
obstructing angle (in the first two cases) and to move parallel to the currently explored side (in
the third case). Due to limited visibility, no necessary segment is seen by the robot in the third
case, which is a crucial difference between our scenario and that from [5]. While it is impossible to
move between consecutive essential segments using shortest paths, we prove that for every essential
segment there is some essential segment following it (not necessarily the next one) which the robot
reaches by a shortest of all paths visiting the intermediate essential segments. Proving this property
is the crucial and technically most difficult part of the algorithm analysis.

Algorithm BOUNDARY-ON-LINE-EXPLORATION (BOE, for short)
INPUT: A starting point r0 on the boundary of the polygon to be explored.
OUTPUT: A shortest boundary exploration trajectory, starting and ending at r0.

We denote by C the contiguous part of the boundary, starting clockwise from r0, that has been
explored so far by the robot, and we call frontier, denoted by f , the end of C. The current position
of the robot is denoted by r.

Repeat the following strategy until C becomes the boundary of a simple polygon, updating r,
f and C whenever any change occurs.
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Case 1: There is an obstructing angle b, i.e., r, b and f are aligned and b is a 3π/2 angle not in C
(see Fig. 4(a))
Move towards the extension E(b) of the side U(b) incident to b and not explored from r. The
strategy used to reach E(b) is to move parallel to the other side S(b) incident to b whenever
possible, and move towards S(b), parallel to E(b), until it becomes possible again to move parallel
to S(b), otherwise.
Case 2: f is a 3π/2 angle and r is not on the extension E(f) of the side U(f) incident to f and
not explored from r. (see Fig. 4(b))
Same as Case 1 with f instead of b.
Case 3: There is no obstructing angle, and either f is a 3π/2 angle and r is on the extension E(f)
of the side U(f) incident to f and not explored from r, or f is not a 3π/2 angle. (see Fig. 4(c))
If f is a 3π/2 angle then S(f) = U(f), otherwise S(f) is the side containing f . Move parallel to
the side S(f) towards f until:

Case 3.1: Condition of Case 1 occurs
Follow Case 1.
Case 3.2: Condition of Case 2 occurs
Follow Case 2.
Case 3.3: A new π/2 angle a is explored and belongs to C (the robot reaches
the vicinity segment V (a) of the new side U(a) incident to a)
Do nothing (the algorithm proceeds to the next iteration of the repeat loop).

When the above Repeat loop is completed (C is a simple polygon), follow a shortest path to
r0 and stop.

(b)

r

C
S( f )

f

E( f )

U( f )

S(b)r

C

(c)

S( f )

1

r

ffC

(a)

E(b) U(b)
b

Figure 4: The three possible configurations during the execution of Algorithm BOE

In Fig. 5 we show an example of the execution of Algorithm BOE. The robot starts at r0 where
Case 3 occurs. It goes North until it sees a π/2 angle at point r1, it recognizes Case 3.3 and starts
a new iteration of the Repeat loop with Case 2. It goes East until point r2. Case 3 occurs. The
robot goes North until it sees a π/2 angle at point r3. It recognizes Case 3.3 and starts a new
iteration with Case 3. It goes East until point x, where its vision is obstructed by angle y. Case 3.1
occurs. The robot goes North until point r4. Subsequently the robot continues the exploration in
three iterations of the Repeat loop, remaining in Case 3.3 in points r5, r6, r7. At r7 it has explored
the entire boundary and returns to r0 by a shortest rectilinear path.

The main result of this section is that Algorithm BOE is optimal.
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Figure 5: Example of an execution of Algorithm BOE on a polygon

Theorem 3.1 Algorithm BOUNDARY-ON-LINE-EXPLORATION is an optimal on-line algorithm for the
boundary exploration of rectilinear polygons with square SA in the L1-metric, starting and ending
at a point of the boundary.

First, we show that Algorithm BOE eventually terminates.

Lemma 3.1 Algorithm BOE eventually terminates with C set to the boundary of the input poly-
gon P .

Proof: Let n be the number of sides of P . Let S = de be the the side of P currently explored,
i.e., the side which partially belongs to C. We show that after at most O(n) iterations of the main
loop of BOE, starting from any point, the side S will be entirely in C. For the sake of uniformity,
we consider the side ab containing r0 as two sides ar0 and r0b.

The first end-point d of S in clockwise order from r0 is in C. Two cases are possible.

Case A: d is the only point of S in C.

In this case d must be a 3π/2 angle. The algorithm follows the strategy for Case 2 (one
iteration) and after the next iteration some other points of S are added to C and Case B
occurs.

Case B: there is a part of S of length non-zero in C.

If the next iteration corresponds to Cases 2, 3.2, or 3.3, then after this iteration the angle e
is added to C and hence the entire side S is explored. The remaining cases (i.e., Case 1 and
Case 3.1), can occur at most n times until the entire side S is added to C, since a single angle
cannot obstruct the vision twice during the exploration of a side.

