

Domaine Sciences et Technologies LICENCE D'INFORMATIQUE

Automates et circuits : TD 6 Code UE : ENSIN2U2

Année 2012-13

Ordres, Treillis et Algèbre de Boole

Exercice 1 Soit E un ensemble ordonné. A tout élément de $x \in E$ on associe M(x) l'ensemble des majorants de x, ce qui définit une application $M: E \to \mathcal{P}(E)$.

Question 1.1 Caractériser les éléments maximaux de E en fonction de M.

Question 1.2 Caractériser le plus petit élément de E en fonction de M.

Question 1.3 L'application M est-elle injective?

Exercice 2 Soit la relation \leq définie sur $\{(x,y) \mid x,y \in \{1,2,3,4\} \text{ et } x \leq y\}$ de la façon suivante : $(x,y) \leq (x',y') \Leftrightarrow x \geq x' \text{ et } y \leq y'$

Question 2.1 Prouver que \leq est une relation d'ordre.

Question 2.2 Donner le ou les élément minimaux de \leq .

Question 2.3 Est-ce-que \leq a un plus grand élément?

Question 2.4 Dessiner le diagramme de Hasse de la relation d'ordre \preceq .

Exercice 3 On définit une relation \leq sur \mathbb{B}^* (mots binaires) de la façon suivante.

Soit \mathbb{B}^* les mots binaires (les suites de 0,1), avec 0 < 1. Soit ϵ le mot de longueur nulle. Soit $m \in \mathbb{B}^*$, $m = m_1 m_2 m_3 \dots m_p$ et $w \in \mathbb{B}^*$, $w = w_1 w_2 w_3 \dots w_q$ (pour tout $i, m_i, w_i \in \{0, 1\}$).

- 1. pour tout $w ext{ de } \mathbb{B}^*, \epsilon \leq w$.
- 2. pour tout m différent de ϵ ,

$$m \preceq w \text{ si } \begin{cases} p \leq q \text{ et pour tout } 1 \leq i \leq p, \ w_i = m_i \\ ou \\ \text{il existe } s, 1 \leq s \leq p, q \text{ tel que pour tout } 1 \leq i \leq s-1, \ w_i = m_i \text{ et } m_s < w_s \end{cases}$$

Question 3.1 Démontrer qu'il s'agit bien d'une relation d'ordre.

Question 3.2 Le mot 111 a-t-il un successeur immédiat ? Est-il le successeur immédiat d'un autre mot ?

Question 3.3 Quels mots se trouvent entre 111 et 1111?

Exercice 4 Parmi les dessins de la figure 1, lesquels sont des diagrammes de Hasse?

Exercice 5 Les relations définies par les représentations cartésiennes de la figure 2 sont-elles des relations d'ordre? Si oui, dessiner leur diagramme de Hasse.

Exercice 6 Combien y a-t-il de formes différentes du diagramme de Hasse pour un ensemble à quatre éléments?

Exercice 7 On considère deux ensembles ordonnés A et B. On note \leq leur relation d'ordre. Sur le produit $A \times B$, on définit une relation \mathcal{R} en déclarant : $(a,b)\mathcal{R}(\alpha,\beta)$ si $a \leq \alpha$ et $b \leq \beta$.

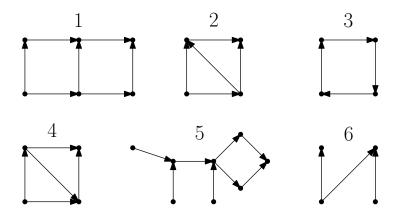


FIGURE 1 – Six diagrammes : sont-ils des diagrammes de Hasse?

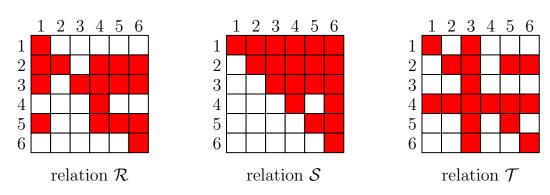


Figure 2 – Trois relations sur \mathbb{N}_6^*

Question 7.1 Démontrer qu'il s'agit bien d'une relation d'ordre.

Question 7.2 Est-ce que que $A \times B$ est totalement ordonné si A et B le sont?

Question 7.3 Quels sont les éléments minimaux et maximaux de $A \times B$?

Question 7.4 A quelle condition $A \times B$ a-t-il un plus grand élément?

Exercice 8 Soient A un ensemble non vide quelconque et B un ensemble non-vide ordonné par une relation d'ordre \mathcal{R} . Si f et g sont deux applications de A dans B, on écrit $f\Sigma g$ si l'on a $f(x)\mathcal{R}g(x)$ pour tout $x\in A$.

Question 8.1 Démontrer que Σ est une relation d'ordre sur B^A .

Question 8.2 A quelle condition B^A est-il totalement ordonné par cette relation?

Exercice 9

Question 9.1 Combien peut-on mettre de relations d'ordre total sur \mathbb{N}_n^* ?

Exercice 10 On note $E = \mathbb{N} \cup \{\omega\}$. Autrement dit, E est l'ensemble des entiers naturels, plus un élément ω qui n'est pas un entier. On munit E d'une relation d'ordre notée \preceq en déclarant que ω est le plus grand élément de E et que si x et y sont deux entiers naturels, on a $x \preceq y$ si et seulement si $x \leq y$ dans \mathbb{N} .

Question 10.1 Démontrer que \leq est bien une relation d'ordre.

Question 10.2 Démontrer que E muni de \leq est un ensemble bien ordonné, c'est-à-dire que toute partie non vide de E possède un plus petit élément par \leq .

Question 10.3 Quels éléments de E ne sont pas les successeurs d'autres éléments?

Exercice 11 On note A l'ensemble des relations sur E de cardinal n. Si S et T sont deux relations, on note $S \wedge T$ la relation définie par pour tout $a, b \in A$ $a(S \wedge T)b$ ssi aTb et aSb; on note $S \vee T$ la relation définie par pour tout $a, b \in A$ $a(S \vee T)b$ ssi aTb ou aSb. Enfin, on dit qu'une relation S est b es

Question 11.1 Comment voit-on que $\mathcal{S} \Longrightarrow \mathcal{T}$ sur les représentations cartésiennes de \mathcal{S} et de \mathcal{T} ?

Question 11.2 Si \mathcal{S} et \mathcal{T} sont des relations d'équivalence, à quoi reconnaît-on, sur leurs classes d'équivalence, que $\mathcal{S} \Longrightarrow \mathcal{T}$?

Question 11.3 Si \mathcal{S} et \mathcal{T} sont des relations d'équivalence, est-ce que $\mathcal{S} \wedge \mathcal{T}$ et $\mathcal{S} \vee \mathcal{T}$ sont aussi des relations d'équivalence? Si oui, comment peut-on obtenir leurs classes d'équivalence à partir de celles de \mathcal{S} et \mathcal{T} ?

Question 11.4 Démontrer que \Longrightarrow est une relation d'ordre. Quel est son plus petit élément? Quel est son plus grand élément? Dans le cas où $E = \{a, b\}$, faire la liste des relations sur E et dessiner le diagramme de Hasse de la relation \Longrightarrow .

Question 11.5 Si \mathcal{S} et \mathcal{T} sont deux relations d'ordre, en est-il de même des relations $\mathcal{S} \wedge \mathcal{T}$ et $\mathcal{S} \vee \mathcal{T}$?