/** * * @File : LittleEndian-->BigEndian * * @Author : A. Dragut * * @Synopsis : exo 04 Optionnel **/ #include #include #include void bits4_1byte(unsigned char x) { int k; for(k = 0; k < 8; x <<= 1, k++) { putchar('0' + ((x&128)>>7)); /* from MSbit to LSbit, for human readability */ } } void bits4bytes(unsigned int value) //bits from an integer=4 bytes { unsigned int B0,B1,B2,B3; //Bytes 0,1,2,3 B0=(value>>24) & 0xFF; /* l'octet le plus significatif obtenu avec des shifts*/ B1=(value>>16) & 0xFF; B2=(value>>8) & 0xFF; B3=value&0xFF; printf("\n"); printf("-------- | -------- | -------- | -------- |\n"); bits4_1byte(B0); printf(" | "); bits4_1byte(B1); printf(" | "); bits4_1byte(B2); printf(" | "); bits4_1byte(B3); printf(" |"); printf("\n"); } unsigned int SwitchBitsInt (unsigned int value ) { //on renverse une valeur de 32-bit 8 bits=1byte a la fois //Algorithme connu comme "Reverse bits in word by lookup table" static const unsigned char LookupTable256[] = { 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA, 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE, 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1, 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5, 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD, 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB, 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF }; // En 2009 Hallvard Furuseth a suggere une table macro plus efficace. //static const unsigned char BitReverseTable256[256] = //{ //# define R2(n) n, n + 2*64, n + 1*64, n + 3*64 //# define R4(n) R2(n), R2(n + 2*16), R2(n + 1*16), R2(n + 3*16) //# define R6(n) R4(n), R4(n + 2*4 ), R4(n + 1*4 ), R4(n + 3*4 ) // R6(0), R6(2), R6(1), R6(3) //}; unsigned int c; // la valeur renversee // Variante 1 : 17 operations CPU c = (LookupTable256[value & 0xff] << 24) | (LookupTable256[(value >> 8) & 0xff] << 16) | (LookupTable256[(value >> 16) & 0xff] << 8) | (LookupTable256[(value >> 24) & 0xff]); printf("\n"); bits4bytes(c); printf("\n"); // Variante 2:12 operations CPU unsigned char * p = (unsigned char *) &value; unsigned char * q = (unsigned char *) &c; q[3] = LookupTable256[p[0]]; q[2] = LookupTable256[p[1]]; q[1] = LookupTable256[p[2]]; q[0] = LookupTable256[p[3]]; return c; } int main(int argc, char * argv []) { printf("Votre nombre\n"); unsigned int Nombre; scanf ("%i",&Nombre); unsigned char c=0; c = *(unsigned char *)(&Nombre); printf("\n"); printf("Nombre en binaire \n"); printf("Lowest memory address "); bits4_1byte(c); printf("\n"); bits4bytes(Nombre); printf("\n"); printf("\n"); printf("\n"); printf("Bits renverses\n"); unsigned int NbRenv = SwitchBitsInt(Nombre); printf("Lowest memory address "); c=0; c = *(unsigned char *)(&NbRenv); printf("\n"); bits4_1byte(c); printf("\n"); bits4bytes(NbRenv); return 0; } // main()