Hence the algorithm eventually terminates. �

Let l be the number of iterations of the main loop of Algorithm BOE before terminating. For
i = 1, 2, . . . , l, the robot is at point ri at the end of the i-th iteration of the main loop. The point ri
is either on a vicinity or on an extension segment denoted by Mi. Indeed, at the end of an iteration
corresponding to Cases 1 or 3.1, the robot is on the extension segment E(b) of side U(b). For Cases
2 or 3.2, the robot is on the extension segment E(f) of side U(f). Finally, for Case 3.3, the robot
is on the vicinity segment V (a) of side U(a).
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We define a new trajectory BOE′ that reaches segments Mi in a greedy way. For i ∈ 1, . . . , l,
we denote by zi the point on Mi at the minimum distance (in the L1-metric) from point zi−1, with
r0 = z0 = zl+1. More formally, the trajectory BOE′ is the one following a shortest path from zi−1

to zi, for all 1 ≤ i ≤ l + 1.
Although BOE might not follow a shortest path between the segment Mi and Mi+1 for some

i, its total length turns out to be equal to that of BOE′. We denote by BOE[ri, rk] (resp.
BOE′[zi, zk]) the part of the trajectory BOE (resp. BOE′) between the points ri and rk (resp. zi
and zk).

Lemma 3.2 The BOE′ trajectory has the same length as the BOE trajectory.

Proof: We show that for all i, there exists a j, such that BOE[ri, ri+j ] is a shortest path from
point ri to Mi+j that visits segments Mi+k for 1 ≤ k < j. The proof depends on the type of the
(i+ 1)-th iteration of Algorithm BOE.
Case 1: The robot follows a shortest path from ri to the extension segment E(b) = Mi+1 as shown
in [5]. Hence, the property holds for j = 1.
Case 2: Same as Case 1 with f instead of b.
Case 3.1: The robot moves parallel to S(f) and then moves towards the extension segment E(b),
where b obstructs the vision to S(f) = dv (with d the first vertex of S(f) in clockwise order) from
the robot. Assume, without loss of generality, that the robot moves east when moving parallel to
S(f) (S(f) is an east-west side) and is south of S(f).

In order to explore the vertex v, the robot has to execute an iteration corresponding to Cases
2, 3.2 or 3.3. Let j denote the number of iterations executed by the robot to fully explore S(f),
the last one corresponding to Case 2, 3.2 or 3.3, needed to explore v.

Let S′ be the side following the side S(f) in the clockwise order. The segment Mi+j is either the
extension segment of S′, if the angle between S(f) and S′ is a 3π/2 angle, or the vicinity segment
of S′, if the angle between S(f) and S′ is a π/2 angle. In both cases, Mi+j is perpendicular to all
Mi+k for 0 ≤ k < j and is east of point ri+1.

During the iterations corresponding to Cases 1 or 3.1, the robot moves either north or east, since
for all 1 ≤ k < j, Mi+k is an east-west segment and the obstructing angle bk is in the north-east
quadrant of the SA of the robot. During the last iteration corresponding to Cases 2, 3.2, or 3.3,
the robot moves either north or east, since Mi+j is a north-south segment and the angle f (Cases
2 or 3.2) or the angle a (Case 3.3) is in the north-east quadrant of the SA of the robot. Hence, the
path from ri to ri+j is a shortest path.

We show that the point ri+j is the point of Mi+j at minimal distance from ri. Indeed, it is
reached by minimal x-axis and y-axis shifting, since the path is monotone and the robot moves
north only until reaching the y-coordinate of the angle bj−1. Hence, the path is a shortest path to
Mi+j visiting all Mi+k for 1 ≤ k < j, and the property is verified.
Case 3.2: The robot moves parallel to S(f) and then applies the strategy of Case 2. Since this
strategy consists in moving parallel to S(f) whenever it is possible, the property is verified, as in
Case 2.
Case 3.3: The robot moves parallel to S(f) from ri to the vicinity segment Mi+1 of the side
immediately after S(f) in clockwise order. The path followed by the robot to reach Mi+1 is a
shortest path, since S(f) is perpendicular to Mi+1. Hence, the property holds for j = 1.

Recall that r0 = z0. We showed that ri = zi implies |BOE[ri, ri+j ]| = |BOE′[zi, zi+j ]|, and
ri+j = zi+j , for the index j (depending on i) determined above, since BOE[ri, ri+j ] is a shortest
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path from ri to Mi+j . It follows by induction that |BOE | = |BOE′ |. �

Lemma 3.3 Every essential segment is in the set {M1,M2, . . . ,Ml} of segments generated by Al-
gorithm BOE.

Proof: We first show that the BOE trajectory never crosses essential segments. Assume, for
contradiction, that BOE crosses an essential segment E. We show that E is dominated by a
necessary segment, a contradiction. The proof depends on the case corresponding to the iteration
during which BOE crosses E.

Case 1:

If the extension segment E(b) associated with the obstructing angle b is parallel to E, then
E(b) is necessary and dominates E. If E(b) is perpendicular to E, then there must be a side
S perpendicular to E that prevents the robot from moving directly towards E(b). In that
case, the necessary segment E(b) dominates E, as depicted in Fig. 6.

U(b)

S(b)

E

S

of the robot
trajectory

E(b)

b

Figure 6: Case 1 with E(b) perpendicular to E

Case 2: Same as Case 1, with f instead of b.

Case 3.1:

If the robot crosses E when moving parallel to the side, then use the proof of Case 3.3, and
use the proof of Case 1 otherwise.

Case 3.2:

Same as Case 3.1, with Case 2 instead of Case 1.

Case 3.3:

The robot moves parallel to a side S that is perpendicular to E. The side S′ immediately
following S in clockwise order forms a π/2 angle with S, and is at distance strictly greater
than one from E. The vicinity segment of S′ is clearly necessary and dominates E.
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Hence the BOE trajectory does not cross any essential segment.
We prove that each essential segment is either E(f), E(b) or V (a) at the end of some iteration

of the loop of Algorithm BOE. By Lemma 3.1 and the fact that the robot has to visit all essential
segments to fully explore P , the trajectory BOE visits all the Ei’s.

Assume, for contradiction, that BOE visits an essential segment E other than Mi, Mi+1 or
Mi+2, on its way from ri to ri+1. If E is parallel to Mi+1, then BOE has to cross E to reach Mi+1,
since the path from ri to Mi+1 is a monotone path, a contradiction.

Now assume that E is perpendicular to Mi+1. The path from ri to Mi+1 is a monotone path
and, since E cannot be crossed, E must intersect Mi+1 at point ri+1. However, in this case, we
have E = Mi+2. �

We define a compatible order of essential segments as follows. In the natural order of essential
segments we choose an arbitrary set of disjoint pairs of consecutive intersecting essential segments,
and we swap segments in each pair.

Lemma 3.4 The essential segments are visited in a compatible order D1, . . . , Dm by the BOE′

trajectory.

Proof: For i = 1, . . . ,m, let Si be the side associated with the essential segment Di.
Consider the clockwise order O1 of sides of the polygon associated with the essential segments.

This induces an order O2 of these essential segments. This order is compatible with the natural
order of essential segments. We show that our algorithm visits essential segments in an order
compatible with O2.

The proof is by induction on the Si’s lying in a compatible order between r0 and f along the
boundary of the polygon P . More formally, we show that for all i, if Sj , for j ≥ i + 1, is between
Si and Si+1 in the clockwise order along the boundary, then j = i+ 2 and Di+1 intersects Di+2.

By Lemma 3.3, each essential segment is in {M1,M2, . . . ,Ml}. If we reach the extension segment
Di+1 by an iteration corresponding to Cases 2, 3.2 or 3.3, then there is no j > i + 1 such that Sj
is between Si and Si+1 in the clockwise order along the boundary. Indeed, any such side Sj would
be entirely in C before visiting Dj , a contradiction.

Assume that Di+1 is visited in an iteration corresponding to Cases 1 or 3.1. The boundary
between f and b (the obstructing angle) cannot contain any side whose associated segment is
essential and parallel to Di+1. Indeed, such a segment would dominate the essential segment
Di+1, a contradiction. For the same reason, there can be no sides whose associated segment is
essential and perpendicular to Di+1 without intersecting it. So, there can only be essential segments
perpendicular to Di+1 and intersecting it. There can be only one such segment, and it must be Di+2

because an essential segment cannot be dominated. When reaching Di+2, the number j = i+ 2 is
the only integer greater than i+ 1, such that the side Sj is between Si and Si+1 in clockwise order.
�

In order to compare the BOE trajectory to the GE trajectory, we define a trajectory GC
that greedily visits essential segments in the same compatible order as BOE. For i ∈ 1, . . . , l, we
denote by yi the point on Di at the minimum distance from point yi−1, with r0 = y0 = ym+1. More
formally, the trajectory GC is the one following a shortest path from yi−1 to yi, for all 1 ≤ i ≤ m+1.

Lemma 3.5 The GC trajectory has the same length as GE.

Proof: Let δ denote the permutation on {1, 2, . . . ,m} such that Eδ(i) = Di. By definition of GC
and of a compatible order, for each i = 1, . . . ,m, one of the following holds:
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δ(i) = i or

δ(i) = i+ 1 and Ei = Di+1 intersects Ei+1 = Di.

By induction on i we can show (cf. [5]) that either

|GE[r0, xi]| = |GC[r0, yi]| and xi = yi (case δ(i) = i), or

|GE[r0, xi+1]| = |GC[r0, yi+1]| and xi+1 = yi+1 (case δ(i) = i+ 1).

Applying the above for i = m proves the lemma. �

Now, we are ready to state the key lemma for the proof of Theorem 3.1.

Lemma 3.6 The BOE′ trajectory has the same length as the GC trajectory.

Proof: By Lemma 3.3 and Lemma 3.4, we can define an increasing function γ: γ(j) = i if
Dj = Mi. Thus, Dj = Mγ(j). For convenience, we also define its ”inverse” ω : ω(i) = j, if and
only if, γ(j − 1) < i ≤ γ(j). Thus, when the robot is at zi , the last essential extension visited was
Dω(i)−1 = Mγ(ω(i)−1). Here, we define D0 = M0 to be the side containing the starting point z0. We
prove by induction on i, that one of the following conditions holds.

H1. BOE′ reaches Mi at zi, so that its trajectory from yω(i)−1 (a point on the last visited essential
segment Dω(i)−1) to zi is a shortest path from yω(i)−1 to Mi.

H2. Let i′ be the highest index in the range γ(ω(i) − 1) ≤ i′ ≤ i − 1, such that Mi′ and Mi

intersect. BOE′ reaches Mi at the intersection X(Mi,Mi′) of Mi and Mi′ , via a shortest path
from yω(i)−1 to X(Mi,Mi′).

Starting at z0 = y0 , let D0 = M0 be the side of P containing z0. The claim (in this case, H1)
is trivially true for i = 1. In general, suppose the hypothesis is true when the robot is at point zi,
and consider the next point zi+1. By definition of BOE′, we reach the next segment Mi+1 from zi
by a shortest path.

Case 1: H1 is true for i.

If Mi is an essential segment, then Mi = Dω(i+1)−1 and zi = yω(i+1)−1. By definition of
BOE′, we reach Mi+1 via a shortest path from zi. This proves H1 for i+ 1.

On the other hand, if Mi is not an essential segment, then ω(i + 1) = ω(i). Thus, the last
essential segment visited from zi+1 is Dω(i)−1, visited at point yω(i)−1.

If Mi+1 does not intersect Mi, then Mi+1 dominates Mi according to yω(i)−1. We reach Mi+1

at zi+1 from yω(i)−1 via a shortest path from zγ(ω(i)−1) = yω(i)−1 to Mi, reaching it at zi
(induction hypothesis), followed by a shortest path from zi to Mi+1 (by definition of BOE′).
Since Mi+1 dominates Mi according to yω(i)−1, this is a shortest path from yω(i)−1 to Mi+1

by Proposition 2.2. This proves H1 for i+ 1.

If Mi+1 intersects Mi, then BOE′ reaches Mi+1 (moving along Mi) at the intersection point
X(Mi,Mi+1). Since the shortest path from zγ(ω(i)−1) = yω(i)−1 to Mi meets Mi at zi by the
induction hypothesis, this path followed by the line segment from zi to X(Mi,Mi+1) is a
shortest path from yω(i)−1 to X(Mi,Mi+1), by Proposition 2.1. Thus, H2 holds for i+ 1.
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Case 2: H2 is true for i.

If Mi is an essential segment, then Mi = Dω(i) and zi = yω(i). By definition of BOE′, we
reach Mi+1 via a shortest path from zi. This proves H1 for i+ 1.

If Mi is not an essential segment, then ω(i + 1) = ω(i). Thus, the last essential segment
visited from zi+1 is Dω(i)−1, visited at point yω(i)−1.

Suppose that Mi+1 dominates Mi according to yi−1, hence also according to yω(i)−1, and
that Mi+1 also dominates Mi′ according to yω(i)−1. Then zi+1 and yω(i)−1 are in opposite
quadrants defined by Mi and Mi′ . By Proposition 2.3, there is a shortest path from yω(i)−1

to Mi+1 passing through the intersecting point X(Mi,Mi′). Due to the fact that the path
from zi = X(Mi,Mi′) to zi+1 is a shortest path, H1 holds for i+ 1.

If Mi+1 does not dominate both Mi and Mi′ according to yω(i)−1, it must intersect either
Mi or Mi′ . Hence, either Mi+1 intersects Mi, dominating Mi′ according to yω(i)−1 or Mi+1

intersects Mi′ , dominating Mi according to yω(i)−1. In both cases, we move along the segment
Mi′′ (i′′ = i or i′′ = i′) intersecting Mi+1 to reach the intersection point zi+1 = X(Mi+1,Mi′′).
Applying Proposition 2.3 with M = Mi+1, M ′ = Mi′′ , u = yω(i)−1 and v = X(Mi+1,Mi′′), we
obtain that the path from u = yω(i)−1 to X(Mi+1,Mi′′) is a shortest path. Hence H2 holds
for i+ 1.

Therefore, in either case, H1 or H2 holds for i+ 1, and hence one of these conditions holds for
all i, 1 ≤ i ≤ k, by induction.

If H1 holds for Dj = Mi then the trajectory BOE′ follows a shortest path from yj−1 to Dj .
On the other hand, if H2 holds then the trajectory BOE′ follows a shortest path from yj−1 to
X(Mi,Mi′) with Dj = Mi. Assume that Mi′ is necessary. Note that Mi′ is the last encountered
segment of all the segments perpendicular to Mi, so no segment parallel to Mi′ can dominate Mi′ .
On the other hand, any extension or vicinity segment perpendicular to Mi′ and dominating Mi′

would be necessary and would dominate Mi, a contradiction. So, Mi′ is essential and Mi′ = Dj−1.
Hence, BOE′ follows a shortest path from yj−2 to Dj that visits Dj−1.

Now, if we assume that Mi′ is not necessary, then when the robot meets Mi′ , the entire boundary
of the foreign polygon FP (Mi′) is in C, since f and z are in the other subpolygon of Mi′ when
BOE′ visits Mi′ . Since the side Sj+1 associated with Dj+1 is not in C when we meet Mi′ , it follows
that either Dj+1 intersects Mi′ or dominates Mi′ according to yj−1. The first case cannot happen,
since Dj+1 would be parallel to Dj and dominate Dj , a contradiction. In the second case, the path
from yj−1 to Dj+1 is a shortest path visiting Dj , by Proposition 2.4.

We can now conclude that, for all 1 ≤ j ≤ l, BOE′ follows either a shortest path from yj−1 to
Dj or a shortest path from yj−1 to Dj+1 that visits Dj . This proves the lemma by the definition
of GC. �

Proof of Theorem 3.1: Any boundary exploration trajectory (including the optimal one) has
length not smaller than that of GE, by Lemma 2.2. By Lemma 3.5, we have |GE | = |GC |.
By Lemma 3.6, we have |BOE′ | = |GC |. By Lemma 3.2, we have |BOE′ | = |BOE |. By
Lemma 3.1, BOE is a boundary exploration trajectory. Hence BOE is an optimal boundary
exploration trajectory. �
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3.2 Negative results

In this section we show that in all scenarios except the one covered by Theorem 3.1, optimal on-line
exploration is impossible.

Lemma 3.7 There is no optimal on-line algorithm for the exploration of rectilinear polygons, with
a square SA, in the L1-metric, even with the starting point at the boundary.

Proof: We consider two polygons W and T depicted in Fig. 7, and the exploration problem starting
from the point x at the boundary of each of these polygons.

Notice that the visible parts of the two polygons are identical when the robot is at any point
inside the rectangle abkl, the boundary of the rectangle included. So, the adversary can arbitrarily
choose one of the two polygons when the robot leaves this rectangle to explore the rest of the
polygon. The adversarial strategy to prevent optimality consists in taking the polygon T , if the
robot exits the rectangle abkl through point k or b, and in taking the polygon W otherwise.

We first show that any exploration trajectory passing through point b or k in polygon T is not
optimal. Note that the order in which the two angles f and g are explored does not matter because
of the symmetry of polygon T . The exploration trajectory R of T depicted in Fig. 7 is optimal,
since the trajectory follows shortest paths to explore the angle f (at point y) and then the angle g
(at point z) starting from point x.

Let us assume, for contradiction, that there is an optimal exploration trajectory E passing
through b. In order to have the same length as R, the trajectory E must follow shortest paths
from x to b, from b to y, from y to z and from z to x. Let us consider the square region Q of
points at distance at least one from lines ab and bk, and at distance at least two from lines lk and
gf . The interior points in Q and the points of side kl cannot be explored by a robot following a
shortest path xb, by or xy, since these points are at distance larger than one from any shortest
path connecting these pairs of points. Consequently, the points of Q and those in the side kl need
to be explored when moving on the trajectory between z and x. To explore the points of Q, the
robot has to move past the line kl and continue moving east for a distance strictly greater than
one. From the fact that this must be a shortest path to x, the robot cannot move west after this
move and so cannot explore points of the side kl. Hence, the trajectory E is not an exploration
trajectory and so there is no optimal exploration trajectory passing through b. By symmetry of
the polygon, the same is true for point k.

We now show that any optimal exploration trajectory passing through any point t of the segment
bk (ends of the segment excluded) in polygon W exits the rectangle abkl through b or k. Note that
any optimal trajectory needs to explore the angles e or h before the angles f or g. Indeed, there is
a shortest path from the point t to a point from which f is visible (respectively the angle g) that
explores the angle e (respectively the angle h). Consequently, any optimal exploration trajectory
needs to follow an optimal path from t to explore one of the two angles e or h. These paths exit the
rectangle abkl through point b or k, and so no optimal exploration trajectory can exit this rectangle
through an inside point of the segment.

�

Lemma 3.8 There is neither an optimal on-line algorithm for the exploration, nor for the boundary
exploration of rectilinear polygons with a square SA, in the L1-metric, starting at an arbitrary point
of the polygon.
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Figure 7: Optimal solutions in polygon W and T

Proof: The idea behind the proof is that the robot cannot figure out the shortest path to see
the closest point of the boundary. To prevent exploration or boundary exploration optimality, the
adversary takes a square abcd of side length 4 and places the robot so that the nearest side of the
square (without loss of generality the side ad) is in the opposite direction of the first segment of
the robot’s trajectory, at a distance slightly larger than 1 from this side, as depicted in Fig. 8.

Notice that, since we use the L1-metric, there is a shortest path between any pair of points from
which opposite angles of the square are visible, that visits one of the other angles. For instance,
a shortest path, from a point where a is seen to a point where c is seen, moves parallel to side ab
and then moves parallel to side bc, exploring the angle b. So, any optimal trajectory exploring the
four angles explores these angles in cyclic order. The optimal trajectory to explore the four angles
consists in moving toward one of the two closest angles (a or d), exploring other angles cyclicly
using shortest paths and coming back to the starting point. Let B be the boundary of the square
inside abcd with sides at distance one from those of abcd. Using a shortest path from the starting
point to B, then going around B and getting back to the starting point, we obtain an optimal
exploration trajectory. Any trajectory that first moves away from B is strictly longer, and so is
not optimal.

4

c b

4

d a

Figure 8: Optimal trajectory for exploration starting from an inside point of the polygon

�

Lemma 3.9 There is neither an optimal on-line algorithm for the exploration, nor for the boundary
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exploration of rectilinear polygons with a round SA, in the L1-metric, even with the starting point
at the boundary.

Proof: We consider two polygons, a rectangle abcd of length l > 3 and width 2 and a L-shaped
polygon abcefd of the same length and width (cf. Fig. 9). Note that for the two polygons, any
boundary exploration trajectory is an exploration trajectory since all points inside these polygons
are at distance at most one from the boundary. Let a be the starting point in both polygons.

For the L-shaped polygon, the optimal exploration trajectory starting from the angle a is the
rectangle ageh of length l−1 and width 1. Indeed, this trajectory clearly minimizes the x-axis and
y-axis shifting of the robot to explore the angles b and d. Moreover, this trajectory is unique if we
disregard the orientation, since any optimal exploration trajectory has to pass through g, e and h
exploring angles b, c and d at distance at least one of the lines bc and fd.

The adversarial strategy consists in taking the L-shaped polygon, if the robot does not initially
follow the side ab, or moves nearer than distance one from the side bc, and in using the rectangle
otherwise. Notice that if the robot initially follows a side, then we can assume that it is the side
ab, since the adversary can rotate the figure, if the robot follows the other side.

In the first case, the exploration trajectory is non-optimal since it differs from the unique optimal
trajectory for the L-shaped polygon. In the second case, the shortest exploration trajectory for the
rectangle, that does not move nearer than distance one of side bc, is the rectangle aged of length
l and width 1, since the robot can only explore the angle c from the point e. This trajectory is
strictly longer than some exploration trajectories without the constraint, such as the rectangle of
length l−

√
2/2 and width 2−

√
2/2 depicted in Fig. 9. Note that the robot cannot decide in which

of the two polygons it is, before seeing point e, since the adversary can freely adjust the length l.
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Figure 9: Optimal trajectories in rectangle and the L-shaped polygon

�

Lemma 3.10 There is neither an optimal on-line algorithm for the exploration, nor for the bound-
ary exploration of rectilinear polygons with a square or a round SA, in the L2-metric, even with the
starting point at the boundary.

Proof: We consider two squares, a small square abcd, that is inscribed in the SA of the robot (a
square of side length

√
2 for the round SA and of side length 2 for the square SA) and a large

square a′b′c′d′ (square of side length 2 for the round SA and of side length 3 for the square SA),
as depicted in Fig. 10. We consider the boundary exploration problem in the L2-metric, with the
starting point a = a′ in both squares. Observe that from this starting point the view of the robot
is exactly the same in both squares.
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For the small square, the optimal trajectory consists in moving toward the diagonal angle c from
a until exploring it, and coming back to a following the same way. Indeed, the robot will explore
the entire square when reaching its center, and this is the unique optimal boundary exploration
trajectory, since it is the only shortest path to explore the angle c. The angle α formed between
side ab and the direction followed by the robot is π/4.

Let us assume that there is an optimal boundary exploration trajectory for the large square
exploring angles in a non cyclic order. The trajectory intersects itself, since the robot must visit
diagonal angles consecutively. By Proposition 2.5, we can obtain a boundary exploration trajectory
using the same parts of the trajectory but without crossings. So, the robot must visit the angles
in a cyclic order. To explore the first angle b′ (or d′) optimally, the robot must move straight to
the set of points from which b′ can be seen. The angle β formed by this direction and by the side
a′b′ (or a′d′) is strictly less than π/4, since by moving straight at angle π/4 the robot can never
explore b′ or d′.

Let us describe the adversarial strategy against the robot to prevent optimality of boundary
exploration. If the robot begins its trajectory in a direction at angle different than π/4 from the
side, then the adversary takes the small square, otherwise it takes the large square. In the two
cases, the robot’s trajectory is clearly suboptimal, since it differs from any optimal trajectory.

This example holds for the exploration problem as well, since any optimal boundary exploration
trajectory is an exploration trajectory in both squares. This is trivially true for the small square.
For the large square in the case of round SA, any point inside the square is at distance at most
one from the boundary, and so must be explored by a robot that follows a boundary exploration
trajectory. For the large square in the case of square SA, it suffices to remark that any optimal
trajectory cannot be at distance less than one from sides b′c′ and c′d′, and that any point inside
the square is either at distance less than one from the boundary part b′a′d′, or at distance less than
two from the boundary part b′c′d′.

β

3

b′ c′

d′a′

β

β

β

2

da

b c
√

2 α

b c
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a′ d′

c′b′

2

Figure 10: Optimal solutions in the small and the large square
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Theorem 3.1 and Lemmas 3.7, 3.8, 3.9, 3.10 imply the following result that completely solves
the optimality problem of on-line exploration of rectilinear polygons (see Table 1).

Problem Starting point in SA shape Metric Optimality
boundary exploration boundary square L1 optimal by Theorem 3.1

exploration boundary square L1 non-optimal by Lemma 3.7
both interior square L1 non-optimal by Lemma 3.8
both both round L1 non-optimal by Lemma 3.9
both both both L2 non-optimal by Lemma 3.10

Table 1: Solution of the optimality of on-line exploration

Theorem 3.2 The only case where on-line exploration of rectilinear polygons can be optimal is
the case of the boundary exploration with square SA in the L1-metric, starting at the boundary.
Algorithm BOE performs optimal boundary exploration in this case.

4 Competitiveness

4.1 Rectilinear polygons and square sensing area

Theorem 4.1 There exists a competitive on-line algorithm for exploration and for boundary ex-
ploration of rectilinear polygons with square SA for both metrics and for any starting point.

Proof: Note that we can restrict attention to the case of the L1-metric, since any competitive
on-line algorithm in the L1-metric is competitive in the L2-metric [5]. First perform a boundary
exploration of the polygon. At this point the entire polygon is known to the robot. Then use
the off-line polynomial exploration algorithm that gives a 4/3-approximation of the optimal [15].
Hence, any competitive on-line algorithm for boundary exploration gives a competitive algorithm
for exploration, and we can restrict attention to boundary exploration.

If the starting point s is on the boundary, then use Algorithm BOE. Otherwise, consider a
variant of BOE, called BOE∗, in which the robot starts and ends at a point s inside the polygon
and sees a non-empty part of the boundary. Choose any continuous part C of the boundary seen
by the robot located at s and let r0 be the first end of C in clockwise order. Algorithm BOE∗

follows the same rules as BOE. Note that in BOE the fact of starting at the boundary was not
used to describe the algorithm, but only to prove the optimality of the boundary exploration.

Case A: A part of the boundary is seen by the robot at the starting point s.

Use algorithm BOE∗.

Case B: No part of the boundary is explored by the robot at s.

Choose a direction (half-line starting at s) and move along this direction until Case A occurs.
Then, apply strategy for Case A and return to s by a shortest path.

Consider Case A. We define essential segments according to s and we set the first segment
encountered in clockwise order from r0 to be E1 and the other segments E2, . . . , Em are ordered
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in clockwise order starting from E1. Similarly as in the proof of Theorem 3.1, we have |GE | =
|BOE∗ | and this length is equal to the distance traveled by the robot in Case A. Let GEi be the
trajectory that greedily visits segments in the order Ei, Ei+1, . . . , Em, E1, . . . , Ei−1. By Lemma 2.1,
there exists a j such that GEj is a shortest trajectory that visits all the Ei’s starting and ending at
s, since greedily visiting essential segments in clockwise order is optimal. Any boundary exploration
trajectory starting and ending at s is no shorter than GEj , since such a trajectory has to visit all
the essential segments. For all i, we have |GE | ≤ 2|GEi | [5]. Hence, the distance traveled by the
robot in Case A is at most twice the length of any optimal trajectory for boundary exploration.
The distance traveled by the robot in Case B is at most twice the length of an optimal trajectory
for boundary exploration plus the length of the trajectory in Case A. Hence the algorithm is
competitive in both cases. �

4.2 Arbitrary convex polygons

In this section we present a competitive exploration algorithm, called Algorithm Convex, working
for arbitrary convex polygons, for round or square SA and regardless of the starting point. We use
the L2-metric, and the result holds for the L1-metric as well by changing the competitive constant.

Before explaining the idea of our algorithm, let us remark that the naive exploration method
(choose any direction, go to the boundary, trace it and then use the best off-line algorithm for the
already known polygon) is not a competitive algorithm. Indeed, consider a starting point in the
center of a square of side 2 + ε, for an arbitrarily small ε > 0. The cost of the optimal algorithm is
less than 5ε, while the naive approach costs more than 1.

The idea of Algorithm Convex is the following. First move along a direction until a boundary
point becomes explored. Call this distance δ. This is safe, as the optimal algorithm must travel
at least the distance δ/

√
2. Then move along boundaries of increasing squares centered at the

starting point, of sizes 2δ, 4δ, 8δ, and so on, until the entire polygon is explored, or until the size
of the square is at least 1. (If the boundary of the polygon to be explored prevents the robot from
continuing on the square, then it “slides” on the boundary, returning to the travel on the square
when again possible.) Since sizes of squares are doubled at each stage, the total trajectory length
is at most the double of traversing the last square. If the whole polygon has been already explored,
then the trajectory length is proportional to that of the optimal algorithm. Otherwise, the optimal
trajectory length is proportional to the diameter and both these values must be at least 1/4. The
trajectory length up to this moment is constant, hence making the tour of the polygon boundary
and then applying the optimal off-line algorithm to explore its interior (at this point the polygon
is known) is proportional to the diameter and hence competitive.

21



Algorithm Convex

Phase 1. Let p be the starting point of the robot. If the entire polygon P is included in the
SA, then stop. Otherwise, choose a direction (half-line starting at p) α on which no boundary
point is in the SA and move along α until a boundary point on α is in the SA. Denote by q the
position of the robot at this moment. Let δ be the distance between p and q.
Phase 2. Define the family S1, S2, ... of squares centered at p, with sides parallel and perpen-
dicular to α and such that Si has side of length 2iδ. For each i, let Ti be the boundary of the
polygon resulting from the intersection of square Si with polygon P . Phase 2 is divided into
stages 1, 2, . . . . The aim of stage i is executing the tour of Ti. Each stage i ends at a point qi of
the half-line α. Stage 1 starts and ends at point q1 = q. Recursively, if qi−1 is at the boundary of
the polygon to be explored then qi = qi−1. If qi−1 is in the interior of the polygon to be explored
then, in stage i, the robot moves along α from qi−1, away from p, to the point qi, intersection of
α and Ti. (This point may be on the boundary of the polygon, or on the boundary of the square
Si.) Then the robot makes a complete tour of Ti, ending in qi. The last stage of Phase 2 is when
the entire polygon P is explored, or when 2iδ ≥ 1, whichever comes first.
Phase 3. If Phase 2 ended because the entire polygon P was explored, then Phases 3 and 4
are void. Otherwise, the robot moves from point qi at which Phase 2 ended, along the half-line
α, away from p, to the closest point at the boundary of the polygon P , and makes a complete
clockwise tour of this boundary. Denote by r the point of the boundary at which Phase 3 ends.
Phase 4. At the end of Phase 3 the robot knows the polygon, although it may have not explored
all its interior points yet. If it has, then stop. Otherwise, the robot goes back to p along the
half-line α and applies the optimal exploration algorithm for the polygon, starting from point p;
then it stops.

Theorem 4.2 Algorithm Convex is a competitive algorithm to explore any convex polygon, starting
from any point, for round or square SA, and for the L1 or the L2-metric.

Proof: Let D denote the diameter of the polygon to be explored, B the length of its boundary,
OPT the length of the optimal exploration trajectory of a robot knowing the polygon and starting
at point p, and L the total length of the trajectory of the robot starting at point p and using
Algorithm Convex. For each point x in P , let g(x) be the minimum distance from p to a point
from which x is visible by the robot. Let G = maxx∈P {g(x)}. Notice that G ≤ OPT . Observe as
well that G ≥ δ for a round SA and G ≥ δ/

√
2 for a square SA. Indeed, the second inequality is

justified as follows. Since α intersects the boundary of SA at angle at least π/2, the distance from
SA to the farthest point of P on the half-line α is at least δ/

√
2.

Consider Phase 2 of the algorithm and suppose that it lasted i stages. If Phase 2 ended and
P has not yet been explored, then 2iδ ≥ 1. At this point the robot has performed a tour of Ti−1.
Since the polygon is convex, all the points visible from points inside Ti−1 have been explored. In
this case G ≥ 1/4, since every point that can be explored from a point at distance 1/4 from p was
explored. Notice that the length of the boundary of Ti is at most 4 · 2iδ, for each i, in view of the
convexity of P . The length of the trajectory of our robot in Phase 1 is at most 2

√
2 · OPT , in

Phase 2 it is O(1) + 5
√

2 ·OPT , in Phase 3 it is O(1) +B, and in Phase 4 it is O(1) +OPT . Hence
there exists a positive constant c1 such that L ≤ c1 + B + 15 ·OPT . Since the polygon is convex,
we have B ≤ πD. Notice that D ≤ 2G + 2

√
2 since the distance from a point x to to the point p

is at most g(x) +
√

2. Hence, we have D ≤ 14G, since G ≥ 1/4. It follows that B ≤ 14πG. As a
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consequence, we get:

L ≤ c1 +B + 15 ·OPT
≤ c1 + 14πG+ 15 ·OPT
≤ c1 + (14π + 15)OPT

Since OPT ≥ G ≥ 1/4, we have L ≤ c2 ·OPT , for some positive constant c2.
Hence we may assume that the end of Phase 2 was caused by exploring the entire polygon P .

If this phase ends after stage 1, then L ≤ 9δ. Hence, L ≤ 9
√

2 ·OPT , since OPT ≥ δ/
√

2.
Thus we may suppose that Phase 2 lasted i ≥ 2 stages. Let x = 2iδ. Since the polygon is

convex, all the points visible from points inside Ti−1 have been explored. Since at the end of stage
i − 1 the entire polygon has not yet been explored, it follows that G ≥ x/4. The length of the
trajectory of our robot until the end of Phase 2 is at most 10x. Hence L ≤ 40G ≤ 40 ·OPT .

It follows that L ≤ c ·OPT holds in all cases for some positive constant c, and hence Algorithm
Convex is competitive. �

5 Conclusion

For the problem of optimality of on-line exploration of rectilinear polygons, our results explain the
situation in each of the considered scenarios: we gave an optimal boundary exploration algorithm
for a robot with square sensing area starting at the boundary, in the Manhattan metric, while in
all other scenarios (exploration of the entire polygon, or arbitrary starting point, or round SA, or
the Euclidean metric) we proved that optimal on-line exploration is impossible.

For the problem of competitiveness of on-line exploration of rectilinear polygons, our results are
less complete: we showed a competitive algorithm for a robot with square sensing area, regardless
of the metric and of the starting point. It is natural to ask if the same result is true for a round
sensing area. We conjecture that the answer to this question is positive. It should be noted that
competitiveness for the round SA does not immediately follow from competitiveness for the square
SA, because there is no bound on the ratio between the lengths of optimal exploration trajectories
in these scenarios.

An even bigger challenge would be to show a competitive on-line exploration algorithm for
arbitrary polygons, for both shapes of the sensing area. Our competitive algorithm for convex
polygons is a step in this direction.
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